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Data

The Fashion MNIST dataset is a collection 
of images that includes various clothing 
items, commonly used for benchmarking 
machine learning models. 

It consists of 70k grayscale images (60k + 
10k), each of size 28x28 pixels, composed 
of pixels with values ranging from 0 to 255 
in a Numpy array format. 

The labels are integers from 0 to 9, 
representing the following clothing items:

0: T-shirt/top

1: Trouser

2: Pullover

3: Dress

4: Coat

5: Sandal

6: Shirt

7: Sneaker

8: Bag

9: Ankle boot



Fashion MNIST



Required Libraries



CPU vs GPU

Using a GPU is recommended for training machine learning models on datasets 
like Fashion MNIST because GPUs can process data much faster than CPUs. 

This is due to their ability to perform multiple calculations simultaneously, which 
significantly speeds up the training process for complex models and large 
datasets. 

GPU acceleration is supported by major deep learning frameworks, making it an 
efficient choice for faster model development and experimentation.



GPU



Multi-GPU



Data Download
train_dataset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, 
transform=transforms.ToTensor())

test_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, 
transform=transforms.ToTensor())

Set the download location: root='./data' sets the directory where the FashionMNIST dataset will be downloaded 
and stored. If the directory does not exist, it will be created.

Specify the dataset split: The train=True or train=False parameter determines whether the training dataset or 
the test dataset is being downloaded. train=True downloads the training set, while train=False downloads the 
test set.

Download the dataset: download=True checks if the dataset already exists at the specified location (root). If 
it does not, the dataset will be downloaded from the internet. If the dataset is already present, it will not be 
downloaded again.

Transform the images: transform=transforms.ToTensor() converts the images in the dataset to PyTorch tensors. 
This transformation converts the image pixel values from a range of 0-255 to a float tensor with a range of 0.0 
to 1.0. This is a common preprocessing step for neural network training.



DataLoader

batch_size = 100

train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)

test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)



torch.utils.data.DataLoader

Set the batch size: batch_size = 100 sets the number of samples that will be passed through the network at one time. 
It is a critical parameter that can affect model training efficiency and effectiveness. A batch size of 100 means that 100 
images will be used to compute the gradient and update the model parameters during each iteration of the training loop.

Create the training data loader:

train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)

The DataLoader is a PyTorch utility that abstracts the complexity of handling datasets in batches. Here, it is configured to 
use the train_dataset loaded earlier, with the specified batch_size. The shuffle=True parameter ensures that the 
data is shuffled at the beginning of each training epoch, which helps to reduce overfitting and improve model generalization.



torch.utils.data.DataLoader

Create the testing data loader:

test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

Similarly, this line creates a data loader for the test dataset. The key difference is shuffle=False, which is typical for 
testing and validation data loaders since shuffling has no benefit when evaluating the model.



Simple Neural Network Model without nn.Conv2d



Simple Neural Network Model without nn.Conv2d

Class Definition: 

class FashionDNN(nn.Module) defines a new class called FashionDNN that inherits from nn.Module, the base class 
for all neural network modules in PyTorch. 

This inheritance provides useful methods and attributes for your network class.



Simple Neural Network Model without nn.Conv2d

Constructor __init__(self):

super(FashionDNN, self).__init__() calls the constructor of the parent class (nn.Module), allowing the class to 
inherit all its functionalities.

self.fc1 = nn.Linear(784, 256) defines the first fully connected (linear) layer with 784 input features and 256 
output features. The input size of 784 corresponds to the flattened size of the 28x28 images from the FashionMNIST 
dataset.

self.fc2 = nn.Linear(256, 128) defines the second fully connected layer with 256 inputs (the outputs of fc1) and 
128 outputs.

self.fc3 = nn.Linear(128, 10) defines the third and final fully connected layer with 128 inputs (the outputs of fc2) 
and 10 outputs, corresponding to the 10 classes of the FashionMNIST dataset.



Simple Neural Network Model without nn.Conv2d

Forward Pass forward(self, x):

The forward method defines how the input x flows through the network.

x = x.view(-1, 784) flattens the input tensor to shape (-1, 784), where -1 infers the correct batch size and 784 is the 
flattened image size.

x = F.relu(self.fc1(x)) passes the flattened input through the first linear layer (fc1) and then applies the ReLU 
(Rectified Linear Unit) activation function to the output.

x = F.relu(self.fc2(x)) further processes the output of the first layer through the second linear layer (fc2) followed 
by another ReLU activation.

x = self.fc3(x) passes the output of the second layer through the final linear layer (fc3), producing the final output of 
the network. This output can then be passed to a loss function for training or an activation function like softmax for inference 
to get probabilities for each class.



Defining Parameters

1. Loss function
2. Learning rate
3. Optimizer



Training



Training

The outer loop for epoch in range(num_epochs): iterates over each epoch.

Inside this loop, losses = 0 and correct = 0 are initialized to accumulate the total loss and the number of correctly 
classified samples within the epoch.

The inner loop for images, labels in train_loader: iterates over each batch of images and labels from the 
training dataset.

train, labels = images.to(device), labels.to(device) moves the images and labels to the designated 
computing device (GPU or CPU), as specified by the device variable earlier in the code.

outputs = model(train) computes the forward pass through the model, getting the predicted outputs for the input 
images.



Training

loss = criterion(outputs, labels) calculates the loss between the predicted outputs and the actual labels using 
a predefined loss function criterion.

optimizer.zero_grad() clears old gradients; without this, gradients would accumulate across batches.

loss.backward() computes the gradient of the loss with respect to the model parameters.

optimizer.step() updates the model parameters based on the gradients.

losses += loss.item() accumulates the total loss for the epoch.

_, predicted = torch.max(outputs.data, 1) finds the predictions with the highest score for each input image.

correct += (predicted == labels).sum().item() calculates the number of correct predictions in the batch and 
accumulates it over the epoch.



Results



Results



Convolutional Neural Network Model



CNN Model

super(FashionCNN, self).__init__() initializes the parent class (nn.Module), allowing the class to inherit 
functionalities from PyTorch's module class.

Layer 1: A sequential container that includes:

A convolutional layer (nn.Conv2d) with 1 input channel (grayscale image), 32 output channels, a kernel size of 3, and 
padding of 1. This layer is designed to extract low-level features from the image.

Batch normalization (nn.BatchNorm2d) with 32 features to stabilize learning by normalizing the input to the ReLU 
activation function.

A ReLU activation function (nn.ReLU()) to introduce non-linearity into the model, allowing it to learn complex patterns.

A max pooling layer (nn.MaxPool2d) with a kernel size of 2 and stride of 2, reducing the spatial dimensions by half and 
helping to make the representation size manageable.



CNN Model

Layer 2: Another sequential container that includes:

A convolutional layer with 32 input channels, 64 output channels, a kernel size of 3, and no padding specified. This 
increases the depth of the feature maps while capturing more detailed features.

Batch normalization with 64 features + A ReLU activation function.

Another max pooling layer, further reducing the spatial dimensions of the feature maps.

Layer 3: A sequential container for the fully connected layers, transitioning from feature extraction to 
classification:

A linear layer (nn.Linear) that flattens the output of the last max pooling layer (assuming the input image size leads to a 
feature map size of 6x6 after two pooling layers) to 600 features.

Another linear layer reducing the feature dimension from 600 to 120.

A final linear layer that outputs 10 features, corresponding to the 10 classes of the FashionMNIST dataset.



CNN Model and Parameter Settings



Results


