Lecture 18

Overfit, Dropout, EarlyStop, Batchnorm

Overfitting

Are you happy with 100% accuracy with train data?

Probably, YES! but...

Train accuracy: 100%
Test accuracy: 10%

THE BEST WAY'TO
EXPLAIN OVERFITTING

Overfitting

Overfitting occurs when a model becomes overly tuned to the training data, capturing not
only the underlying patterns but also the noise and random variations present in the data.

Consequently, the model's performance on new and unseen data is adversely affected.

Essentially, the model learns to recognize and incorporate the specific details of the training
data that are irrelevant or misleading when applied to new data.

This lack of generalization hampers the model's ability to make accurate predictions or
classifications.

Overfitting vs Underfitting

Prediction Error

High Bias Low Bias
Low Variance High Variance
- ————— o g

Test Sample

/

Overfitting

/ Underfitting

Training Sample

Bias trade-off

Low High

Model Complexity

Dropout

Now, we know that the learning is not
unconditionally improved by just adding
more nodes or layers.

Dropout is to randomly turn off some of
the nodes in the hidden layer.

By randomly turning off the nodes in this
way, it is possible to prevent learning
from being too biased to the learning
data.

a) Standard Neural Net

Dropout in Pytorch

© import torch
import torch.nn as nn

Create a simple model with a dropout layer
class MyModel(nn.Module):
def init (self):
super(MyModel, self). init ()
self.fcl = nn.Linear (10, 20)
self.dropout = nn.Dropout(0.5) # Dropout layer with dropout probability of 0.5
self.fc2 = nn.Linear (20, 1)

def forward(self, x):
x = self.fel(x)
x = self.dropout(x) # Apply dropout to the output of fcl
X = torch.relu(x)
x = self.fc2(x)
return x

Journal of Machine Learning Research 15 (2014) 1929-1958 Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISHQCS. TORONTO.EDU
Geoffrey Hinton HINTON@QCS. TORONTO.EDU
Alex Krizhevsky KRIZQCS.TORONTO.EDU
Ilya Sutskever ILYA@QCS.TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU
Department of Computer Science
University of Toronto
10 Kings College Road, Rm 3302
Toronto, Ontario, M5S 3G4, Canada.
Editor: Yoshua Bengio

Abstract

Deep neural nets with a large number of parameters are very powerful machine learning
systems. However, overfitting is a serious problem in such networks. Large networks are also
slow to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. During training,
dropout samples from an exponential number of different “thinned” networks. At test time,
it is easy to approximate the effect of averaging the predictions of all these thinned networks
by simply using a single unthinned network that has smaller weights. This significantly
reduces overfitting and gives major improvements over other regularization methods. We
show that dropout improves the performance of neural networks on supervised learning
tasks in vision, speech recognition, document classification and computational biology,
obtaining state-of-the-art results on many benchmark data sets.

Keywords: neural networks, regularization, model combination, deep learning

Early Stopping

Having too much iteration may cause too much variance on train data, once
validation loss stop decreasing, stop iteration

Error
A

Early Testing Error

Termination

Training Error

l » [raining Steps

Dr. Kim’'s example

loss

0.7 1

0.6

0.5

0.4

0.3

0.2 1

0.1 4

0.0

0.0

2.5

5.0

7.5

10.0
epoch

12.5

15.0

17.5

Test
loss

Train
loss

Padding

Remember that when you move the mask/filter and create the convolution
layer, the size of the image decreases from the beginning.

100001 [1a4a HE17Y oo

010010 SN (\iv\ﬂ(\i‘(\y

oo0o1100 111 114 <’ 1\,(\/.71‘}<'/.£ \(1

100010 € € € 1

1o I GVOS

001019 convolution |1 o a4 3
image

If you want to keep the image size, Keras' padding feature makes it easy to
handle this problem.

Padding

Padding in PyTorch refers to the technique of adding extra elements or values to the input data or
feature maps, usually around the borders, to preserve the spatial dimensions during convolutional
operations. Padding is commonly used to ensure that the output size matches the input size or
to prevent information loss at the edges of an image or feature map.

=== i=Ri=2i=)
(o [
olojo|o|o (o

0.2 0.0/ 0.0{0.0
0l 0 of O

4 A A . SEEE
Filter Output Inéut Filzcer Out.put
3x3 2X2 4x4 3x3 4x4

(N -K +2*P)/S, +1 x (N, -K +2°P)S_ +1

Padding

© import torch
import torch.nn as nn

Create a 2D convolutional layer with padding
conv_layer = nn.Conv2d(in channels=3, out channels=16, kernel size=3, padding=1)

Create a random input tensor
input_tensor = torch.randn(1l, 3, 32, 32) # Batch size of 1, 3 channels, 32x32 image

Apply the convolutional layer to the input tensor
output tensor = conv_layer(input tensor)

Print the shapes of the input and output tensors
print("Input tensor shape:", input tensor.shape)
print("OQutput tensor shape:", output tensor.shape)

Input tensor shape: torch.Size([1, 3, 32, 32])
Output tensor shape: torch.Size([1, 16, 32, 32])

BatchNorm2d

Batchnorm2d refers to the process of normalizing batch data during training by using their mean and

variance.

This technique ensures that regardless of varying data distributions within each batch, the normalization
adjusts the distribution such that it has a mean of 0 and a standard deviation of 1.

This standardization is applied across all batch units to facilitate more efficient learning.

RelLU
Fully
Connected
Fully
Connected
Batch Norm
RelLU

(=
=
[S)
=
=
S
©
o]

Fully
Connected
Batch Norm

wor |_ Ao A | AL oA
\/\ ﬂ/\! [VN]

https://velog.io/@danbibibi/PyTorch-nn.BatchNorm2d

