
Embedding
Deep Learning

What are Embeddings?

Embeddings are a type of representation that converts sparse, categorical data
into a dense, lower-dimensional, and continuous vector space.

Each category or token in the original data is mapped to a vector in this space.
These vectors capture some semantic meanings of the original tokens, meaning
that similar tokens will have similar vectors in the embedding space.

Dog 0.7 -1.2 0.4 1.5

Example 1
import torch

import torch.nn as nn

Define the size of the vocabulary and the dimension of the embedding space

vocab_size = 10 # suppose we have 10 unique tokens

embedding_dim = 3 # each token is represented by a 3D vector

Create an embedding object

embed = nn.Embedding(vocab_size, embedding_dim)

Sample input: indices for words in the vocabulary

input_indices = torch.LongTensor([1, 2, 3, 4])

Get the embeddings for the input indices

embeddings = embed(input_indices)

print(embeddings)

Results

Results

1

2

3

4

0.63 -1.89 1.17

-0.15 0.95 -0.21

-0.07 -1.29 -1.65

0.98 0.32 1.62

Example 2

EmbeddingBag

What is an Embedding Bag?

An embedding bag takes multiple indices as input, aggregates their embeddings
directly within the lookup table, and outputs a single vector.

This aggregation can be done by taking the sum, average, or maximum of the
embeddings. The EmbeddingBag does not require explicitly passing padding
indices, making it particularly efficient for processing sentences or documents of
different lengths.

3 6

4

8 3 2

0.7 1.4 -0.7

1.1 -0.3 0.2

0.4 1.7 -0.8

Advantage and Application

Efficiency:

It avoids the explicit expansion of the embedding vectors in memory when it is only going to be reduced immediately
by operations like sum or mean. This can lead to more memory-efficient and faster computations, especially in
batched operations.

No Need for Padding:

Since EmbeddingBag automatically handles varying input lengths internally and outputs just one vector per batch
item, you don't need to worry about padding your input sequences to the same length, which is a common
requirement in other sequence processing operations.

Applications:

It is widely used in tasks like document classification, sentiment analysis, or any other form of text classification where
the entire text needs to be represented as a single fixed-size vector.

Example 1

Example 2

2D Input (Sequence, Feature) for RNN

