
OOP in Python
Part III - Review with Examples

Example - Banking Account

We will learning object-oriented programming (OOP) concepts such as
polymorphism, encapsulation, inheritance, and more, through a banking account
system example.

Base Account Class

First, we define a Account class that serves as the base for all types of accounts.
This class encapsulates the common properties and functionalities of an account.

Encapsulation: The account's balance is made private (using __ prefix),
preventing direct access from outside. Instead, balance can only be modified
through methods like deposit and withdraw.

Inheritance: This class serves as the base for other specialized account classes
(e.g., Checking Account, Savings Account).

Base Account Class
class Account:
 def __init__(self, owner, balance=0):
 self.owner = owner
 self.__balance = balance # Encapsulation: balance is private

 def deposit(self, amount):
 if amount > 0:
 self.__balance += amount
 print(f"{amount} has been deposited. New balance: {self.__balance}")
 else:
 print("Amount must be positive.")

 def withdraw(self, amount):
 if 0 < amount <= self.__balance:
 self.__balance -= amount
 print(f"{amount} has been withdrawn. New balance: {self.__balance}")
 else:
 print("Withdrawal amount exceeds the balance or is invalid.")

 def get_balance(self): # Method to check balance
 return self.__balance

Inheritance and Polymorphism

Creating Various Account Types through Inheritance

By inheriting the Account class, we can create specific types of accounts that have
unique conditions or interest rates, such as SavingsAccount and CheckingAccount

Utilizing Polymorphism

Polymorphism is an OOP feature that allows objects of different classes to
respond to the same message (method call) in different ways. In the example
above, the CheckingAccount class overrides the withdraw method from the
Account class to implement transaction fees specific to checking accounts.

Subclasses
class SavingsAccount(Account): # Savings account
 def __init__(self, owner, balance=0, interest_rate=0.01):
 super().__init__(owner, balance)
 self.interest_rate = interest_rate

 def apply_interest(self): # Apply interest
 interest = self.get_balance() * self.interest_rate
 self.deposit(interest)
 print(f"Interest {interest} has been applied.")

class CheckingAccount(Account): # Checking account
 def __init__(self, owner, balance=0, transaction_fee=1.00):
 super().__init__(owner, balance)
 self.transaction_fee = transaction_fee

 def withdraw(self, amount): # Custom withdraw method for checking account
 if amount + self.transaction_fee <= self.get_balance():
 super().withdraw(amount+self.transaction_fee) # Call the original withdraw method
 print(f"Transaction fee of {self.transaction_fee} has been applied.")
 else:
 print("Withdrawal amount including fees exceeds balance.")

Example Usage

acc = Account("John Doe", 1000)

acc.deposit(500)

acc.withdraw(200)

savings = SavingsAccount("Jane Doe", 1000, 0.05)

savings.apply_interest()

checking = CheckingAccount("Alex Smith", 1000, 2.00)

checking.withdraw(100) # Withdrawal in checking account includes transaction fee.

Results

500 has been deposited. New balance: 1500

200 has been withdrawn. New balance: 1300

50.0 has been deposited. New balance: 1050.0

Interest 50.0 has been applied.

102.0 has been withdrawn. New balance: 898.0

Transaction fee of 2.0 has been applied.

Hidden/Private Variable

Hidden Variable
class Car:
 # Hidden member of Car
 __mileage = 0

 # A member method that changes __mileage
 def drive(self, miles):
 self.__mileage += miles
 print(f"Driven {miles} miles. Total mileage is now {self.__mileage} miles.")

Driver code
myCar = Car()
myCar.drive(50)
myCar.drive(100)

This line attempts to access the hidden variable directly and will cause an error
print(myCar.__mileage)

Hidden Variable

Class Car: Defines a car with a hidden or private variable __mileage. This variable is meant to
represent the total miles driven by the car and is not directly accessible from outside the class.

Method drive(miles): A public method that simulates driving the car a certain number of miles
and increments the __mileage variable accordingly. It also prints the mileage after each drive.

