Function Annotations

Function Annotations

e Definition;

o Function annotations are a Python feature that allows you to add arbitrary metadata to
function parameters and return values.

e Introduced in:
o Python 3.0, with enhancements in later versions.
e Purpose:

o Primarily for documentation and type hinting, but annotations can be used for other purposes
as they do not affect the runtime behavior of the program.

Function Annotations

def func name (paraml: type, param2:

Example
def greet (name: str) -> str:

return f"Hello, {name}"

type)

-> return type:

Function Annotations

Annotations can be accessed through the function's __annotations___ attribute.

Example:

def multiply(x: int, y: int) -> int:
return x * vy

print(multiply. annotations)

{'x: «<class *“int'>; 'y':: <class 'int'>; ‘return®: <class *int'>}

Why Use Function Annotations?

e Documentation:

o Makes the code easier to understand.
e Type Checking:

o Can be used by third-party tools, IDEs, or static type checkers like MyPy to catch type errors.
e Enforces a Coding Standard:

o Helps in maintaining a consistent coding style, especially in large projects or teams.
o Flexibility:

o Annotations can store any type of information, not just types.

Decorators

Decorators

e Definition;

o Decorators are a design pattern in Python that allows a user to add new functionality to an
existing object without modifying its structure.

e Purpose:

o They are used to modify the behavior of function or class methods.

e How they work:

o Decorators wrap another function, modifying its behavior in the process.

How Decorators Work

def my decorator (func): # Decorator function definition:
def wrapper () :
Code before function execution
func ()
Code after function execution

return wrapper

@my decorator
def my function():

print ("The function is called.")

Example

def simple decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper

@simple decorator
def say hello():
print("Hello!")

say hello()

Something is happening before the function is called.
Hello!
Something is happening after the function is called.

