
Neural Network

Dr. Dongchul Kim

Neural Network

• A neural network is a method in AI that teaches computers to process
data in a way that is inspired by the human brain.

• It is a type of machine learning process, called deep learning, that
uses interconnected nodes (neurons) in a layered structure that
resembles the human brain.

Activation Function

• the activation function of a node defines the output of that node
given an input or set of inputs.

Copyright © 2001, 2003, Andrew W. Moore

A 1-HIDDEN LAYER NET
N

HIDDEN
 = 3

x
1

x
2

w11

w21

w31

w1

w2

w3

w32

w22

w12

 N
INPUTS

 = 2

Neural Networks (Multi-layer Perceptron)

Activation Function

Sigmoid function

The sigmoid function transforms the output of a linear function into a nonlinear form ranging between
0 and 1.

It is primarily used to probabilistically represent classification problems like logistic regression.

Despite its popularity in the past, it's not frequently used in deep learning models due to the 'vanishing
gradient problem' that arises as the depth of the model increases.

We'll talk about the details of the vanishing gradient issue at a later slide.

Relu function

The Rectified Linear Unit (ReLU) function, which is actively employed in recent times, outputs 0 when
the input 'x' is negative, and 'x' when the input is positive.

Its attributes of not impacting gradient descent and subsequently leading to faster learning, along with
mitigating the vanishing gradient problem, are notable benefits.

Typically, the ReLU function finds its use in hidden layers.

One challenge it presents is that its output is always 0 when receiving negative input values, which
could potentially hamper its learning capacity.

To address this issue, the Leaky ReLU function is employed.

Leaky ReLU

Leaky ReLU

The Leaky ReLU function is a variation of the ReLU activation function.

For positive input values, it behaves just like the standard ReLU.

However, for negative inputs, instead of producing a zero output, it returns a small, non-zero output, thereby

"leaking" a bit of information and keeping the neurons from 'dying'.

Softmax function

The softmax function normalizes input values so they are

outputted within the range of 0 to 1, ensuring that the sum of

these outputs always equals 1.

This function is commonly used as the activation function for

output nodes in deep learning.

Its mathematical formula is as follows.

Linear
Classifier

● Mutliclass
○ c is # of class
○ m is # of feature

x W1
m

m

c

x + b
c

= y1 y2 y3

c

Logistic
Regression

● Mutliclass
○ c is # of class
○ m is # of feature

x W1
m

m

c

x + b
c

= Sigmoid(y1) Sigmoid(y2) Sigmoid(y3)

c

Softmax

y1 y2 y3

Scores

Probabilities

Softmax

y1 y2 y3

2.0 1.0 0.5

0.7 0.2 0.1

Cost function

Cost(Loss) function
A loss function quantifies the disparity between the actual data and the predictions rendered by a model,
with the weights of the model fine-tuned through training. A larger value of this loss function indicates a less
accurate prediction, while a value close to zero implies a minimal difference between the predicted and actual
data.

As previously discussed, the weight updates in the model are guided by the method of gradient descent,
which leverages the instantaneous gradient of the loss function. The resultant adjusted weights enable the
model to yield more precise predictions. Consequently, the magnitude of the loss function diminishes with
the progression of the learning process.

In practice, we utilize two specific loss functions: Mean Squared Error (MSE) and Cross-Entropy.

Cost function for Binary class

When activation function is sigmoid function,

Predicted y Actual y (y in train data)

Cost function
for

Softmax
(Multiclass)

y1 y2 y3

S1 S2 S3

L1 L2 L3

Score

Label

Activation function is Softmax

Cost function

Actual y (y in train data)

Predicted y

Cost function
for

Softmax
(Multiclass)

y1 y2 y3

0.7 0.2 0.1

1 0 0

Score

Label

3.0 1.5 0.3

Activation function is Softmax

Cost function

Actual y (y in train data)

Predicted y

Training - Feedforward and Backpropagation

The process of training in deep learning can be broadly divided into two steps:
feedforward and backpropagation.

During the feedforward step, the training data is input into the network, and it
traverses through the entire architecture to compute the predictions based on the
given data. Specifically, each neuron applies transformations (weighted sums and
activation functions) to the information received from the previous layer's neurons
and sends this output to the neurons in the next layer. Once the values have been
propagated through all the layers, the output value is calculated at the final output
layer.

