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GAN

GAN is an algorithm that creates virtual images using deep learning.

For example, if we create a face, a deep learning algorithm predicts how image
pixels should be combined to form the shape of the face.

"Adversarial" shows the nature of the GAN algorithm well. This is because
hostile/adversarial competition is conducted inside the GAN algorithm to create a
'real’ fake.



GAN

lan Goodfellow first proposed GAN. Generative Adversarial Nets

To illustrate hostile contention, he gave examp les of Tan J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
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The competition between counterfeit money Abstract
Cri m i nals WhO Strlve tO make 'real' cou nte rfelt bl | |S a nd We propose a new framework for estimating generative models via an adversar-

ial process, in which we simultaneously train two models: a generative model G
pol ice office rs Who try to screen them Out eve ntual |y ::at captures the data distribution, and a discriminative model D that estimates
e probability that a sample came from the training data rather than G. The train-
. e . . ing procedure for G is to maximize the probability of D making a mistake. This
resu |tS | n a mo re SO p h | Stl Cated COU nte rfelt b | | | . framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to % everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.
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Generator (criminal) and Discriminator (police)

The place where the fake is created is called the generator, and the place where
the authenticity is determined is called the discriminator.

Training set Discriminator
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Cost function

minmax V(D, G) = Egnpy(2) 108 D(x)] + Ezrp, (2 [log(1 — D(G(2)))].



Training
Note that there are two models to train.

Training the models, gan and discriminator! Remember that we train only
generator when we train gan. Separately, we train discriminator.

Training gan: Generator Discriminator

Training discriminator:
Discriminator




Results (Old code)
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Evaluation
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Average Log-likelihood

Coverage Metric

Inception Score (IS)

Modified Inception Score (m-IS)

Mode Score

AM Score

Frechet Inception Distance (FID)

Maximum Mean Discrepancy (MMD)

The Wasserstein Critic

Birthday Paradox Test

Classifier Two-sample Tests (C2ST)
Classification Performance

Boundary Distortion

Number of Statistically-Different Bins (NDB)
Image Retrieval Performance

Generative Adversarial Metric (GAM)
Tournament Win Rate and Skill Rating
Normalized Relative Discriminative Score (NRDS)
Adversarial Accuracy and Adversarial Divergence
Geometry Score

Reconstruction Error

Image Quality Measures (SSIM, PSNR and Sharpness Difference)
Low-level Image Statistics

Precision, Recall and F1 Score

Pros and Cons of GAN Evaluation Measures

Ali Borji

aliborji@gmail.com

Abstract

Generative models, in particular generative adversarial networks (GANSs), have
gained significant attention in recent years. A number of GAN variants have
been proposed and have been utilized in many applications. Despite large strides
in terms of theoretical progress, evaluating and comparing GANs remains a
daunting task. While several measures have been introduced, as of yet, there
is no consensus as to which measure best captures strengths and limitations
of models and should be used for fair model comparison. As in other areas of
computer vision and machine learning, it is critical to settle on one or few good
measures to steer the progress in this field. In this paper, I review and critically
discuss more than 24 quantitative and 5 qualitative measures for evaluating
generative models with a particular emphasis on GAN-derived models. T also
provide a set of 7 desiderata followed by an evaluation of whether a given measure
or a family of measures is compatible with them.

Keywords: Generative Adversarial Nets, Generative Models, Evaluation, Deep
Learning, Neural Networks




Implementation



Required Library and Parameters

from tgdm import tgdm

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data importDataLoader
import matplotlib

import matplotlib.pylab as plt

from torchvision.utils import make grid, save image
import torchvision.datasets asdatasets
import torchvision.transforms astransforms

device = torch.device("cuda" if torch.cuda.is available() else
batch size = 512

epochs = 200

nz = 128 # noise input size

k = 1 # training discriminator per batch iteration

1] Cpu 1] )



Preprocessing

transform = transforms.Compose ([

transforms.ToTensor (),

transforms.Normalize ((0.5,), (0.5,)),

1)

transforms.Compose (): This function chains together all the listed transformations into a single operation. The
transformations are applied in the order they are listed.

transforms.ToTensor (): This transformation converts a PIL image or a NumPy array into a PyTorch tensor. It also
automatically scales the image's pixel intensity values from [0, 255] to [0, 1].

transforms.Normalize ((0.5,), (0.5,)) This normalization applies to each channel of the image. The first tuple (0.5,)
represents the mean for each channel, and the second tuple (0.5,) represents the standard deviation for each channel. For a
grayscale image (as implied by the single values in the tuples), this will subtract 0.5 from each pixel and then divide by 0.5,
effectively scaling pixel values to [-1, 1]. For colored images, the mean and std would be three-element tuples, corresponding to
the RGB channels.



dataset and Datal.oader

train dataset = datasets.MNIST (

root="./data", train=True, transform=transform, download=True)

train loader = DataLoader (

train dataset, batch size=batch size, shuffle=True, num workers=4)

num_workers=4: Specifies the number of subprocesses to use for data loading. More workers can increase the speed of
data loading but also consume more CPU memory. The optimal number can vary based on the system's configuration and

the specific dataset.



