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Regression vs Classification

Regression

What is the temperature going to

be tomorrow?
Y///4

PREDICTION

Fahrenheit
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Classification
Will it be Cold or Hot tomorrow?
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MNIST data (Classification)
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MNIST data

® 60,000 train sample

® 10,000 test sample.

® 28 x 28 pixels (784 features)

® http://yann.lecun.com/exdb/mnist/




THE MNIST DATABASE

of handwritten digits

Yann [.eCun, Courant Institute, NYU
Corinna Cortes, Google Labs, New York
Christopher J.C. Burges, Microsoft Research, Redmond

The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set
of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered
in a fixed-size image.

It is a good database for people who want to try learning techniques and pattern recognition methods on real-world data
while spending minimal efforts on preprocessing and formatting.

Four files are available on this site:

train-images-idx3-ubyte.gz: training set images (9912422 bytes)

train-labels-idxl-ubyte.gz: training set labels (28881 bytes)

tl10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
tl10k-labels-idxl-ubyte.gz: test set labels (4542 bytes)




Iris (Classification)

Iris

Donated on 6/30/1988

A small classic dataset from Fisher, 1936. One of the earliest known datasets used for evaluating classification methods.

Dataset Characteristics Subject Area
Tabular Biology

Feature Type # Instances
Real 150

Dataset Information

What do the instances in this dataset represent?
Each instance is a plant

Additional Information

Associated Tasks
Classification

# Features
4

This is one of the earliest datasets used in the literature on classification methods and widely used in statistics and machine
learning. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is
linearly separable from the other 2; the latter are not linearly separable from each other....
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Has Missing Values?

The Iris data set: In search of the source of virginica
By A. Unwin, K. Kleinman. 2021
Published in Significance, 2021

DOWNLOAD

F IMPORT IN PYTHON

99 352 citations
© 617968 views

Keywords

(ecology )

Creators
2 R.A.Fisher

Dol

10.24432/C56C76

License

This dataset is licensed under a Creative
Commons Attribution 4.0 International (CC BY
4.0) license.

This allows for the sharing and adaptation of
the datasets for any purpose, provided that the
appropriate credit is given.
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Auto MPG (Regression)

=% Auto MPG

>~ " Donated on 7/6/1993

Revised from CMU StatLib library, data concerns city-cycle fuel consumption

Dataset Characteristics
Multivariate

Feature Type
Real, Categorical, Integer

Dataset Information

Additional Information

Subject Area
Other

# Instances
398

Associated Tasks
Regression

# Features
7

This dataset is a slightly modified version of the dataset provided in the StatLib library. In line with the use by Ross Quinlan
(1993) in predicting the attribute "mpg", 8 of the original instances were removed because they had unknown values for the
"mpg" attribute. The original dataset is available in the file "auto-mpg.data-original"....

SHOW MORE Vv

Has Missing Values?
Yes

Variables Table

Variable Name Role Type

Demographic

displacement Feature Continuous

Description Missing Values

DOWNLOAD

‘ ﬁ IMPORT IN PYTHON

99 15 citations
© 96143 views

Keywords

(_automobile )

Creators

2 R.Quinlan

DOl

10.24432/C5859H

License

This dataset is licensed under a Creative
Commons Attribution 4.0 International (CC BY
4.0) license.

This allows for the sharing and adaptation of
the datasets for any purpose, provided that the
appropriate credit is given.
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"chevrolet chevelle malibu"
"buick skylark 320"
"plymouth satellite"

"amc rebel sst"

"ford torino"

"ford galaxie 500"
"chevrolet impala"
"plymouth fury iii"
"pontiac catalina"

"amc ambassador dpl"



Linear Regression

Numerous factors contribute to the fluctuation of house prices, including the year of
construction, location, and number of rooms. By leveraging relevant information
associated with these factors, it becomes feasible to forecast house prices.

Let us denote the information that influences house prices as "x" and the corresponding

house price as "y." In this context, "x" represents the independent variable, while "y," being
contingent on the value of "x," is referred to as the dependent variable.



