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Information Theory

It’s hot today

Not surprising = High chance = No new information



Information Theory

It’s cold today

Surprising = Low chance = Information



Function h

● We are seeking a function h that quantifies the amount of information 

contained in a random variable x.

● For example, we have a random variable x
○ Hot and Cold

○ p(hot) = 0.999999999, p(cold) = 0.000000001

● Should be like h(cold) > h(hot)

● Monotonic



Function h

● Random variables X, Y
○ X is Hot or Cold weather

○ Y is Dr. Kim’s Class or No class

○ X and Y are independent

● h(x, y) = h(x) + h(y)

● p(x, y) = p(x) * p(y)

● The function h that satisfies all the conditions above is log function!

● h(x) = -log2 p(x)



Yes, it’s about Entropy!!!



Example

h(hot) = -log p(hot) = -log (0.99999999) = 0.000000014

h(cold) = -log p(cold) = -log (0.00000001) = 26.5754247591

So, amount of information on average?

p(hot)*h(hot)+p(cold)*h(cold) = 0.99999999*0.000000014 + 0.00000001*26.5754247591

= 2.79754247451e-07

h(x) = -log2 p(x)



What if?

h(hot) = -log p(hot) = -log (0.53) = 0.916

h(cold) = -log p(cold) = -log (0.47) = 1.089

So, amount of information on average?

p(hot)*h(hot)+p(cold)*h(cold) = 0.53*0.916 + 0.47*1.089

= 0.99731



8 sided dice - case 1

⅛, ⅛, ⅛, ⅛, ⅛, ⅛, ⅛, ⅛

Entropy?

H[x] = -8 x ⅛ log2 ⅛ = 3 (bits)

What does this mean? When we express entropy in bits, it's essentially a measure of the 
average length, in binary digits (bits), needed to encode the information about the 
uncertainty or randomness of an event.



8 sided dice - case 1

½, ¼, ⅛, 1/16, 1/64, 1/64, 1/64, 1/64 

H[x] = -½ log ½ - ¼ log ¼ - ⅛ log ⅛ - 1/16 log 1/16 - 4/64 log 1/64 = 2 (bits)

What if we code the information like 0, 10, 110, 1110, 111100, 111101, 111110, 111111?

Average code length 

= ½ x 1 + ¼ x 2 + ⅛ x 3 + 1/16 x 4 + 4 x 1/64 x 6 = 2 

Entropy is a lower bound of average coding length.



4 sided dice

Actual distribution

p = (¼, ¼, ¼, ¼)

Incorrect distribution (Fool’s idea)

q = (½, ¼, ⅛, ⅛)

The fool coded the variables like 0, 10, 110, 111.

(We know the ideal coding is 00, 01, 10, 11.



4 sided dice

Average coding length is

¼ * 1 + ¼ * 2 + ¼ * 3 + ¼ * 3 = 2.25

Its entropy is

-¼ * log(0.5) - ¼ * log (0.25) - ¼ * log (0.125) - ¼ log (0.125) = 2.25

If the actual distribution is used

-¼ * log(0.25) - ¼ * log (0.25) - ¼ * log (0.25) - ¼ log (0.25) = 2

Therefore, because of the difference between q and p, additional cost to transfer 
the information, 2.25 - 2 = 0.25



Cost caused by incorrect modeling

Continuous variable 



KL divergence

KL divergence quantifies how much information is lost when a distribution q is 
used to approximate another distribution p. 

A higher value indicates a greater discrepancy between the two distributions.


