
OOP in Python
Part II

Polymorphism in Object-Oriented Programming

● Learning Goals
○ Polymorphism

■ Understanding Method Overriding and Method Overloading (Operator Overloading) in
Python

○ Encapsulation
■ Understanding Public, Protected, and Private Members

Polymorphism

What is Polymorphism?

Polymorphism is a fundamental concept in object-oriented programming (OOP) that
allows objects to take on multiple forms. It's derived from the Greek words "poly"
(meaning many) and "morph" (meaning form).

Key Points:

Enables one interface to be used for a general class of actions. The specific action is
determined by the exact nature of the situation.

For example, if you learned driving a car, you will be able to drive on any car. It does not
depend on car brand or inner implementation. It has the same driver interface.

Polymorphism

drive()

One Interface - Multiple Implementation

Polymorphism

Why It Matters:

Code Reusability: Allows the same piece of code to interact with objects from
different classes in a unified manner. This means you can write more generic and
reusable code.

Flexibility: Makes it easier to introduce new classes and objects that work
seamlessly with existing code. As a result, your software can grow and evolve with
minimal changes to existing functionality.

Polymorphism

● Method Overriding
○ It was covered in the OOP Part I.

● Method Overloading (Operator Overloading)

Method Overloading

● Understanding Method Overloading
○ Method overloading allows multiple methods in a class to have the same name but different

parameters. It's common in many programming languages for implementing polymorphism at
compile time.

● Python's Approach:
○ Unlike many object-oriented languages, Python does not support method overloading in the

traditional sense. In Python, if multiple methods have the same name, only the last defined
method is retained.

Achieving Method Overloading Effects

1. Default Parameter Values:

Python methods can have default values for parameters. This feature can mimic method overloading by allowing a
method to be called with different numbers of arguments.

Example:

def display_info(name, age=None):

 if age:

 print(f"Name: {name}, Age: {age}")

 else:

 print(f"Name: {name}")

display_info("John")

display_info("John", 25)

Achieving Method Overloading Effects

2. Variable-length Arguments:

*args (Non-Keyword Arguments):

Allows a method to take an arbitrary number of arguments without defining them all.

Example:

def add(*numbers):

 return sum(numbers)

print(add(1, 2, 3, 4, 5))

Achieving Method Overloading Effects

**kwargs (Keyword Arguments):

Enables passing a variable number of keyword arguments to a method.

Example:

def describe_pet(name, **properties):

 print(f"Pet Name: {name}")

 for key, value in properties.items():

 print(f"{key}: {value}")

describe_pet("Fluffy", age=2, color="White")

describe_pet("Fluffy", age=2, color="White", species="Cat")

Operator Overloading

What is Operator Overloading?

Operator overloading allows operators to have different meanings depending on their operands. In
Python, this is achieved by defining special methods in classes (often referred to as "magic
methods").

Why Operator Overloading?

Flexibility and Intuitiveness: Enables custom behavior for arithmetic, comparison, and other
operations on objects of user-defined classes.

Enhanced Readability: Allows for more natural and expressive code that aligns with the
operations being performed.

Operator Overloading

How Python Implements Operator Overloading:

Magic Methods: Special methods that begin and end with double underscores (__). Each magic method
corresponds to a specific operator.

Commonly Used Magic Methods:

Addition: __add__(self, other)

Subtraction: __sub__(self, other)

Multiplication: __mul__(self, other)

Equality: __eq__(self, other)

Operator Overloading

Example: Vector Addition

Scenario: Define a Vector class where vectors can be added using the + operator.

Implementation:

Operator Overloading

Benefits of Operator Overloading:

Intuitive Operations: Allows for operations that are logical for the objects being manipulated, making
code easier to understand and maintain.

Custom Behavior: Supports defining how user-defined objects should interact through familiar
operators, enhancing the expressiveness of the language.

Considerations:

Clarity vs. Complexity: While operator overloading can make code more intuitive, overuse or
misuse can lead to code that's hard to understand and maintain. It's essential to use this feature
judiciously to ensure code clarity.

More examples

List of Magic Methods for Operator Overloading

Lab 16-1: Polymorphism through Operator Overloading
Objective: Implement a Rectangle class that supports addition using the + operator, where adding two rectangles creates a new rectangle with the
combined area of the two.

Task 1: Define the Rectangle Class

Initialize Rectangle class with width and height attributes.

Implement the __add__ method to allow two Rectangle instances to be added together. The new rectangle's width and height should be the sum of
the widths and heights of the rectangles being added.

Add a method area() that returns the area of the rectangle.

Task 2: Test Your Class

Create two Rectangle objects with dimensions like this (3 x 4 and 7 x 4) .

Add these two rectangles together to create a third rectangle (10 x 8).

Print the area (80) of the resulting rectangle to verify that your __add__ implementation works correctly.

Encapsulation

What is Encapsulation?

Encapsulation is a fundamental principle in object-oriented programming (OOP) that
involves bundling the data (attributes) and methods (functions) that operate on the data
into a single unit, or class, and restricting access to some of the object's components.

Purpose of Encapsulation:

Data Hiding: Prevents external parts of a program from directly accessing the internal
mechanisms of a class.

Simplified Interface: Offers a clear, simplified interface for interaction while hiding its
complex internal workings.

Encapsulation

Access Modifiers: Python uses access modifiers (public, protected, and private)
to implement encapsulation, but with a more lenient approach compared to other
languages.

Public Members: Accessible from anywhere.

Protected Members: Prefixed with a single underscore _. Intended for internal
use and subclassing.

Private Members: Prefixed with double underscores __. Access is restricted to
within the class only.

Private Member

Protected Member

Lab 16-2: Encapsulation
Implement a BankAccount class that encapsulates the balance as a private attribute and provides public methods to deposit and withdraw funds while ensuring the balance
never becomes negative.

Task 1: Define the BankAccount Class

Initialize BankAccount class with a private __balance attribute.

Implement a public method deposit(self, amount) to add funds to the balance.

Implement a public method withdraw(self, amount) that only allows funds to be withdrawn if the balance remains non-negative after the withdrawal.

Add a public method get_balance() that returns the current balance.

Task 2: Test Your Class

Create a BankAccount object with an initial balance ($100).

Test depositing ($200) and withdrawing ($150 and then $400) funds, ensuring that withdrawing more than the balance is not allowed.

Print the balance ($150) after each operation to demonstrate that your encapsulation and access control mechanisms work as expected.

