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Introduction to Graph Data

Graphs are mathematical structures used to model pairwise relations between 
objects.

A graph is made up of vertices (or nodes) connected by edges.

Can represent a wide range of real world data: social networks, biological 
networks, transportation networks, etc.
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Importance of Graph Data in Real-world Applications

Complex Systems Modeling: Graphs can model complex systems in a natural 
way, capturing the interconnections and relationships between different entities.

Insight and Decision Making: Understanding the structure and dynamics of 
graphs can lead to better decision-making in areas such as social media analysis, 
recommendation systems, and network security.

Data Interconnectivity: Unlike traditional data representations, graphs emphasize 
the relationships between data points, offering a more holistic view of the data set.



Challenges in Graph Data Analysis

Scalability: As graphs grow in size, analyzing them with traditional methods 
becomes computationally expensive or even infeasible.

Dynamic Nature: Many real-world graphs are dynamic, with nodes and edges 
changing over time, requiring flexible and adaptive analysis methods.

Heterogeneity: Graphs can contain various types of nodes and edges, making 
uniform analysis challenging.

Structural Complexity: The lack of a fixed structure in graphs (unlike images or 
text) complicates the application of machine learning models.



Graph Analysis Techniques

Traditional Methods: Earlier approaches include graph theory metrics (like 
centrality measures, clustering coefficient, etc.) and matrix factorization 
techniques.

Machine Learning on Graphs: Recent advancements involve applying machine 
learning to graphs, with graph neural networks (GNNs) being the forefront 
technology allowing for direct learning from graph-structured data.



Why Graph Data is Unique

Relational Information: Graphs inherently contain relational information, offering 
a rich source of data that is not easily captured by traditional tabular data.

Flexibility: Graphs are flexible in representing various types of data from different 
domains, allowing for the modeling of complex interactions and relationships.



Pytorch-geometric 



Install

pip install torch_geometric



from torch_geometric.data import Data

import torch

from torch_geometric.data import Data

edge_index = torch.tensor([[0, 1, 1, 2],

                           [1, 0, 2, 1]], dtype=torch.long)

x = torch.tensor([[-1], [0], [1]], dtype=torch.float)

data = Data(x=x, edge_index=edge_index)

print(data)



Graph Validation

data.validate(raise_on_error=True)



Example dataset
from torch_geometric.datasets import TUDataset

dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')

print(dataset)

print(len(dataset))

print(dataset.num_classes)

print(dataset.num_node_features)

data = dataset[0]

print(data)

print(data.is_undirected())





DataLoader

from torch_geometric.datasets import TUDataset

from torch_geometric.loader import DataLoader

dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES', use_node_attr=True)

loader = DataLoader(dataset, batch_size=32, shuffle=True)

for batch in loader:

    print(batch)

    print(batch.num_graphs)