Linear Regression

Linear regression entails the prediction of the dependent variable using the independent variable.
In cases where a single independent variable, denoted as "x," fails to provide a comprehensive
explanation alone, multiple independent variables such as "x1," "x2," and "x3" can be employed.

The relationship between the independent variable and the dependent variable can be expressed
through a linear function:

y=ax+b

In this equation, "x" signifies the independent variable, while "y" represents the dependent
variable. Consequently, the value of "y" varies depending on the value of "x." However, to achieve
precise calculations, it is necessary to ascertain the values of "a" and "b."



Linear Regression

e With the knowledge of "a" and "b," we can reliably determine the value of "y" given "x." The
formula mentioned above, recognized as the linear formula, is the foundation of linear
regression.

e Linear regression finds extensive practical applications, primarily falling into two broad
categories:

a. Prediction and Forecasting

b. Explanation of Variation in the Response Variable



Prediction and Forecasting

Linear regression enables the fitting of a predictive model to an observed dataset
comprising values of both the response and explanatory variables.

Once such a model is developed, it can be employed to make predictions for the
response variable when additional values of the explanatory variables are
available, even without accompanying response values.

This application is particularly useful for prediction and forecasting.



Explanation of Variation in the Response Variable

Linear regression analysis can be applied to elucidate the extent to which
variation in the response variable can be attributed to fluctuations in the
explanatory variables.

It quantifies the strength of the relationship between the response and
explanatory variables. Furthermore, linear regression helps identify if certain
explanatory variables lack a linear relationship with the response altogether or
determine which subsets of explanatory variables contain redundant information

about the response.

This application aims to provide insights into the factors driving variation in the
response variable.



Example: Predict your exam score

First, let's look at an example of a simple linear regression with only one
independent variable. X y

X1 )




Example: Predict your exam score

Of the many factors that determine your score, consider only the time you study.

Study hours Score
2 hours 81
4 hours 93
6 hours 91
8 hours 97




Example: Predict your exam score

95 A

90 A

Exam score

85 1

80 A

75 : .
4 Study hours 6




Example: Predict your exam score

We need a model to represent this phenomena/event/data. Intuitively, we can
observe that the data seems to be linear with the left side down and the right
side up. Therefore, a linear function will be the best model to represent the data.




Example: Predict your exam score

However, we are not sure which one has the best fit to the data yet.




Example: Predict your exam score

Linear Function:

y=ax+b

y represents the score.

x represents the study time.

a: The slope of the linear function.

b: The y-intercept of the linear function.

The values of "a" and "b" play a crucial role in determining the quality of our model's fit to the data. They dictate
the relationship between the study time ("x") and the resulting score ("y"). The slope ("a") indicates the rate of
change in the score for each unit increase in study time. The y-intercept ("b") represents the score value when
the study time is zero.

Essentially, by adjusting the values of "a" and "b" in the linear function, we can optimize our model's ability to
capture the relationship between study time and scores, thereby enhancing its predictive capabilities.









How to choose the best/optimal a and b

Line Evaluation and Error Minimization:

When drawing a line, it is essential to assess its accuracy. This evaluation
involves determining the error associated with the line. To achieve this, we utilize
the Mean Squared Error (MSE) method. By employing MSE, we iteratively refine
the lines to minimize the error.

The algorithm's objective is to continuously search for lines that exhibit smaller
errors (MSE), enabling the creation of increasingly precise models.
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import numpy as np

a_b = np.array([3, 761)

data = np.array([[2, 81], [4, 931, [6, 911, [8, 9711)
x = datal[:, 0]

y = datal[:, 1]

sum(((a_b[0] * x + a_b[1]) - y)*x2)/4

mse

print(mse)



Lab 42

Estimate a MSE of the linear model
(arbitrarya = 1.5 andb = 5.0) for
the given example data below. Upload
.py or .ipynb file (source code) and
captured output image file.

X y
2.2 6.14
1.3 4.72
4.2 11.17
5.8 14.23
3.4 9.55
8.7 22.49




Next

How to find best (optimal) a and b?

We are going to talk about an algorithm to find the optimal a and b next time.



