
Object-Oriented Programming
Dr. Dongchul Kim

Part I Intro

Object
Python is an Object-Oriented Programming (OOP) language, where the fundamental building blocks are
objects.

Objects represent entities with characteristics (properties/state) and actions (methods). In essence,
objects encapsulate both states and behaviors.

Each object is an instance of a class, and classes define the blueprint for creating objects.

In the real world, we encounter numerous objects, such as cars, dogs, and humans, each having its
unique set of properties and behaviors.

For instance, if we consider a dog as an object, its properties or state include attributes like name, breed,
and color, while its behaviors encompass actions like barking, wagging its tail, and running.

STATE: Name, Color, Breed, Hungry

BEHAVIOR: Barking, Fetching, Wagging tail

OBJECT

Class
A class can be defined as a template/blueprint that describes the behaviors/states
of the object.

Objects in OOP have a state and behavior. Software object's states are stored in
attributes and behaviors are shown via methods (functions).

Before we talk about attributes and methods, let’s define a class first now.

class Car: # class name is Car

pass # we don’t define anything for now here.

Creating an object given a class
Once we defined a class, we can instantiate it to create a new object from that
class. We say the new object has the type of the class it was instantiated from.

class Car: # class name is Car

pass # we don’t define anything for now here.

c1 = Car() # our object is c1

c2 = Car() # Another Car object, c2

We can create multiple objects from the same class, and each object will be
unique. They will all have the same type, but they can store different values for
their individual properties.

Property/Attribute of Object
There are two ways to define an attribute of the object.

1. Instance Attribute

Instance attributes are specific to each individual object, where an object is also
known as an instance. Take the case of a car object: each one can have its own
distinct brand, model, and year. Modifying any of these attributes in one car object
does not impact the attributes of any other car objects that have been created.

Instance Attribute
The init method is known as the initializer. It is automatically invoked when a class is
instantiated. Its primary role is to ensure that the class has all the necessary attributes.
Additionally, it is often employed to verify that the object is in a valid state upon instantiation,
such as confirming that a user has not entered a negative year for a car.

class Car:

def __init__(self, brand, model, year):

self.brand = brand

self.model = model

self.year = year

Accessing instance attributes
After creating an object and its instance attribute, you can access the attribute
using dot (.) operator. For example,

class Car:
def __init__(self, brand, model, year):

self.brand = brand
self.model = model
self.year = year

c = Car("Honda", "Civic", 2020)

print(c.brand, c.model, c.year)

Property/Attribute of Object
There are two ways to define an attribute of the object.

2. class attribute

class Car:

an attribute, "brand" is created

the attribute is assigned with the value "Toyota"

brand = "Toyota"

Accessing class attributes
After creating an object and its attribute, you can access the attribute using dot (.)
operator. For example,

class Car:

brand = "Toyota"

c = Car()

print(c.brand)

For now, let’s use only instance attributes!

Defining a method in a class
class Car:

def __init__(self, brand, model, year):
self.brand = brand
self.model = model
self.year = year

def displayBrand(self):
print(self.brand)

Built-in methods
hasattr(x, "attribute_name") # Returns true if the attribute exists

getattr(x, "attribute_name") # Returns value of the attribute

setattr(x, "attribute_name", new_value) # Set the attribute to a new value

delattr(x, "attribute_name") # Delete the attribute

Inheritance
Inheritance is a concept where we extend the functionality of a class to create new classes.
There are many benefits of doing this. Foremost is to reuse existing code (called reusability).

The existing class has generic code that can be reused. This class is called parent, base, or
super class.

We create a child class that would receive the definition from the parent class.

Let us consider a parent class, Car. This has properties and methods suitable to describe
any Car.

Car class

SportsCar class Sedan class Pickuptruck class Minivan class

Example

vin
brand
model
year

Parent class and Child class
class Car:

pass

class MiniVan(Car):

pass

Override
Inherited methods can be
redefined in child class.

Override
Inherited methods can be
redefined in child class.

If you want to reuse the parent’s
method too, you can put it under
the overridden method.

Override
Inherited methods can be
redefined in child class.

If you want to reuse the parent’s
method too, you can put it under
the overridden method.

Instead of the parent’s class, you
can use super() function.

Lab 12
Defining a Class:
Define a class named Car. This class should have an __init__ method that initializes three attributes: brand, model, and
year.

Creating an Object:
Create an object of the Car class and initialize it with brand, model, and year. Print out each attribute individually.

Extending the Class with Inheritance:
Define a subclass of Car named Minivan. This subclass should have its own __init__ method that adds an additional
attribute has_auto_sliding_door or hasASD (a boolean to indicate if the minivan has an auto sliding door). Use the super()
function to inherit the __init__ method of the Car class.

Creating an Object of the Subclass:
Create an object of the Minivan class, initialize it with appropriate values including the has_auto_sliding_door attribute, and
print out each attribute.

Hint: See the previous slide

