
Graphical User Interface
GUI in Python

Tkinter (Tk Interface)
Python has a lot of GUI frameworks, but Tkinter is the only framework that’s built
into the Python standard library.

It’s cross-platform, so the same code works on Windows, macOS, and Linux.

Visual elements are rendered using native operating system elements, so
applications built with Tkinter look like they belong on the platform where they’re
run.

Use Python 3.6

I am going to use Python 3.6.
You can use any Python version if
you want.

Install tkinter in Pycharm (venv)

Test
Test tkinter module

Tkinter (TK interface)
● Window

○ The foundational element of a Tkinter GUI is the window. Windows are the containers in which

all other GUI elements live.

● Widget
○ These other GUI elements, such as text boxes, labels, and buttons, are known as widgets.

Widgets are contained inside of windows.

First, let’s create a window!

Tk class and its instance
import tkinter as tk
w = tk.Tk()

A window we want to create is an instance of Tkinter’s Tk class. Go ahead
and create a new object and assign it to the variable w.

When you execute the above a line, a new window pops up on your screen.

The window interface would look different depending on your operating system.

***Some operating systems or environments (including my case) do need a call to
mainloop() to run the program.

mainloop()

import tkinter as tk
w = tk.Tk()
w.mainloop()

w.mainloop() tells Python to run the Tkinter event loop.

This method listens for events, such as button clicks or keypresses, and blocks
any code that comes after it from running until the window it’s called on is closed.

Once you run it, you’ll see a blinking cursor in the console. It means the program
is still running.

***Don’t forget to close it by clicking the close button (x button).

The program is still running until clicking the x button.

Adding a Widget
Let’s add a Widget.

You can add some text to the window using the tk.Label class.

Create a Label widget with the text "Hello, Dr. Kim" and assign it to a variable
called hello which is a Label instance.

hello = tk.Label(text="Hello, Dr. Kim") # put your name

Label.pack()
We just created a Label widget, but we haven’t added it to the window yet.

You can use the Label widget’s pack() method to add.

hello.pack()

Window size
We can use the geometry method of the window object to set a size of the
window.

We set the Width to 500 pixels and the Height to 100 pixels as its arguments.

Note that we are using a lowercase “x” here instead of a “*” to essentially say: I
want the window to be 500 pixels by (x) 100 pixels.

For example,

w.geometry("500x100")

Initial Window Position
When the first Tkinter window is run, it will usually appear in the top left-hand
corner by default.

To change this we can add the height and width position to the geometry method.

When Tkinter positions a window it references the top left corner of the window.

.geometry("window width x window height + position right +
position down")

Note the "+" symbol before each position.

Initial Window Position
w.geometry("500x100+300+600")

Here, we position the top left corner of the window right 300 pixels and down 600
pixels.

300

600

Screen

Font style and size
To change the font style and size, we use tkinter.font module and its Font
class.

import tkinter.font as tkFont

fontStyle = tkFont.Font(family="Lucida Grande", size=20)

Then, we put the Font instance, fontStyle into its initializer as arguments.

label = tk.Label(text="Hello, Dr. Kim!", font=fontStyle)

Font style and size

Font style and size

Available Font Family
import tkinter as tk

from tkinter import font

root = tk.Tk()

f = list(font.families())

f.sort()

for i in f:

print(i)

Label()
Tk class (window) has the Label method to display a text.

You can set the text color, background, and size of the label as arguments.

For example,

label = tk.Label(
 text="Hello, Dr. Kim!",
 foreground="yellow", # Set the text color to white
 background="black", # Set the background color to black
 width=20,
 height=1
)

Colors
Here are numerous valid color names, including:

"red"

"orange"

"yellow"

"green"

"blue"

"purple"

Lab 22-1
Make a Python GUI program that displays a window (size: 600 by 600) on the
center of the screen. Using a Label Widget, display your name with different
colors (any colors) for text and background.

(Hint)

width = w.winfo_screenwidth()

height = w.winfo_screenheight()

place()
You can use .place() to control the precise location that a widget should occupy in
a window. You must provide two keyword arguments, x and y, which specify the x-
and y-coordinates for the top-left corner of the widget. Both x and y are measured
in pixels, not text units.

Entry
When you need to get a little bit of text from a user, like a name or an email
address, use an Entry widget. They display a small text box that the user can type
some text into. Creating and styling an Entry widget works pretty much exactly like
Label and Button widgets. For example,

entry = tk.Entry(fg="yellow", bg="blue", width=50)

You can use .get() to retrieve the text and assign it to a variable.

str = entry.get()

Entry

button
Button widgets are used to display clickable buttons. They can be configured to
call a function whenever they’re clicked.

button = tk.Button(

 text="Calculate!",

 width=25,

 height=5,

 bg="blue",

 fg="yellow")

bind
To call an event handler whenever an event occurs on a widget, use .bind(). The
event handler is said to be bound to the event because it’s called every time the
event occurs.

.bind() always takes at least two arguments:

1. An event that’s represented by a string of the form "<event_name>", where
event_name can be any of Tkinter’s events

2. An event handler that’s the name of the function to be called whenever the
event occurs

bind
def handle_click(event):

 print("The button was clicked!")

button = tk.Button(text="Click me!")

button.bind("<Button-1>", handle_click)

In this example, the "<Button-1>" event on the button widget is bound to the
handle_click event handler. The "<Button-1>" event occurs whenever the left mouse
button is pressed while the mouse is over the widget. There are other events for
mouse button clicks, including "<Button-2>" for the middle mouse button and
"<Button-3>" for the right mouse button.

Lab 22-2
Make a Python GUI program that converts kilometer to mile.

Example

Hint