Driver Code: Creates an instance of Car named myCar and simulates driving by calling
myCar.drive(50) and then myCar.drive(100), which updates and prints the mileage each time.

Accessing Hidden Variable: The commented-out line # print(myCar.__mileage) demonstrates
what happens if you try to access the hidden variable directly. This will raise an AttributeError
because __mileage is private to the Car class and not directly accessible from outside the class.

Hidden Variable
class Car:
 # Hidden member of Car
 __mileage = 0

 # A member method that changes __mileage
 def drive(self, miles):
 self.__mileage += miles
 print(f"Driven {miles} miles. Total mileage is now {self.__mileage} miles.")

Driver code
myCar = Car()
myCar.drive(50)
myCar.drive(100)

print(myCar._Car__mileage)

__str__ and __repr__

In Python, __str__ and __repr__ are special methods that define string
representations of objects. While these methods serve similar purposes, they are
typically used in different contexts and have different goals.

Example
class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def __str__(self):

 return f"{self.name} is {self.age} years old."

 def __repr__(self):

 return f"Person('{self.name}', {self.age})"

__str__

The __str__ method is used to provide a human-readable representation of an
object, primarily for display purposes.

This method is automatically invoked by the print() function and when using the
str() built-in function to convert the object to a string.

If a class does not define the __str__ method, Python will default to using the
object's __repr__ method as a fallback for its string representation.

__repr__

The __repr__ method is intended to provide an unambiguous representation of an
object, aimed at developers. It's used for debugging and logging purposes.

The goal of __repr__ is to return a string that, when passed to eval(), could (in
theory) produce an object with the same properties as the original object. In other
words, its result should be a valid Python expression when possible.

All Python objects come with a built-in implementation of __repr__, and if not
explicitly overridden in a class, it returns the default representation that includes
the object’s address in memory.

Example

In this example, __str__ focuses on providing
a user-friendly description of the object,
suitable for end-user consumption, whereas
__repr__ aims at giving a more precise and
formal representation of the object, potentially
allowing for the recreation of the original
object from its string representation.

Multiple Inheritance

Multiple Inheritance
class Engine():
 def __init__(self):
 self.power = "120hp"
 print("Engine is ready")

class Body():
 def __init__(self):
 self.type = "Sedan"
 print("Body is ready")

class Car(Engine, Body):
 def __init__(self):
 # Calling constructors of Engine and Body classes
 Engine.__init__(self)
 Body.__init__(self)
 print("Car is ready")

 def specifications(self):
 print(f"Power: {self.power}, Body Type: {self.type}")

my_car = Car()
my_car.specifications()

Multiple Inheritance

Car Class: Inherits from both Engine and Body. In its constructor, it explicitly calls
the constructors of both Engine and Body to ensure that the car is equipped with
both engine power and body type. After initializing its components, it prints "Car is
ready".

The Car class demonstrates multiple inheritance by inheriting properties (power
and type) and initializing behavior from both Engine and Body classes.

By explicitly calling the constructors of the Engine and Body classes within its
constructor, the Car class ensures that all necessary initializations for its
components are performed.

Multiple Inheritance

__call__

In Python, the __call__ method is a special method that allows an instance of a
class to be called as if it were a function.

Essentially, if a class defines a __call__ method, it can make its instances callable,
just like a function. This can be particularly useful when you want your objects to
behave like functions, or when you want to use classes to define objects that need
to be invoked for a specific purpose.

__call__
class SquareCalculator:

 def __call__(self, x):

 return x * x

Creating an instance of SquareCalculator

calculator = SquareCalculator()

Using the instance as if it were a function

result = calculator(5) # This calls the __call__ method

print(result) # Output: 25

In this example, the SquareCalculator
class has a __call__ method that takes a
single argument x and returns its square.

When we create an instance of
SquareCalculator named calculator , we
can "call" calculator with a number as if it
were a function, and it returns the square
of that number.

Why Use __call__

Using the __call__ method can make your code more intuitive and elegant,
especially when the object's main purpose is to perform a specific operation or
calculation. It can also be used to maintain state or configuration that affects its
behavior when called.