W

train dataset = datasets.MNIST(
root="./data", train=True, transform=transform, download=True)

train loader = Dataloader(
train dataset, batch size=batch size, shuffle=True, num workers=4)

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz
100% | | ©912422/9912422 [00:00<00:00, 186150176.83it/s]Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1l-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz
100% | | 25881/28881 [00:00<00:00, 26419998.65it/s]

Extracting ./data/MNIST/raw/train-labels-idx1l-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t1l0k-images-idx3-ubyte.gz
100% | || 1648877/1648877 [00:00<00:00, 66675903.33it/s]Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1l-ubyte.gz
100% | | 4542/4542 [00:00<00:00, 4825361.90it/s]Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw




Generator

class Generator (nn.Module) :

def init (self, nz):
super (Generator, self). init ()
self.nz = nz # noise vector, size 128

self.main = nn.Sequential (
nn.Linear (self.nz, 256),
nn.LeakyReLU(0.2),
nn.Linear (256, 512),
nn.LeakyReLU(0.2),
nn.Linear (512, 1024),
nn.LeakyReLU(0.2),
nn.Linear (1024, 784),
nn.Tanh (),

)

def forward(self, x):
return self.main(x).view(-1, 1, 28, 28) # returns an image (28x28), [-1, 1]



Discriminator

class Discriminator(nn.Module) :
__init (self):

def

def

super (Discriminator, self). init ()

self.n _input = 784

self.main = nn.Sequential (

nn.Linear elf.n input, 1024),

nn.LeakyReLU(Q.2),

nn.Dropout 0.3),
nn.Linear (1024,

nn.LeakyReLU(Q.2),

nn.Dropout 0.3),

nn.Linear 612, 256),
nn.LeakyReLU(Q.2),

nn.Dropout 0.3),

nn.Linear @56, 1),

nn.Sigmoid(),
)
forward(self, x):
X = x.view (1, 784)

return self.main (x)

# binary classification

#

(28x28)

image to 1 x 784



Optimizer and Loss function

generator = Generator (nz) .to(device)

discriminator = Discriminator () .to(device)

optim g = optim.Adam(generator.parameters(), 1lr=0.0002)

optim d optim.Adam (discriminator.parameters (), 1lr=0.0002)

criterion = nn.BCELoss () # Binary Cross Entropy



t rain function for Discriminator

def train discriminator (optimizer, data real, data fake):

b size = data real.size(0)

real label = torch.ones (b size, 1).to(device)
fake label = torch.zeros(b size, 1).to(device)
optimizer.zero grad()

output real = discriminator (data real)

loss real = criterion (output real, real label)
output fake = discriminator (data fake)

loss fake criterion (output fake,
loss real.backward()
loss fake.backward()

optimizer.step ()

return loss real + loss fake

fake label)

#
#

H H= H H= H H

=+

batch size 512
loading on GPU memory

Clears old gradients from the last step
real

real

fake

fake

backpropagation

Updates the discriminator's weights based on the
gradients calculated during backpropagation.



t rain function for Generator

def train generator(optimizer, data fake): # optimizer should be for generator’s parameters
b size = data fake.size() # batch size 512
real label = torch.ones(b size, 1) .to(device)

optimizer.zero grad()
output = discriminator(data fake) # Why we use discriminator () here?

loss = criterion(output, real label) # Note that we compare output of fake input to real label.
loss.backward()

optimizer.step ()

return loss



Training Models

import time
since = time.time ()

for epoch in range(epochs) :
loss_g =0.0
loss_d =0.0
for idx, data in tqdm(enumerate(train_loader), total=int(len(train_dataset)/train_loader.batch_size)):
image, _ = data
image = image.to (device)
b_size = len(image)

for step in range(k):
data_fake = generator (torch.randn(b_size, nz).to(device)).detach()
data_real = image
loss_d += train_discriminator (optim_d, data_real, data_fake)

data_fake = generator (torch.randn(b_size, nz).to(device))
loss_g += train_generator (optim_g, data_fake)

generated img = generator (torch.randn(b_size, nz).to(device)).cpu().detach()
generated img = make_grid(generated img)

save_generator_image (generated_img,"./img/gen_img{epoch}.png")

images.append (generated_img)

epoch_loss_g = loss_g / idx
epoch_loss_d = loss_d / idx
losses_g.append (epoch_loss_g)
losses_d.append (epoch_loss_d)

print (f"Epoch {epoch} of {epochs}")
print(f"Generator loss: {epoch_loss_g:.8f}, Discriminator loss: {epoch_loss_d:.8f}")

time_elapsed = time.time() - since
print(time_elapsed // 60, 'min', time_elapsed % 60, 'sec')



