
Online Coding Test
Intro

Outline

1. Online coding test platforms
2. Things that you will prepare
3. Big-O

Outline

1. Online coding test platforms
2. Things that you will prepare
3. Big-O

Types of Coding Interview

Name Online/Offline Interviewer Tool

Whiteboard (onsite) coding interview Offline Yes whiteboard

Online coding interview Online Yes notepad

Online coding test Online No Coding test platform

Online Coding Test

I generally refer to the process as a "coding test" rather than a "coding interview." This distinction
stems from the interaction style: when an interviewer collaborates closely with the candidate, it
resembles an interview; when the candidate completes tasks independently, it's more like a test.

For in-person assessments that involve direct interaction with an interviewer, these are typically
referred to as on-site or offline coding interviews. A common format for these is the whiteboard
coding interview, where candidates solve problems on a whiteboard—this is prevalent in many
on-site coding interviews.

Online, the format often shifts to a coding test conducted without an interviewer's presence.
However, if an interviewer is involved, it's aptly called an online coding interview.

Our focus here is on the Online Coding Test.

Online Coding Test Platforms

● Hackerrank
○ https://www.hackerrank.com/

● Codility
○ https://www.codility.com/

● Remoteinterview
○ https://www.remoteinterview.io/

● And so on

https://www.hackerrank.com/
https://www.codility.com/
https://www.remoteinterview.io/

Tips

Be aware that coding test platforms vary significantly in their features. For
instance, some may display test cases while others do not, making it challenging
to diagnose errors when they occur.

It's important to research which platform your prospective employer uses and
familiarize yourself with its specific features ahead of time. Taking the test on a
platform you regularly use could give you a distinct advantage.

Typically, the timer starts as soon as you click the start button, and there is a strict
time limit. To optimize your performance, make sure you're comfortable with the
platform to avoid losing time due to unfamiliarity.

Useful Links

https://codesubmit.io/blog/coding-as
sessment-tools/

https://codesubmit.io/blog/coding-assessment-tools/
https://codesubmit.io/blog/coding-assessment-tools/

Outline

1. Online coding test platforms
2. Things that you will prepare
3. Big-O

Scratch paper and favorite pen

Actually, it's not essential, but having it can be quite beneficial. This is especially
true when dealing with recursive structures, as visualizing these structures
mentally can be challenging. It's better to prepare in advance rather than scramble
to do so later.

What language are you going to use?

While some companies may specify a
required programming language, in most
cases, applicants are free to choose their
preferred language.

Therefore, it's important to have a good
understanding of the characteristics of
each language and select the one that
best aligns with your skills and the task at
hand.

Your own code snippet

A "snippet" in programming refers to a small
section of reusable source code that helps users
avoid repetitive typing during regular editing tasks.
It's useful to prepare frequently used code snippets
in advance.

For instance, if you need to implement complex
operations like inverting or deleting a linked list on
the fly, it can be confusing and time-consuming.
Having these snippets ready can save time and
reduce errors.

Additionally, you can organize and store these
snippets in your GitHub repository for easy access
and management.

Coding tool

There's no reason to avoid using effective tools. Although it's crucial to have
the capability to code without an Integrated Development Environment (IDE),
the time constraints in online coding tests make it advantageous to use helpful
tools. Personally, I find PyCharm and Jupyter Notebook/Colab to be excellent
IDEs. However, it's best to use an IDE with which you are most familiar to
maximize your efficiency during the test.

https://mohycs.medium.com/how-to-crack-the-coding-interview-the-7-phases-of-interview-prep-975569fbc410

Outline

1. Online coding test platforms
2. Things that you will prepare
3. Big-O

Big-O

Big-O notation is a crucial concept found in algorithm textbooks. It describes how
the execution time (time complexity) and space requirements (space
complexity) of an algorithm scale with increasingly large inputs.

Time complexity specifically refers to the duration required to execute an
algorithm, also known as computational complexity.

