
Recurrent Neural Networks
Intro to Deep Learning



Sequential data

So far, our focus has been on handling unordered data, where we simply fed a 
single matrix or image into the model. 

However, when dealing with sequences like time-series data, disregarding the 
order of the data would lead to improper training. 

Inputting such sequential data as-is without considering its order can adversely 
affect the learning process.

Sequential Data: Daily stock price, weather, document (text), sound, video, and 
so on.



Recurrent Neural Network

Working with time series data can be surprisingly straightforward. 

The key is to input the data in chronological order. 

To build an effective model, you must incorporate both historical and current 
information. 

This is achieved by feeding the model's previous output back into the input, a 
technique known as recursion. 

In the realm of deep learning, this is referred to as a Recurrent Neural Network 
(RNN).



Why recurrent?
RNN is a method of storing previously input data for a while when multiple data 
are input in sequence. And it judges how important the memorized data is and 
gives it a separate weight and moves on to the next data. It does this for every 
input value in sequence, so it looks like it's hovering around the same layer before 
moving on to the next layer.



RNN - memory of previous node

In a recurrent neural network (RNN), the output of the previous node, known as 
the memory or hidden state, is utilized as input for the current node. 

This characteristic holds significant importance as RNNs are specifically designed 
to handle sequential data, where each element's information in the sequence 
relies on the preceding elements. 

By incorporating the previous memory as an input for the current node, the RNN 
can effectively consider the contextual information from earlier steps, 
enabling it to make informed predictions and decisions based on the historical 
context.



Memory of history

The incorporation of the previous memory serves a vital purpose, enabling the 
model to comprehend temporal dependencies effectively. 

This feature proves highly beneficial across various applications like language 
modeling, speech recognition, and time series prediction. 

By preserving a memory of past inputs, the RNN becomes adept at capturing 
long-term dependencies and employing that knowledge to anticipate future 
outputs. 

Essentially, the previous memory plays a pivotal role in facilitating the RNN's 
ability to learn from historical information, ultimately enhancing its predictive 
capabilities and decision-making prowess.



RNN

Memory 1

Input 1: 
What’s

Input 2: 
the

Output about 
‘What’s’

Output about 
‘the’

Input 3: 
weather

Output about 
‘weather ’

Memory 2

Input 4: 
today?

Output about 
‘today?’

Memory 3



RNN

Memory 1

Input 1: 
What’s

Input 2: 
the

Output about 
‘What’s’

Output about 
‘the’

Input 3: 
price

Output about 
‘price’

Memory 2

Input 4: 
today?

Output about 
‘today?’

Memory 3



RNN

ht

yt

xt

h1

y1

x1

h2

y2

x2

h3

y3

x3

ht

yt

xt

=
…..



RNN

When the first input (x1) comes in, the first memory (h1) is created. When the 
second input (x2) comes in, the existing memory (h1) is referenced along with the 
new input to create a new memory (h2). This process can be repeated for any 
length of inputs.

In short, the input is (x) from the data and memory (h), and the output becomes y 
along with the memory (h).



RNN type

One-to-One: It is difficult to call it an RNN because there is no recurrence. It is a basic neural 
network structure where each input produces one output, without any recurrent connections.

One-to-Many: It is a structure where one input produces multiple outputs. A typical example is 
image captioning, where an image is given as input, and a sentence describing the image is 
generated as the output.

Many-to-One: It is a structure where multiple inputs produce one output. A sentiment analyzer 
is a representative example of this. It takes a sentence as input and outputs the sentiment 
(positive/negative) of that sentence.

Many-to-Many: It is a structure where multiple inputs produce multiple outputs. The lengths of 
the input and output sequences can be different. Machine translation or speech recognition 
tasks can be examples of this structure.



Applications
● Language Modeling

● Speech Recognition

● Machine Translation

● Conversation Modeling / Question Answering

● Image / Video Captioning

● Image / Music / Dance Generation



Recurrent Networks Offer a Lot of Flexibility



Recurrent Networks Offer a Lot of Flexibility



Example



Recurrent Networks Offer a Lot of Flexibility



Example



Recurrent Networks Offer a Lot of Flexibility



Example



Recurrent Networks Offer a Lot of Flexibility



RNN Structure



h1

x1

h2

x2

h3

y3

x3

Many-to-one



h1

x1

h2

x2

h3

y3

x3

Many-to-one

h1 h2 h3

Layer 1

Layer 2



h

yt

xt

=Whh

Why

Wxh

ht-1

yt-1

xt-1

ht

yt

xt

ht+1

yt+1

xt+1

…..
Whh Whh Whh Whh

Why Why Why

Wxh
Wxh Wxh

Hidden Layer

Output Layer

Input Layer



Hidden Layer and Output Layer

● Hidden Layer

● Output Layer

ht = tanh(Whh ht-1 + Wxh xt)

yt = softmax(Why h1)

ht-1

yt-1

xt-1

ht

yt

xt

ht+1

yt+1

xt+1

Whh Whh Whh Whh

Why Why Why

Wxh
Wxh Wxh



Let’s implement a simple RNN structure!


