
Function Annotations

Function Annotations

● Definition:

○ Function annotations are a Python feature that allows you to add arbitrary metadata to
function parameters and return values.

● Introduced in:

○ Python 3.0, with enhancements in later versions.

● Purpose:

○ Primarily for documentation and type hinting, but annotations can be used for other purposes
as they do not affect the runtime behavior of the program.

Function Annotations

def func_name(param1: type, param2: type) -> return_type:

Example

def greet(name: str) -> str:

 return f"Hello, {name}"

Function Annotations

Annotations can be accessed through the function's __annotations__ attribute.

Example:

Why Use Function Annotations?

● Documentation:
○ Makes the code easier to understand.

● Type Checking:
○ Can be used by third-party tools, IDEs, or static type checkers like MyPy to catch type errors.

● Enforces a Coding Standard:
○ Helps in maintaining a consistent coding style, especially in large projects or teams.

● Flexibility:
○ Annotations can store any type of information, not just types.

Decorators

Decorators

● Definition:

○ Decorators are a design pattern in Python that allows a user to add new functionality to an
existing object without modifying its structure.

● Purpose:

○ They are used to modify the behavior of function or class methods.

● How they work:

○ Decorators wrap another function, modifying its behavior in the process.

How Decorators Work

def my_decorator(func): # Decorator function definition:

 def wrapper():

 # Code before function execution

 func()

 # Code after function execution

 return wrapper

@my_decorator

def my_function():

 print("The function is called.")

Example