To express this complexity, consider a function that represents the computational
complexity for a given input size n. In this function, only the highest order term
is taken into account, while coefficients are disregarded. For instance, if the
computational complexity is 4n2+3n+4, you would focus on n2 from the term 4n2
as it represents the highest order. In Big-O notation, this complexity is represented
as O(n2).

Possible Big-Os

● O(1) - No matter how large the input value, the execution time remains constant. It is the best algorithm.
Algorithms with constant time are like the Holy Grail, which is surprisingly valuable if you can find it, but you
may have to spend a lifetime to find it. Hash table lookup and insertion correspond to this.

● O(log n) - Execution time starts to be proportional to the input value. However, the logarithm is not affected by
very large input values, so it can be said to be a good algorithm. This is binary search.

● O(n) - Such an algorithm is called a linear time algorithm. This is the case for finding the maximum or minimum
value in an unsorted list.

● O(n log n) - This is the case for parallel sort. Comparison-based sorting algorithms can't be faster than this. If
the input is the best, it may be O(n) possible by skipping the comparison. Timsort is one such example.

● O(n2) - Inefficient algorithms such as bubble sort fall into this category.

● O(2n) - This is a case of recursively calculating Fibonacci numbers. Not to be confused with n2.

● O(n!) - TSP problem. Even if the input value is slightly increased, it is difficult to calculate in time. The slowest
algorithm.

(skip) Python Modules you may need to install

import collections

import heapq

import functools

import itertools

import re

import sys

import math

import bisect

from typing import *

String Manipulation
Level 1 - Part 1

List

● Dynamic array - changeable size
● Mutable list - changeable element
● Very common and useful data type
● Of course, C++ and Java have it too

List

Most importantly, you don’t need to stress over choosing between a queue or a stack when using lists, as
lists in many programming languages provide all the operations available on both queues and stacks.
Many of these operations can be performed in constant time, O(1), such as accessing elements by index.

However, it's important to note that not all operations are this efficient. For example, removing the first
element of a list with pop(0)—an operation typical of queues—actually has a time complexity of O(n)
because it requires shifting all the subsequent elements one position to the left. Therefore, while lists are
versatile, you should use caution and consider efficiency when employing them for queue-like operations.

The possible operations are:

 Operations Complexity

len(a) O(1)

a[i] O(1)

a[i:j] O(k)

elem in a O(n)

a.count(elem) O(n)

a.index(elem) O(n)

a.append(elem) O(1)

a.pop() O(1)

a.pop(0) O(n)

 Operations Complexity

del a[i] O(n)

a.sort() O(n log n)

min(a), max(a) O(n)

a.reverse() O(n)

Slicing

s = 'hello'

print(s[1:4])

print(s[1:-2])

print(s[1:])

print(s[:])

print(s[1:100])

print(s[-1])

print(s[-4])

print(s[:-3])

print(s[-3:])

print(s[::1])

print(s[::-1])

print(s[::2])

Useful functions

char.isalnum()

str.lower()

re.sub()

String Manipulation
Level 1 - Part 2

isdigit()

 s1 = "34"

 s2 = "12ab"

 print(s1.isdigit())

 print(s2.isdigit())

Lambda function

A lambda function is a small anonymous function.

A lambda function can take any number of arguments, but can only have one
expression. For example,

A lambda function that adds 10 to the number passed in as an argument, and print
the result:

x = lambda a : a + 10

print(x(5))

Lambda function with multiple arguments

A lambda function that multiplies argument a with argument b and print the result:

x = lambda a, b : a * b

print(x(5, 6))

sort() and lambda function

s = ['4 f 8', '1 a 6', '2 r 5', '3 z 2','3 z 1']

s.sort(key=lambda x: x.split()[0])

print(s)

s.sort(key=lambda x: x.split()[1:])

print(s)

sort() and lambda function

collections.Counter()

import collections

s = ['hello', 'apple', 'bye', 'hello', 'apple', 'hello']

counts = collections.Counter(s)

print(counts)

collections.Counter()

sort() vs sorted()

s = [3, 2, 1]

print(sorted(s))

print(s)

print(s.sort())

print(s)

d = 'fjsqcdz'

print(sorted(d))

print("".join(sorted(d)))

