
Web Crawling
Beautifulsoup

BeautifulSoup

BeautifulSoup

● What is BeautifulSoup?
○ A Python library for parsing HTML and XML documents.
○ Widely used for web scraping.

● Why Use BeautifulSoup?
○ Simple to learn and implement.
○ Powerful methods for navigating and searching the document tree.
○ Works well with Python’s other HTTP libraries to access websites.

● Installation

pip install beautifulsoup4

pip install lxml # optional, recommended parser

Basic Example

from bs4 import BeautifulSoup

soup = BeautifulSoup("<p>Someboldtext.</p>", "html.parser")

print(soup.p.b.string) # Output: 'bold'

Result

Common Uses

● Extracting data from HTML.
● Automating data collection from web sources.
● Cleaning up messy web page HTML.

Example

● To parse HTML using BeautifulSoup, you generally follow these steps:
○ Load the HTML of the webpage.
○ Create a BeautifulSoup object to parse the HTML.
○ Search and extract tags, attributes, text, etc.

from bs4 import BeautifulSoup

html_doc = """

<html>

<head>

 <title>The Dormouse's story</title>

</head>

<body>

 <p class="title">The Dormouse's story</p>

 <p class="story">Once upon a time there were three little sisters; and their names were

 Elsie,

 Lacie and

 Tillie;

 and they lived at the bottom of a well.</p>

</body>

</html>

"""

1. BS object and 2. search and extract a tag

soup = BeautifulSoup(html_doc, 'html.parser')

Example of accessing an HTML tag

print(soup.title) # Outputs the <title> tag

print(soup.head) # Outputs the <head> tag

print(soup.a) # Outputs the first <a> tag

Accessing Tag Contents and Attributes

Accessing tag content

print(soup.title.string)

Accessing tag attributes

link = soup.a

print(link['href']) # Outputs the href attribute value

Finding all <a> tags

all_links = soup.find_all('a')

for link in all_links:

 print(link['href'])

Finding all <a> tags with class "sister"

sisters = soup.find_all('a', class_='sister')

for sister in sisters:

 print(sister.string)

For more complex conditions when searching for tags, use the find or find_all
methods:

Results

Example

CS Department Homepage

To practice how to collect data from a real webpage, we'll see how you could write
a Python script using BeautifulSoup and the Requests library to scrape data from
the specified website, https://www.utrgv.edu/csci/faculty/index.htm.

The goal is to collect professor’s names.

Step1: Install Required Libraries

pip install beautifulsoup4

pip install requests

Step 2: Fetch the Web Page
import requests

from bs4 import BeautifulSoup

URL of the page

url = 'https://www.utrgv.edu/csci/faculty/index.htm'

Send HTTP request

response = requests.get(url)

Check if the request was successful

if response.status_code == 200:

 print("Web page fetched successfully!")

else:

 print("Failed to retrieve the web page. Status code:", response.status_code)

Step 3: Parse the HTML Content

Parse the HTML content of the page

soup = BeautifulSoup(response.content, 'html.parser')

Step 5: Extraing tag

Lab 38

Using BeautifulSoup, collect faculty emails from the CS homepage, UTRGV.

https://www.utrgv.edu/csci/faculty/index.htm

https://www.utrgv.edu/csci/faculty/index.htm

Results

