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Neural Network

• A neural network is a method in AI that teaches computers to process 
data in a way that is inspired by the human brain. 

• It is a type of machine learning process, called deep learning, that 
uses interconnected nodes (neurons) in a layered structure that 
resembles the human brain.





Activation Function

• the activation function of a node defines the output of that node 
given an input or set of inputs. 
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Neural Networks (Multi-layer Perceptron)



Activation Function



Sigmoid function

The sigmoid function transforms the output of a linear function into a nonlinear form ranging between 
0 and 1. 

It is primarily used to probabilistically represent classification problems like logistic regression. 

Despite its popularity in the past, it's not frequently used in deep learning models due to the 'vanishing 
gradient problem' that arises as the depth of the model increases. 

We'll talk about the details of the vanishing gradient issue at a later slide.



Relu function

The Rectified Linear Unit (ReLU) function, which is actively employed in recent times, outputs 0 when 
the input 'x' is negative, and 'x' when the input is positive. 

Its attributes of not impacting gradient descent and subsequently leading to faster learning, along with 
mitigating the vanishing gradient problem, are notable benefits. 

Typically, the ReLU function finds its use in hidden layers. 

One challenge it presents is that its output is always 0 when receiving negative input values, which 
could potentially hamper its learning capacity. 

To address this issue, the Leaky ReLU function is employed.



Leaky ReLU



Leaky ReLU

The Leaky ReLU function is a variation of the ReLU activation function. 

For positive input values, it behaves just like the standard ReLU. 

However, for negative inputs, instead of producing a zero output, it returns a small, non-zero output, thereby 

"leaking" a bit of information and keeping the neurons from 'dying'.



Softmax function

The softmax function normalizes input values so they are 

outputted within the range of 0 to 1, ensuring that the sum of 

these outputs always equals 1. 

This function is commonly used as the activation function for 

output nodes in deep learning. 

Its mathematical formula is as follows.
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Cost function



Cost(Loss) function
A loss function quantifies the disparity between the actual data and the predictions rendered by a model, 
with the weights of the model fine-tuned through training. A larger value of this loss function indicates a less 
accurate prediction, while a value close to zero implies a minimal difference between the predicted and actual 
data.

As previously discussed, the weight updates in the model are guided by the method of gradient descent, 
which leverages the instantaneous gradient of the loss function. The resultant adjusted weights enable the 
model to yield more precise predictions. Consequently, the magnitude of the loss function diminishes with 
the progression of the learning process.

In practice, we utilize two specific loss functions: Mean Squared Error (MSE) and Cross-Entropy.



Cost function for Binary class

 

When activation function is sigmoid function,
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Training - Feedforward and Backpropagation

The process of training in deep learning can be broadly divided into two steps: 
feedforward and backpropagation.

During the feedforward step, the training data is input into the network, and it 
traverses through the entire architecture to compute the predictions based on the 
given data. Specifically, each neuron applies transformations (weighted sums and 
activation functions) to the information received from the previous layer's neurons 
and sends this output to the neurons in the next layer. Once the values have been 
propagated through all the layers, the output value is calculated at the final output 
layer.



Training - Feedforward and Backpropagation

The backpropagation step follows feedforward. Here, the difference (or error) 
between the computed output value (the predicted value) and the actual target 
value, y, is calculated through a loss function. The goal is to minimize this error. To 
achieve this, the weights (w) in the network are updated using an optimization 
algorithm, such as gradient descent. The changes made to the weights in the 
output layer propagate back to the previous hidden layers, with the weights in 
each hidden layer being adjusted in turn. This error propagation continues until the 
input layer, leading to an adjustment of the weight values across all layers in the 
network.
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Backpropagation

Before we dive into differentiating within the context of neural networks, let's take 
a moment to review some basic principles of differentiation. The derivative of the 
following expressions are as follows, correct?



Backpropagation

Let's also review the chain rule.



Backpropagation

To explain backpropagation, let's take a look at a simple example.
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Backpropagation
Here is an explanation of a neural network that models the function f = wx + b. 

This network is composed of input nodes w, x, b, where '*' is the activation function in the hidden layer, and '+' is in the 

output layer. 

Our focus is on determining the impact of the input values, namely w, x, and b, on the final output of the function. 

Understanding the gradient is crucial for adjusting these input values. 

To find the derivative of f with respect to w, denoted as df/dw, we utilize the chain rule. 

This involves calculating df/dw as the product of dg/dw and df/dg. 

Given that dg/dw is x and df/dg is 1, it follows that df/dw is equal to x.
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Backpropagation
In this example, our objective is to comprehend how x1 influences the output of the final layer. 

Specifically, we aim to determine the derivative with respect to x1. 

Even in a lengthy network, by knowing the derivative relative to the subsequent value (denoted as g), we can 
efficiently compute df/dx1 by applying the chain rule. 

Indeed, the derivative concerning g can be determined from the derivative of the following hidden layer. 

Utilizing the chain rule in this manner allows for the calculation of the derivative with respect to not only x1 but 
also any weight w within the network. 

Consequently, the process of derivative calculation begins at the output layer and progresses backward 
towards the input layer, sequentially. 

This systematic approach of working backwards through the network for derivative calculation is what gives 
the technique its name: backpropagation.



XOR problem



Logistic Regression (Non-linear classifier)
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Equivalent to Neural net without any hidden layers



Neural Net (Non-linear classifier)

Neural net with a hidden layer
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sigmoid function (activation function)



NN in Pytorch



Pytorch codes

Review these codes.

16_Pytorch_basics.ipynb

16_Pytorch_Data_Loading.ipynb

16_Pytorch_Define_Model.ipynb

16_Pytorch_Model_parameter_settings_and_training.ipynb

16_Pytorch_MNIST_Lab_full.ipynb



Lab15
Part 1

Before you start this lab, review the Pytorch example.

16_Pytorch_MNIST_Lab_full.ipynb

Part 2

Implement a neural network and train with Titanic data (train data).

https://www.kaggle.com/c/titanic/data

Measure an accuracy with test data. 

Submit your code (.ipynb or .py) and captured accuracy in blackboard.

https://www.kaggle.com/c/titanic/data

