KL Divergence

Deep Learning

Information Theory

Not surprising $=$ High chance $=$ No new information

Information Theory

Surprising $=$ Low chance $=$ Information

Function h

- We are seeking a function \mathbf{h} that quantifies the amount of information contained in a random variable \mathbf{x}.
- For example, we have a random variable x
- Hot and Cold
- $p(h o t)=0.999999999, p($ cold $)=0.000000001$
- Should be like $h($ cold $)>h(h o t)$
- Monotonic

Function h

- Random variables X, Y
- X is Hot or Cold weather
- Y is Dr. Kim's Class or No class
- X and Y are independent
- $h(x, y)=h(x)+h(y)$
- $p(x, y)=p(x)^{*} p(y)$
- The function h that satisfies all the conditions above is log function!
- $h(x)=-\log _{2} p(x)$

Yes, it's about Entropy!!!

Example

```
    h(x) = -- -og}2p(x
h(hot) = - logp(hot) = - log (0.99999999) = 0.000000014
h(cold) = - log p(cold)=-\operatorname{log}(0.00000001)=26.5754247591
```

So, amount of information on average?
$p($ hot $) * h(h o t)+p(c o l d) * h(c o l d)=0.99999999 * 0.000000014+0.00000001 * 26.5754247591$
$=2.79754247451 \mathrm{e}-07$

$$
H[x]=-\sum_{x} p(x) \log _{2} p(x)=E_{p}\left[-\log _{2} p(x)\right]
$$

What if?

```
h(hot) = - log p(hot) = - log (0.53) = 0.916
h(cold) = - log p(cold) = - log (0.47) = 1.089
```

So, amount of information on average?

```
p(hot)*h(hot)+p(cold)*h(cold) = 0.53*0.916 + 0.47*1.089
=0.99731
```


8 sided dice - case 1

$1 / 8,1 / 8,1 / 8,1 / 8,1 / 8,1 / 8,1 / 8,1 / 8$

Entropy?

$H[x]=-8 \times 1 / 8 \log _{2} 1 / 8=3$ (bits)
What does this mean? When we express entropy in bits, it's essentially a measure of the average length, in binary digits (bits), needed to encode the information about the uncertainty or randomness of an event.

$$
H[x]=-\sum_{x} p(x) \log _{2} p(x)=E_{p}\left[-\log _{2} p(x)\right]
$$

8 sided dice - case 1

$1 / 2,1 / 4,1 / 8,1 / 16,1 / 64,1 / 64,1 / 64,1 / 64$
$H[x]=-1 / 2 \log 1 / 2-1 / 4 \log 1 / 4-1 / 8 \log 1 / 8-1 / 16 \log 1 / 16-4 / 64 \log 1 / 64=2$ (bits)
What if we code the information like $0,10,110,1110,111100,111101,11110,11111$?
Average code length
$=1 / 2 \times 1+1 / 4 \times 2+1 / 8 \times 3+1 / 16 \times 4+4 \times 1 / 64 \times 6=2$
Entropy is a lower bound of average coding length.

4 sided dice

Actual distribution
$p=(1 / 4,1 / 4,1 / 4,1 / 4)$
Incorrect distribution (Fool's idea)
$q=(1 / 2,1 / 4,1 / 8,1 / 8)$
The fool coded the variables like $\mathbf{0}, \mathbf{1 0}, \mathbf{1 1 0}, 111$.
(We know the ideal coding is $00,01,10,11$.

4 sided dice

Average coding length is
$1 / 4 * 1+1 / 4 * 2+1 / 4 * 3+1 / 4 * 3=2.25$
Its entropy is
$-1 / 4 * \log (0.5)-1 / 4 * \log (0.25)-1 / 4 * \log (0.125)-1 / 4 \log (0.125)=2.25$
If the actual distribution is used
$-1 / 4 * \log (0.25)-1 / 4 * \log (0.25)-1 / 4 * \log (0.25)-1 / 4 \log (0.25)=2$
Therefore, because of the difference between q and p, additional cost to transfer the information, 2.25-2 $=0.25$

Cost caused by incorrect modeling

$$
\left(-\sum_{x} p(x) \log _{2} q(x)\right)-\left(-\sum_{x} p(x) \log _{2} p(x)\right)=\left(-\sum_{x} p(x) \log _{2} \frac{q(x)}{p(x)}\right)
$$

Continuous variable

$$
\begin{aligned}
& K L(p \| q) \\
& \quad=-\int p(x) \ln q(x) d x-\left(-\int p(x) \ln p(x) d x\right) \\
& \quad=-\int p(x) \ln \left\{\frac{q(x)}{p(x)}\right\} d x
\end{aligned}
$$

KL divergence

KL divergence quantifies how much information is lost when a distribution q is used to approximate another distribution p .

A higher value indicates a greater discrepancy between the two distributions.

