
Pygame
Dr. Dongchul Kim

What is Pygame?

● Pygame is an open-source library for making video games.
● It provides modules for graphics, sound, and game control.
● It is designed to be used with Python, making it accessible to beginners and

versatile for experts.

Key Features

● Simplicity: Pygame is easy to start with and has a straightforward set of
functions to handle game elements.

● Flexibility: It supports various game projects, from simple 2D games to more
complex graphical projects.

● Community: Pygame has a large and supportive community, offering
extensive documentation and a wide range of tutorials and examples.

Why Use Pygame for Game Development?

● Ideal for learning basic game development concepts.
● Great tool for prototyping game ideas quickly.
● Allows integration with other Python libraries and tools to enhance game

functionality.

Snake Game

The Snake game is one of the oldest and most popular arcade games.

The player controls a long, thin creature, resembling a snake, which moves
around the screen, picking up food, or "apples," as it avoids hitting its own tail and
the walls.

Snake Game

● Game Objectives
○ Primary Objective: To eat as many apples as possible. Each apple eaten makes the snake

longer.
○ Secondary Objective: To avoid colliding with the walls or the snake's own growing body.

● Game Controls
○ Arrow Keys: Up, Down, Left, Right to direct the snake around the game area.

Setting Up Your Development Environment

● Install pygame

pip install pygame

● Testing the installation

import pygame

pygame.init()

print(pygame.ver)

Configuring the Game Environment

Initializing Pygame: Begin by initializing Pygame to set up the necessary
resources for game development.

import pygame

pygame.init()

Creating a game window and setting colors

screen_width = 600

screen_height = 400

game_screen = pygame.display.set_mode((screen_width, screen_height))

pygame.display.set_caption('Snake Game')

black = (0, 0, 0)

white = (255, 255, 255)

green = (0, 255, 0)

red = (255, 0, 0)

Game Loop!

running = True

while running:

 for event in pygame.event.get():

 if event.type == pygame.QUIT: # the close button

 running = False

 # Game logic, drawing code, and screen update will go here

 pygame.display.update()

FPS Control
clock = pygame.time.Clock()

fps = 15 # frames per second

direction = 'RIGHT' # snake direction

score = 0

running = True

while running:

 for event in pygame.event.get():

 if event.type == pygame.QUIT: # the close button

 running = False

 # Game logic, drawing code, and screen update will go here

 pygame.display.update()

 clock.tick(fps)

Let’s create a snake and apple!

Snake Object

snake_segments = []

snake_size = 10 # Size of each snake segment

snake_length = 5 # Initial length of the snake

for i in range(snake_length):

 x = 250 - (snake_size * i)

 y = 200

 segment = pygame.Rect(x, y, snake_size, snake_size)

 snake_segments.append(segment)

Apple

import random

apple_size = 10

apple_position = (

 random.randrange(0, screen_width // apple_size) * apple_size,

 random.randrange(0, screen_height // apple_size) * apple_size

)

apple = pygame.Rect(apple_position[0], apple_position[1], apple_size, apple_size)

Drawing the snake and apple

while running:

 for event in pygame.event.get():

 if event.type == pygame.QUIT: # the close button

 running = False

 game_screen.fill(black) # Clear screen with black background

 for segment in snake_segments:

 pygame.draw.rect(game_screen, green, segment) # Draw snake segments

 pygame.draw.rect(game_screen, red, apple) # Draw the apple

 pygame.display.update()

 clock.tick(fps)

**Controlling the snake
 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 running = False

 elif event.type == pygame.KEYDOWN:

 if event.key == pygame.K_UP and direction != 'DOWN':

 direction = 'UP'

 elif event.key == pygame.K_DOWN and direction != 'UP':

 direction = 'DOWN'

 elif event.key == pygame.K_LEFT and direction != 'RIGHT':

 direction = 'LEFT'

 elif event.key == pygame.K_RIGHT and direction != 'LEFT':

 direction = 'RIGHT'

Updating Snake’s Position
x, y = snake_segments[0].topleft

if direction == 'UP':

 y -= snake_size

elif direction == 'DOWN':

 y += snake_size

elif direction == 'LEFT':

 x -= snake_size

elif direction == 'RIGHT':

 x += snake_size

new_head = pygame.Rect(x, y, snake_size, snake_size)

snake_segments.insert(0, new_head) # Add new head to the snake

while running:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 running = False
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_UP: # and direction != 'DOWN':
 direction = 'UP'
 elif event.key == pygame.K_DOWN:
 direction = 'DOWN'
 elif event.key == pygame.K_LEFT:
 direction = 'LEFT'
 elif event.key == pygame.K_RIGHT:
 direction = 'RIGHT'
 # Move the snake
 x, y = snake_segments[0].topleft # pygame.Rect
 if direction == 'UP':
 y -= snake_size
 elif direction == 'DOWN':
 y += snake_size
 elif direction == 'LEFT':
 x -= snake_size
 elif direction == 'RIGHT':
 x += snake_size
 new_head = pygame.Rect(x, y, snake_size, snake_size)
 snake_segments.insert(0, new_head)

Check for collisions

 # Check for collisions

 if (snake_segments[0].left < 0 or snake_segments[0].right > screen_width or

 snake_segments[0].top < 0 or snake_segments[0].bottom > screen_height or

 snake_segments[0] in snake_segments[1:]):

 running = False # Game over

When the snake eats an apple
 # Check if snake eats apple

 if snake_segments[0].colliderect(apple):

 score += 10

 apple_position = (random.randrange(0, screen_width // apple_size) * apple_size,

 random.randrange(0, screen_height // apple_size) * apple_size)

 apple = pygame.Rect(apple_position[0], apple_position[1], apple_size, apple_size)

 else:

 snake_segments.pop() # Remove the last segment

Display Score

font = pygame.font.Font(file_path=None, 36)

score_text = font.render('Score: ' + str(score), True, white) # smoothing

game_screen.blit(score_text, (10, 10))

Game Over
Game over screen

game_screen.fill(black)

game_over_text = font.render('Game Over', True, red)

game_screen.blit(game_over_text, (screen_width//2 - game_over_text.get_width()//2, screen_height//2))

pygame.display.update()

pygame.time.wait(2000) # Wait two seconds before closing

pygame.quit()

