
Function and Scope
Dr. Dongchul Kim

Function

Functions
● A function is a segment of code that is executed only when it is invoked or called upon. Within a

function, you have the option to receive input data, referred to as parameters or arguments.

○ Input is not mandatory; you can create a function without any parameters.

○ Parameters are the variables declared within the function's definition.

○ Arguments, on the other hand, represent the specific values assigned to these variables
when the function is called.

● Additionally, a function has the capability to produce and return data as an output.

○ Output is not obligatory; you can define a function without any return values.

Defining functions with return
def function_name(parameter): # function head

statements # function body

return expression # return statement

def function_name(): # function head

statements # function body

return expression # return statement

Defining functions without return
def function_name(parameter): # function head

statements # function body

def function_name(): # function head

statements # function body

Calling a function
Defining a function does not execute it. Defining it simply names the function and
specifies what to do when the function is called.

Calling the function actually performs the specified actions with the indicated
parameters. For example, if you define the function fun with an integer
parameter, you could call it as follows:

fun(7)

fun()

Examples

Examples

Number of parameters

Arbitrary Arguments, *args
If you do not know how many
arguments that will be passed into your
function, add a * before the parameter
name in the function definition.

This way the function will receive a
tuple of arguments, and can access the
items accordingly:

Keyword Arguments, **kwargs
If you do not know how many keyword
arguments that will be passed into your
function, add two asterisk: ** before
the parameter name in the function
definition.

This way the function will receive a
dictionary of arguments, and can
access the items accordingly:

Default Parameter Value
If we call the function without argument, it uses the default value:

Call by value vs Call by reference
Python utilizes a system, which is known as “Call by Object Reference” or “Call by
assignment”.

In the event that you pass arguments like whole numbers, strings or tuples to a
function, the passing is like call by value because you can not change the value of the
immutable objects being passed to the function.

Whereas passing mutable objects (e.g. list) can be considered as call by reference
because when their values are changed inside the function, then it will also be reflected
outside the function.

Call by Value vs Call by Reference

Call-by-value

Call-by-reference

Scope

Scope
The variable is available only in the region that it is declared. The limitation of
such variable declaration is scope. The scope of variable or method defines where
those elements are accessible.

def func1():
 a = 5
 print(a)

func1()
print(a)

The last print statement throws error as a is not accessible at the main part of the
code.

Scope
One way to have access to the variable at all places is to declare the variable at
global scope. Variable created at the main level is global and can be accessed
inside the function definition.

a = 5
def func1():
 print(a)

func1()
print(a)

Now both the print statements have access to the variable.

Scope
When the same name is used for variables inside and outside a function, then
python treats them as two separate variables.

a = 5
def func1():
 a = 7
 print(a)

func1()
print(a)

If we change the value of a inside the function, that change won’t affect the
variable outside the function.

Scope
While a variable is defined inside a function, the variable can be declared as
global using the “global” keyword.

def func1():
 global a
 a = 10
 print(a)

func1()
print(a)

Lambda

Lambda function
A lambda function is a small anonymous function.

A lambda function can take any number of arguments, but can only have one
expression. For example,

A lambda function that adds 10 to the number passed in as an argument, and print
the result:

x = lambda a : a + 10

print(x(5))

Lambda function with multiple arguments
A lambda function that multiplies argument a with argument b and print the result:

x = lambda a, b : a * b

print(x(5, 6))

Lab 11-1 ~ 11-4

● Submission
○ Capture the output of your program.
○ Upload both the captured image files and Python files on

Blackboard.
○ Create a separate file for each lab; do NOT combine multiple

labs into a single file.

