
Recurrent Neural Networks
Intro to Deep Learning

RNN

ht

yt

xt

h1

y1

x1

h2

y2

x2

h3

y3

x3

ht

yt

xt

=
…..

RNN

When the first input (x1) comes in, the first memory (h1) is created. When the
second input (x2) comes in, the existing memory (h1) is referenced along with the
new input to create a new memory (h2). This process can be repeated for any
length of inputs.

In short, the input is (x) from the data and memory (h), and the output becomes y
along with the memory (h).

RNN type

One-to-One: It is difficult to call it an RNN because there is no recurrence. It is a basic neural
network structure where each input produces one output, without any recurrent connections.

One-to-Many: It is a structure where one input produces multiple outputs. A typical example is
image captioning, where an image is given as input, and a sentence describing the image is
generated as the output.

Many-to-One: It is a structure where multiple inputs produce one output. A sentiment analyzer
is a representative example of this. It takes a sentence as input and outputs the sentiment
(positive/negative) of that sentence.

Many-to-Many: It is a structure where multiple inputs produce multiple outputs. The lengths of
the input and output sequences can be different. Machine translation or speech recognition
tasks can be examples of this structure.

h1

x1

h2

x2

h3

y3

x3

Many-to-one

h1

x1

h2

x2

h3

y3

x3

Many-to-one

h1 h2 h3

Layer 1

Layer 2

h

yt

xt

=Whh

Why

Wxh

ht-1

yt-1

xt-1

ht

yt

xt

ht+1

yt+1

xt+1

…..
Whh Whh Whh Whh

Why Why Why

Wxh
Wxh Wxh

Hidden Layer

Output Layer

Input Layer

Hidden Layer and Output Layer

● Hidden Layer

● Output Layer

ht = tanh(Whh x ht-1 + Wxh x xt)

yt = softmax(Why x h1)

ht-1

yt-1

xt-1

ht

yt

xt

ht+1

yt+1

xt+1

Whh Whh Whh Whh

Why Why Why

Wxh
Wxh Wxh

h1

x1

h2

x2

h3

x3

h30

x3

0

h1 h2 h3 h30

h1 h2 h3 h30

Fully Connected Layers

output

Netflix stock example

5 hidden layers

Long Short-Term Memory (LSTM)

LSTM has added new elements to the hidden layer: the forget gate, the input gate,
and the output gate.

Forget gate

The forget gate in LSTM determines how much of the past information to retain. It
takes the past information, i.e., the memory, and the current input data, and after
applying the sigmoid function to them, it multiplies the result with the past
information. Therefore, if the output of the sigmoid is 0, the past information is
discarded, but if it's 1, the past information is fully preserved.

ft = sigmoid(wf [ht-1, xt])

ct = ft x ct-1

wf

Input gate

The input gate is responsible for preserving the current input information. It uses
the sigmoid and tangent functions to determine how much of the current input
information should be retained. In other words, it decides how much new
information should be added to the memory.

it = sigmoid(wi [ht-1, xt])

c’t = tanh(wc [ht-1, xt]

ct = ct-1+ it x c’t wi wc

Cell gate

Update the cell state

it = sigmoid(wf [ht-1, xt])

c’t = tanh(wc [ht-1, xt]

ct = ct-1+ it x c’t

ft = sigmoid(wf [ht-1, xt])

ct = ft x ct-1

Output gate

Output gate controls memory to output (ht)

ot = sigmoid(wo [ht-1, xt])

ht = ot x tanh(ct-1)
wo

LSTM in Pytorch

Model
class LSTMModel(nn.Module):

 def __init__(self, input_dim, hidden_dim, output_dim, num_layers):

 super(LSTMModel, self).__init__()

 self.hidden_dim = hidden_dim

 self.num_layers = num_layers

 self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)

 self.linear = nn.Linear(hidden_dim, output_dim) # Define the output layer

 def forward(self, x):

 out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))

 out = self.linear(out[:, -1, :]) # Index hidden state of last time step

 return out

Parameters and DataLoader
Data parameters

sequence_length = 10

input_dim = 5

num_samples = 1000

num_classes = 2

Random data generation

data = torch.randn(num_samples, sequence_length, input_dim)

labels = torch.randint(0, num_classes, (num_samples,))

TensorDataset

dataset = TensorDataset(data, labels)

DataLoader setting

batch_size = 64

train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

Train
model = LSTMModel(input_dim, hidden_dim=50, output_dim=num_classes, num_layers=2)

criterion = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

for epoch in range(20):

 for inputs, labels in train_loader:

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = criterion(outputs, labels)

 loss.backward()

 optimizer.step()

 print(f"Loss: {loss.item():.4f}")

Results

