
Threading

Program vs Process
We can listen to songs and surf the Internet while playing games.

At this time, each application program is a process.

A program is simply a set of code or compiled instructions.

When you run (double click) these programs in the storage device (HDD), they are
loaded into memory and become processes.

So we can say that a process is a running/executing program.

Multiprocessor
Multiprocessor means that your computer (CPU and OS) can run multiple
processes concurrently or parallely using multi-cores or multi-cpus.

Concurrently means that it looks like you run multiple process simultaneously but
actually it runs one at a time.

Parallely means that the multiple processes are executed at the same time.

Thread
It can be said that a thread divides a process into several and executes it. In other
words, different threads execute various parts of the running program at the same
time. Using threads, you can do many things at the same time, rather than one
program at a time.

For example, suppose you have 10 tasks that take the same amount of time. If it
takes 1 minute for one operation, it will take 10 minutes in total. However, if you
use 2 threads to process the work at the same time, you will be able to complete
the work in about 5 minutes.

Single thread vs Multi-thread

Task 1 Task 2 Task 3

Task 1

Task 2

Task 3

start end

start end

Thread 1

Thread 1

Thread 2

Thread 3

Process vs Thread

How to use thread in python
We are going to use threading module.

To implement a new thread using the threading module, (1) you have to define a
new subclass of the Thread class. (2) Override the __init__(self [,args]) method to
add additional arguments. (3) Then, override the run(self [,args]) method to
implement what the thread should do when started.

(4) Once you have created the new Thread subclass, you can create an instance
of it and then start a new thread by invoking the start(), which in turn calls run()
method.

The methods of Thread class
The methods provided by the Thread class are as follows −

run() − The run() method is the entry point for a thread.

start() − The start() method starts a thread by calling the run method.

join() − The join() waits for threads to terminate.

isAlive() − The isAlive() method checks whether a thread is still executing.

getName() − The getName() method returns the name of a thread.

setName() − The setName() method sets the name of a thread.

Example
Let’s think about an ATM
machine. Two persons
share a bank account and
they want to deposit some
money ($100 or $100000)
at the same time.

To test the threads, we
deposit only $1 per each
transaction.

What is the output of this
program?

Synchronizing Threads
The threading module provided with Python includes a
simple-to-implement locking mechanism that allows
you to synchronize threads. A new lock is created by
calling the Lock() method, which returns the new lock.

The acquire(blocking) method of the new lock object is used to force threads to run synchronously. The
optional blocking parameter enables you to control whether the thread waits to acquire the lock.

If blocking is set to 0, the thread returns immediately with a 0 value if the lock cannot be acquired and
with a 1 if the lock was acquired. If blocking is set to 1, the thread blocks and wait for the lock to be
released.

The release() method of the new lock object is used to release the lock when it is no longer required.