Lab 11-1
Define a function that converts US Dollar to Mexico Peso.
The function gets a double value as an argument (dollar)
The function returns a double value (Peso) after a conversion.
After defining the function, call the function and display the result of the
conversion. The user inputs a US dollar value using input().
Use this exchange rate (1 Mexican Peso = 0.058 United States Dollar). For
example,

US Dollar: $100.00 (enter)
Mexico Peso: $ 1715.94

Lab 11-1
Function Definition (30 Points):
Accurately defining a function to convert US Dollars to Mexico Pesos (30 Points)
Incorrect or incomplete function definition (0 Points)

Handling User Input (20 Points):
Correctly prompting for and capturing the user's input for the US Dollar amount (20 Points)
Incorrect prompt or failure to capture input (0 Points)

Conversion Logic Implementation (30 Points):
Implementing the correct conversion logic within the function using the current exchange rate (30 Points)
Incorrect or faulty conversion logic (0 Points)

Function Call and Output Display (20 Points):
Correctly calling the function with user input and displaying the result in Mexico Pesos format (20 Points)
Incorrect function call or output display (0 Points)

Total Points: 100

Lab 11-2
Make a function that returns the area of a triangle given
three points of the triangle as parameters, and then call
the function with test values (6 arguments, x1, y1, x2, y2,
x3, y3) that the user inputs like below.

Please input three points : 2 1 8 9 1 8 (enter)
The area is 25

Lab 11-2
Function Definition for Area Calculation (40 Points):
Correctly defining a function that calculates the area of a triangle given three coordinate points (40 Points)
Incomplete or incorrect function definition (0 Points)

User Input for Coordinate Points (10 Points):
Accurately prompting for and capturing six input values (x1, y1, x2, y2, x3, y3) representing the coordinates of the triangle's points (10 Points)
Incorrect or missing prompt for coordinate points (0 Points)

Correctness of Area Calculation (10 Points):
Implementing the correct formula within the function to calculate the area of the triangle using the provided points (10 Points)
Incorrect area calculation or formula usage (0 Points)

Function Call and Output Display (40 Points):
Successfully calling the function with user-inputted points and displaying the result in the format "The area is [calculated area]" (40 Points)
Incorrect function call or output display (0 Points)

Total Points: 100

Lab 11-3
Define a function that has an integer argument and boolean return value.

The return value indicates whether or not the argument is a prime number.

The function name is prime. Implement the function and call the function with a
test value that the user inputs using input().

Please input an integer: 13(enter)
13 is a prime number

Lab 11-3
Function Definition (prime) (40 Points):
Accurately defining the function prime with an integer argument and a boolean return value (40 Points)
Incorrect or incomplete function definition (0 Points)

Prime Number Logic Implementation (10 Points):
Correctly implementing the logic within the function to determine if the given integer is a prime number (10 Points)
Incorrect or faulty prime number determination logic (0 Points)

Handling User Input (10 Points):
Correctly prompting for and capturing the user's integer input (10 Points)
Incorrect prompt or failure to capture input (0 Points)

Function Call and Output Display (40 Points):
Successfully calling the prime function with the user input and displaying the appropriate message indicating whether the input is a
prime number (40 Points)
Incorrect function call or output display (0 Points)

Total Points: 100

Lab 11-4
Make a program to find the area of a rectangle that covers M circles. The rectangle has only vertical and horizontal edges. The rectangle size should be minimized
to cover the circles. The circles can be overlapped. For example, when M = 3,
The input and output format is as follows;
Input
M // number of circles
c1x c1y c1r // origin of 1st circle and its radius
c2x c2y c2r // origin of 2nd circle and its radius
…
cMx cMy cMr // origin of Mth circle and its radius

Output
Area of the rectangle

M is number of circles. Following M lines are for circles. Each line has three values for x, y coordinates (e.g. c1x and c1y) as circle’s center and radius (e.g. c1r).
Area in Output is the estimated rectangle area.

Example
Input:
3
7.8 3.5 0.5
8.7 8.2 1.2
3.6 7.0 0.8

Output:
45.44

Lab 11-4
Input Capture for M and Circle Details (10 Points):
Accurately prompting for and capturing the number of circles (M) and the details of each circle (center coordinates and radius) (20 Points)
Incorrect or missing input prompt or failure to capture circle details (0 Points)

Rectangle Area Calculation Logic (70 Points):
Correctly implementing logic to calculate the minimum rectangle area that covers the given M circles (40 Points)
Incorrect or faulty rectangle area calculation logic (0 Points)

Correct Output Display (20 Points):
Displaying the calculated rectangle area in the correct format (20 Points)
Incorrect or missing output format (0 Points)

Total Points: 100

