Intro to GNN

Part |



Introduction to Graph Data

Graphs are mathematical structures used to model pairwise relations between
objects.

A graph is made up of vertices (or nodes) connected by edges.

Can represent a wide range of real world data: social networks, biological
networks, transportation networks, etc.

O—=—C

node node




Importance of Graph Data in Real-world Applications

Complex Systems Modeling: Graphs can model complex systems in a natural
way, capturing the interconnections and relationships between different entities.

Insight and Decision Making: Understanding the structure and dynamics of
graphs can lead to better decision-making in areas such as social media analysis,
recommendation systems, and network security.

Data Interconnectivity: Unlike traditional data representations, graphs emphasize
the relationships between data points, offering a more holistic view of the data set.




Challenges in Graph Data Analysis

Scalability: As graphs grow in size, analyzing them with traditional methods
becomes computationally expensive or even infeasible.

Dynamic Nature: Many real-world graphs are dynamic, with nodes and edges
changing over time, requiring flexible and adaptive analysis methods.

Heterogeneity: Graphs can contain various types of nodes and edges, making
uniform analysis challenging.

Structural Complexity: The lack of a fixed structure in graphs (unlike images or
text) complicates the application of machine learning models.



Graph Analysis Techniques

Traditional Methods: Earlier approaches include graph theory metrics (like
centrality measures, clustering coefficient, etc.) and matrix factorization
techniques.

Machine Learning on Graphs: Recent advancements involve applying machine
learning to graphs, with graph neural networks (GNNs) being the forefront
technology allowing for direct learning from graph-structured data.




Why Graph Data is Unique

Relational Information: Graphs inherently contain relational information, offering
a rich source of data that is not easily captured by traditional tabular data.

Flexibility: Graphs are flexible in representing various types of data from different
domains, allowing for the modeling of complex interactions and relationships.



Pytorch-geometric



Install

pip install torch geometric



from torch geometric.data import Data

import torch

from torch geometric.data import Data

edge index = torch.tensor ([[0, 1, 1, 2],

(1, 0, 2, 11], dtype=torch.lonq)

x = torch.tensor([[-1], [0], [1]], dtype=torch.float)

data = Data(x=x, edge index=edge index)

print (data)



Graph Validation

data.validate (raise on error=True)



Example dataset

from torch geometric.datasets import TUDataset

dataset = TUDataset (root='/tmp/ENZYMES', name='ENZYMES')
print (dataset)

print (len(dataset))

print (dataset.num classes)

print (dataset.num node features)

data = dataset[0]
print (data)

print(data.is undirected())



from torch geometric.datasets import TUDataset

dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')
print(dataset)

print(len(dataset))

print(dataset.num classes)
print(dataset.num node features)

Downloading https://www.chrsmrrs.com/graphkerneldatasets/ENZYMES.zip

Processing. ..

ENZYMES (600)

600

6

3

Done!

data = dataset[0]
print(data)

print(data.is undirected())

Data(edge index=[2, 168], x=[37, 21], y=[1])
True



DatalLoader

from torch geometric.datasets import TUDataset

from torch geometric.loader import DataLoader

dataset = TUDataset (root='/tmp/ENZYMES', name='ENZYMES', use node attr=True)

loader = DatalLoader (dataset, batch size=32, shuffle=True)

for batch in loader:
print (batch)

print (batch.num graphs)



DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

32

DataBatch(edge index=[2,

24

38901,
3478],
35861,
3808],
42301,
35661,
42841,
4128],
34161,
34641,
41621,
40701,
43061,
4412],
38741,
4568],
4368],
38601,

30947,

x=[1031, 21], y=[32], batch=[1031], ptr=[33])

x=[896, 21], y=[32], batch=[896], ptr=[33])

x=[1014, 21], y=[32], batch=[1014], ptr=[33])

x=[1014, 21], y=[32], batch=[1014], ptr=[33])

x=[1068, 21], y=[32], batch=[1068], ptr=[33])

x=[969, 211, y=[32], batch=[969], ptr=[33])

x=11221,. 21], y=[32], batech=]1221], ptr=[33])

x=[1047, 211, y=[32], batch=[1047], ptr=[33])

x=[885, 211, y=[32], batch=[885], ptr=[33])

x=[907, 211, y=[32], batch=[907], ptr=[33])

x=[1056,
x=[1045,
x=[1125,
x=[1158,
x=[1021,
x=[1147,
x=[1132,

x=[1003,

217,
21],
217,
217,
21],
21],
217,

217,

y=[32],
y=[32],
y=[321,
y=[32],
y=[32],
y=[32],
y=[32],

y=[32],

batch=[1056],
batch=[1045],
batch=[1125],
batch=[1158],
batch=[1021],
batch=[1147],
batch=[1132],

batch=[1003],

ptr=[33])
ptr=[33])
ptr=[33])
ptr=[33])
ptr=[33])
ptr=[33])
ptr=[33])

ptr=[33])

x=[841, 21], y=[24], batch=[841], ptr=[25])