Training Models

for epoch in range (epochs): # epochs
loss g = 0.0 # to store loss history
loss d = 0.0

for idx, data in tgdm(enumerate (train loader), total=int (len(train dataset)/train loader.batch size)):
# setting for progress bar, num of iteration = bar size

image, _ = data # ignore label

image = image.to(device) # MNIST images

b size = len(image)

for step in range (k) : # can train discriminator multiple times but k=1 here to train fast
data fake = generator (torch.randn(b size, nz).to(device)) .detach/()
# detach() is to prevent gradients from flowing into the generator during the discriminator's update step
data real = image

loss d += train discriminator (optim d, data real, data fake)

data fake = generator(torch.randn(b size, nz).to(device))
loss g += train generator (optim g, data fake)



Results
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Loss

—— Generator loss

—— Discriminator Loss
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DCGAN

Deep Convolutional GAN



DCGAN

e DCGAN stands for Deep Convolutional Generative Adversarial Network.

e |tis a variant of the GAN that specifically incorporates convolutional layers, making it more suited for
dealing with image data.

e DCGANSs were introduced to improve the stability and performance of traditional GANs by

leveraging the architectural traits of CNNSs.



DCGAN structure

DCGAN Architecture

esha p Deconv 1

Generator
(Radford et al 2015)

DCGAN Architecture
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(Fig. from Yeh et al 2016)




DCGAN

e Use of Convolutional and Convolutional-Transpose layers in the generator and discriminator,
respectively, without any pooling layers. This allows the network to learn its own spatial
downsampling and upsampling.

e Batch normalization in both the generator and the discriminator to help stabilize training. Batch
normalization normalizes the input to each activation layer so that it has a mean output activation of
zero and standard deviation of one.

e Use of ReLU activation in the generator for all layers except for the output, which uses the Tanh
function.

e Use of LeakyRelLU activation in the discriminator for all layers.



Generator

class Generator(nn.Module) :
def init (self, nz):
super (Generator, self). init ()
self.nz = nz
self.fc = nn.Linear (self.nz, 256*7*7)

self.trans convl = nn.ConvTranspose2d®56, 128, kernel size = 3, stride = 2, padding =1, output padding =1)
)

self.trans conv2 = nn.ConvTranspose2d(28, 64, kernel size = 3, stride =1, padding =1
self.trans conv3 = nn.ConvTranspose2d ¢4, 32, kernel size =3, stride =1, padding = 1)
self.trans conv4 = nn.ConvTranspose2d$2, 1, kernel size =3, stride = 2, padding = 1, output padding =1)

def forward(self, x):

self.fc(x)

= x.view (1, 256, 7, 7)

= F.relu(self.trans_convl (x))

F.relu(elf.trans conv2 (x))
= F.relu(self.trans_conv3(x))
= self.trans_conv4 (x)

= torch.tanh (x)

return x

XX X X X X X
1



nn.ConvTranspose2d( )

import torch.nn as nn

# Example: Upsample from a 128x8x8 feature map to a 64x16x16 feature map
conv_transpose = nn.ConvTranspose2d(in_channels®28, out channels=4,

kernel size#, stride=2, padding=l, output padding=0)

# Assuming "x° 1is a batch of feature maps with shape [batch size, 128, 8, 8]

# The output 'y  will have the shape [batch size, 64, 16, 16]

e Input: (N, Cin, Hin, Wip)

 Output: (N, Cour, Hout, Wour) Where
Hy = (Hy, — 1) * stride[0] — 2 * padding[0] + kernel_size[0] + output_padding[0]
Wour = Wiy, — 1) % stride[1] — 2 * padding[1] + kernel_size[1] + output_padding[1]

out —



nn.ConvTranspose2d( )
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Discriminator

class Discriminator (nn.Module):
def _ init__ (self):

super (). init ()

self.conv0 = nn.Conv2d( 1, 32, kernel size = 3, stride = 2, padding = 1)
self .conv0 _bn = nn.BatchNorm2d( 32)

self.convl = nn.Conv2d( 32, 64, kernel size = 3, stride = 1, padding = 1)
self.convl _bn = nn.BatchNorm2d( 64)

self.conv2 = nn.Conv2d( 64, 128, kernel size = 3, stride = 1, padding = 1)
self.conv2_bn = nn.BatchNorm2d( 128)

self .conv3 = nn.Conv2d( 128, 256, kernel size = 3, stride = 2, padding = 1)

self .conv3_bn = nn.BatchNorm2d( 256)
self.fc = nn.Linear( 12544, 1)
self.sg = nn.Sigmoid()

def forward (self, x):
x = x.view( -1, 1, 28, 28)
x = F.leaky relu( self.conv0(x), 0.2)
#x = self.conv0_bn (x)
x = F.leaky relu( self.convl(x), 0.2)
#x = self.convl_bn (x)
x = F.leaky relu( self.conv2(x), 0.2)
#x = self.conv2_bn (x)
x = F.leaky relu( self.conv3(x), 0.2)
#x = self.conv3_bn (x)
x = x.view( -1, self.num_flat_ features(x))
x = self.fc(x)
x = self.sg(x)
return x



Loss

—— Generator loss
—— Discriminator Loss
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GAN vs DCGAN

1 K

GAN (200 epoch) DCGAN (25 epoch)



