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Autoencoder vs VAE

Autoencoders primarily aim to reduce the dimensionality of data and extract 
significant features by compressing the input data into a lower-dimensional latent 
space representation and then reconstructing it back to a form similar to the 
original data. The focus is not on the exact probability distribution of the generated 
data.



Autoencoder vs VAE

Variational Autoencoders (VAEs) extend autoencoders by learning a probabilistic 
representation of the input data. 

VAEs model each point in the latent space with a probability distribution, typically 
Gaussian, learning the mean and variance for each latent variable z. 

This allows for the generation of new data points by randomly sampling from these 
distributions.
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Encoder Network

q(z|x) plays a crucial role and is also referred 
to as the encoder.

This network takes input data x and outputs 
statistical parameters (mean and variance) 
associated with the latent vector z, which 
represents the position of the input data in the 
latent space. 

This process can be understood as mapping 
the input data to a specific distribution in the 
latent space, from which the latent vector z is 
obtained through sampling.
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Loss function for VAE

The loss function of a Variational Autoencoder (VAE) is composed of two main parts: Reconstruction Loss and KL 

Divergence.

Reconstruction Loss: This loss measures the difference between the original data and the data reconstructed 

through the VAE. The goal is to make the reconstructed data as similar as possible to the original data. 

Reconstruction loss is typically calculated using loss functions like Mean Squared Error (MSE) or Cross-Entropy.

KL Divergence: This term measures the difference between the distribution of the latent variables generated by the 

encoder and a predefined target distribution (usually a standard normal distribution). KL Divergence ensures that the 

model does more than just accurately reconstruct data; it organizes the latent space in a way that facilitates the 

generation of new data. In other words, it acts as a regularizer for the latent space, ensuring that similar data points 

are located close to each other in the latent space.



Reconstruction Loss

This component of the VAE loss function focuses on the accuracy of the output compared to the 
input. It essentially measures how well the decoder is able to reconstruct the input data after 
it has been encoded into the latent space and then decoded back into the original data space. 
Common choices for the reconstruction loss include:

Mean Squared Error (MSE): Used especially when the input data are continuous. It measures 
the average of the squares of the errors—that is, the average squared difference between the 
estimated values (reconstructed data) and the actual value (original data).

Binary Cross-Entropy: Often used when dealing with binary or categorical data, such as pixels 
in a black-and-white image. It measures the dissimilarity between two probability distributions, 
typically the predicted probabilities and the actual labels.



In our implementation

reproduction_loss = nn.functional.binary_cross_entropy(x_hat, x, reduction='sum')

# x: the original input data to the VAE.

# x_hat: the reconstructed data output by the VAE's decoder.



KL Divergence

Kullback-Leibler divergence is a measure of how one probability distribution 
diverges from a second, expected probability distribution. 

In VAEs, KL divergence is used to measure how much the learned latent variable 
distribution q(z∣x) (approximated by the encoder) diverges from the prior 
distribution p(z), which is often assumed to be the standard normal distribution 
N(0,1).



KL Divergence

q(z∣x) is assumed to be a normal distribution with mean μ and variance σ2 , and p(z) is the standard normal 
distribution with mean 0 and variance 1. 

The KL divergence measures the information loss when using q(z∣x) to approximate p(z). Mathematically, it is 
calculated as:

Solving this gives:

Reference: https://statproofbook.github.io/P/norm-kl.html



Implementation



Encoder
class Encoder(nn.Module):

    def __init__(self, input_dim, hidden_dim, latent_dim):

        super(Encoder, self).__init__()

        self.input1 = nn.Linear(input_dim, hidden_dim)

        self.input2 = nn.Linear(hidden_dim, hidden_dim)

        self.mean = nn.Linear(hidden_dim, latent_dim)

        self.var = nn.Linear (hidden_dim, latent_dim)

        self.LeakyReLU = nn.LeakyReLU(0.2)

        self.training = True

    def forward(self, x):

        h_ = self.LeakyReLU(self.input1(x))

        h_ = self.LeakyReLU(self.input2(h_))

        mean = self.mean(h_)

        log_var = self.var(h_)

        return mean, log_var



Decoder
class Decoder(nn.Module):

    def __init__(self, latent_dim, hidden_dim, output_dim):

        super(Decoder, self).__init__()

        self.hidden1 = nn.Linear(latent_dim, hidden_dim)

        self.hidden2 = nn.Linear(hidden_dim, hidden_dim)

        self.output = nn.Linear(hidden_dim, output_dim)

        self.LeakyReLU = nn.LeakyReLU(0.2)

    def forward(self, x):

        h = self.LeakyReLU(self.hidden1(x))

        h = self.LeakyReLU(self.hidden2(h))

        x_hat = torch.sigmoid(self.output(h))

        return x_hat



Encoder + Decoder
class Model(nn.Module):

    def __init__(self, Encoder, Decoder):

        super(Model, self).__init__()

        self.Encoder = Encoder

        self.Decoder = Decoder

    def reparameterization(self, mean, var):

        epsilon = torch.randn_like(var).to(device) # used var’s shape

        z = mean + var*epsilon # added noise in sampling

        return z

    def forward(self, x):

        mean, log_var = self.Encoder(x)

        z = self.reparameterization(mean, torch.exp(0.5 * log_var))

        x_hat = self.Decoder(z)

        return x_hat, mean, log_var

Reconstructed x



Parameters and Model
x_dim  = 784

hidden_dim = 400

latent_dim = 200

epochs = 30

batch_size = 100

encoder = Encoder(input_dim=x_dim, hidden_dim=hidden_dim, latent_dim=latent_dim)

decoder = Decoder(latent_dim=latent_dim, hidden_dim = hidden_dim, output_dim = x_dim)

model = Model(Encoder=encoder, Decoder=decoder).to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)



Loss function
def loss_function(x, x_hat, mean, log_var):

    reproduction_loss = nn.functional.binary_cross_entropy(x_hat, x, reduction='sum')

    KLD = - 0.5 * torch.sum(1+ log_var - mean.pow(2) - log_var.exp())

    return reproduction_loss, KLD



Loss function

log_var represents the logarithm of the variance, logσ2. Thus, the formula can be rewritten as:

def loss_function(x, x_hat, mean, log_var):

    reproduction_loss = nn.functional.binary_cross_entropy(x_hat, x, reduction='sum')

    KLD = - 0.5 * torch.sum(1+ log_var - mean.pow(2) - log_var.exp())

    return reproduction_loss, KLD



train()

model.train()

def train(epoch, model, train_loader, optimizer):

    for batch_idx, (x, _) in enumerate(train_loader):

        x = x.view(batch_size, x_dim)

        x = x.to(device)

        optimizer.zero_grad()

        x_hat, mean, log_var = model(x)

        BCE, KLD = loss_function(x, x_hat, mean, log_var)

        loss = BCE + KLD

        loss.backward()

        optimizer.step()


