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RNN

When the first input (x1) comes in, the first memory (h1) is created. When the 
second input (x2) comes in, the existing memory (h1) is referenced along with the 
new input to create a new memory (h2). This process can be repeated for any 
length of inputs.

In short, the input is (x) from the data and memory (h), and the output becomes y 
along with the memory (h).



RNN type

One-to-One: It is difficult to call it an RNN because there is no recurrence. It is a basic neural 
network structure where each input produces one output, without any recurrent connections.

One-to-Many: It is a structure where one input produces multiple outputs. A typical example is 
image captioning, where an image is given as input, and a sentence describing the image is 
generated as the output.

Many-to-One: It is a structure where multiple inputs produce one output. A sentiment analyzer 
is a representative example of this. It takes a sentence as input and outputs the sentiment 
(positive/negative) of that sentence.

Many-to-Many: It is a structure where multiple inputs produce multiple outputs. The lengths of 
the input and output sequences can be different. Machine translation or speech recognition 
tasks can be examples of this structure.
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Hidden Layer and Output Layer

● Hidden Layer

● Output Layer

ht = tanh(Whh x ht-1 + Wxh x xt)

yt = softmax(Why x h1)
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Long Short-Term Memory (LSTM)

LSTM has added new elements to the hidden layer: the forget gate, the input gate, 
and the output gate.



Forget gate

The forget gate in LSTM determines how much of the past information to retain. It 
takes the past information, i.e., the memory, and the current input data, and after 
applying the sigmoid function to them, it multiplies the result with the past 
information. Therefore, if the output of the sigmoid is 0, the past information is 
discarded, but if it's 1, the past information is fully preserved.

ft = sigmoid(wf [ht-1, xt])

ct = ft x ct-1

wf



Input gate

The input gate is responsible for preserving the current input information. It uses 
the sigmoid and tangent functions to determine how much of the current input 
information should be retained. In other words, it decides how much new 
information should be added to the memory.

it = sigmoid(wi [ht-1, xt])

c’t = tanh(wc [ht-1, xt]

ct = ct-1+ it x c’t wi wc



Cell gate

Update the cell state

it = sigmoid(wf [ht-1, xt])

c’t = tanh(wc [ht-1, xt]

ct = ct-1+ it x c’t

ft = sigmoid(wf [ht-1, xt])

ct = ft x ct-1



Output gate

Output gate controls memory to output (ht)

ot = sigmoid(wo [ht-1, xt])

ht = ot x tanh(ct-1)
wo



LSTM in Pytorch



Model
class LSTMModel(nn.Module):

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):

        super(LSTMModel, self).__init__()

        self.hidden_dim = hidden_dim

        self.num_layers = num_layers

        self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)

        self.linear = nn.Linear(hidden_dim, output_dim) # Define the output layer

    def forward(self, x):

        out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))

        out = self.linear(out[:, -1, :]) # Index hidden state of last time step

        return out



Parameters and DataLoader
# Data parameters

sequence_length = 10

input_dim = 5

num_samples = 1000

num_classes = 2

# Random data generation

data = torch.randn(num_samples, sequence_length, input_dim)

labels = torch.randint(0, num_classes, (num_samples,))

# TensorDataset 

dataset = TensorDataset(data, labels)

# DataLoader setting

batch_size = 64

train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)



Train
model = LSTMModel(input_dim, hidden_dim=50, output_dim=num_classes, num_layers=2)

criterion = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

for epoch in range(20):  

    for inputs, labels in train_loader:

        optimizer.zero_grad()

        outputs = model(inputs)

        loss = criterion(outputs, labels)

        loss.backward()

        optimizer.step()

    print(f"Loss: {loss.item():.4f}")



Results


