Convolutional Neural Networks

Dr. Dongchul Kim

CNN

CNN, or Convolutional Neural Network, primarily utilized in image and video recognition, comprises five essential layers:

Input Layer Convolution Layer Pooling Layer Fully Connected Layer Output Layer

CNN Implementation

Why Convolutional Layer?

- We know the performance is sometimes good with a larger (deeper) model.
- From this fully connected model (Dense layers), do we really need all the edges?

Consider learning an image:

• Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places: They can be compressed! What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

Convolution

These are the network parameters to be learned.

1	0	0	0	0	1	
0	1	0	0	1	0	
0	0	1	1	0	0	
1	0	0	0	1	0	
0	1	0	0	1	0	
0	0	1	0	1	0	

6 x 6 image

Each filter detects a small pattern (3×3) .

6 x 6 image

-3

3

6 x 6 image

Convolution

stride=1

6 x 6 image

Convolution

stride=1

6 x 6 image

Repeat this for each filter

Two 4 x 4 images Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution v.s. Fully Connected

Max Pooling

Why Pooling

Subsampling pixels will not change the object

bird

We can subsample the pixels to make image smaller fewer parameters to characterize the image

Max Pooling

(a) Illustration of max pooling drawback

(b) Illustration of average pooling drawback

Lab 17

Lab 17

Part 1

Before you start this lab, review the example of CNNs with **FashionMNIST** data *17_Example_FashionMNIST.ipynb*

Part 2

Implement a CNN and train with **MNIST** (train data) in Colab.

1Measure an accuracy with test data.

Submit your code (.ipynb or .py) and captured accuracy in blackboard.

Requirement: greater than 99% **test** accuracy