Training - Feedforward and Backpropagation

The backpropagation step follows feedforward. Here, the difference (or error)
between the computed output value (the predicted value) and the actual target
value, y, is calculated through a loss function. The goal is to minimize this error. To
achieve this, the weights (w) in the network are updated using an optimization
algorithm, such as gradient descent. The changes made to the weights in the
output layer propagate back to the previous hidden layers, with the weights in
each hidden layer being adjusted in turn. This error propagation continues until the
input layer, leading to an adjustment of the weight values across all layers in the
network.

X1

X2

h1

h1 = sigmoid(w11x1 + w12x2 + b1)

h2

y

h2 = sigmoid(w21x1 + w22x2 + b2)

w
2

w
1

w
22

w
12

w
21

w
11

y = sigmoid(w1h1 + w2h2 + b)

y’

L(y, y’)

Gradient of w2

Gradient of w1

By subtracting the
gradient from w2, we can
calculate the new w2!

Backpropagation

Before we dive into differentiating within the context of neural networks, let's take
a moment to review some basic principles of differentiation. The derivative of the
following expressions are as follows, correct?

Backpropagation

Let's also review the chain rule.

Backpropagation

To explain backpropagation, let's take a look at a simple example.

*

+

w

x

b

f

f = wx + b

g = wx

f = g + b

df/dw

df/dx

df/db

dg/dw = x

dg/dx = w

df/dg = 1

df/db = 1

Backpropagation
Here is an explanation of a neural network that models the function f = wx + b.

This network is composed of input nodes w, x, b, where '*' is the activation function in the hidden layer, and '+' is in the

output layer.

Our focus is on determining the impact of the input values, namely w, x, and b, on the final output of the function.

Understanding the gradient is crucial for adjusting these input values.

To find the derivative of f with respect to w, denoted as df/dw, we utilize the chain rule.

This involves calculating df/dw as the product of dg/dw and df/dg.

Given that dg/dw is x and df/dg is 1, it follows that df/dw is equal to x.

+

x
1

x
2

b

f

f = a + b

g = x
1
 * x

2

df/dx
2

df/daa

df/db

*

df/dx
1

= ? We want to know how much x1 affects to f

df/dg

Let's take a look at a slightly more complex case, similar to a deep neural network.

Backpropagation

df/dx
1

= dg/dx
1
 * df/dg

Backpropagation
In this example, our objective is to comprehend how x1 influences the output of the final layer.

Specifically, we aim to determine the derivative with respect to x1.

Even in a lengthy network, by knowing the derivative relative to the subsequent value (denoted as g), we can
efficiently compute df/dx1 by applying the chain rule.

Indeed, the derivative concerning g can be determined from the derivative of the following hidden layer.

Utilizing the chain rule in this manner allows for the calculation of the derivative with respect to not only x1 but
also any weight w within the network.

Consequently, the process of derivative calculation begins at the output layer and progresses backward
towards the input layer, sequentially.

This systematic approach of working backwards through the network for derivative calculation is what gives
the technique its name: backpropagation.

XOR problem

Logistic Regression (Non-linear classifier)

X1

X2

y y = sigmoid(w1x1 + w2x2 + b)

Equivalent to Neural net without any hidden layers

Neural Net (Non-linear classifier)

Neural net with a hidden layer

X1

X2

h1

h1 = sigmoid(w11x1 + w12x2 + b1)

h2

y

h2 = sigmoid(w21x1 + w22x2 + b2)

w
2

w
1

w
22

w
12

w
21

w
11

y = sigmoid(w1h1 + w2h2 + b)

sigmoid function (activation function)

NN in Pytorch

Pytorch codes

Review these codes.

16_Pytorch_basics.ipynb

16_Pytorch_Data_Loading.ipynb

16_Pytorch_Define_Model.ipynb

16_Pytorch_Model_parameter_settings_and_training.ipynb

16_Pytorch_MNIST_Lab_full.ipynb

Lab15
Part 1

Before you start this lab, review the Pytorch example.

16_Pytorch_MNIST_Lab_full.ipynb

Part 2

Implement a neural network and train with Titanic data (train data).

https://www.kaggle.com/c/titanic/data

Measure an accuracy with test data.

Submit your code (.ipynb or .py) and captured accuracy in blackboard.

https://www.kaggle.com/c/titanic/data

