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This paper uses a unique daily time series data set to investigate the asymmetric response of
airline prices to capacity costs driven by demand fluctuations. We use a Markov regime-
switching model with time-varying transition probabilities to capture the time variation in
the response. The results show strong evidence of asymmetric price adjustments: positive cost
shifts have a large positive effect, whereas negative cost shifts have no effect. The asymmetry is
also explained by summer travel but not by the size of cost shifts. The findings show the
importance of consumer heterogeneity and capacity constraints as a source of asymmetric
responses. Copyright © 2012 John Wiley & Sons, Ltd.

1. INTRODUCTION

There is a large empirical literature showing evidence
that prices respond more quickly to cost increases than
to cost decreases. Peltzman (2000) shows that this
phenomenon, also known as asymmetric pricing or
rockets and feathers, exists in a large number of mar-
kets. Asymmetric pricing studies include, for example,
Enders and Granger (1998) on the term structure of in-
terest rates, Goodwin and Holt (1999) in the US beef in-
dustry, Toolsema and Jacobs (2007) on mortgage rates,
Müller and Ray (2007) on disaggregate product-level
scanner data, and Zachmann and von Hirschhausen
(2008) on wholesale electricity prices. The favorite
place to study asymmetric pricing is retail gasoline
markets, where retail and wholesale prices are readily
observable by researchers. Two highly cited studies in
gasoline markets are Borenstein et al. (1997), who find
asymmetry from crude prices to retail prices in the
USA, and Bachmeier and Griffin (2003) who find no
evidence of asymmetry.1

The main goal in this paper is to extend the existing
literature by testing for the existence of asymmetric

pricing in airlines. In addition, we investigate whether
the asymmetric response can be characterized by specific
sources of asymmetries. Despite the vast empirical
literature on airline pricing, no previous study has focused
on the existence of asymmetric pricing in airline markets.
Most of the papers in airlines use data from the Bureau of
Transportation Statistics (e.g., Borenstein and Rose
(1994), Hayes and Ross (1998), and Gerardi and Shapiro
(2009)), which are too aggregate to be used for asymmet-
ric pricing. More appropriate data would need to follow
day-by-day pricing decisions, such as the posted prices
data used in Stavins (2001), Bilotkach (2006), McAfee
and te Velde (2007), Bilotkach and Rupp (2011), or in
Gaggero and Piga (2011). In this paper, we take advan-
tage of a unique time series daily data set, similar in
construction to the study of Alderighi et al. (2012),
Escobari (2009) and Escobari (2012), that has informa-
tion not only on posted prices but also on inventories of
seats. An additional benefit from our data set is that it
spans for 128 different departure dates keeping the same
flight numbers (e.g., American Airlines flight 1419 from
St. Louis (STL) to Las Vegas (LAS)), which allows price
and inventory comparisons over time.

While no research has specifically addressed asym-
metries in airline price, there have been related papers
that can explain price adjustments by airlines. Busse

*Correspondence to: TheUniversity of Texas–PanAmerican, Economics
and Finance, Edinburg, TX, USA. E-mail: escobaridiego@gmail.com

Copyright © 2012 John Wiley & Sons, Ltd.

MANAGERIAL AND DECISION ECONOMICS

Manage. Decis. Econ. 34: 74–85 (2013)

Published online 13 December 2012 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/mde.2575



(2002) examines how an airline’s financial situation
affects its decision to lower its price. Athey et al.
(2004) present a model in which firms receive a
privately observed cost shock each period and prices
are strictly increasing in its cost level. Staiger andWolak
(1992) suggest that in periods of low demand, firms that
have excess capacity have incentives to cut prices. In a
context with uncertain demand and costly capacity,
Prescott (1975) and Dana (1999) predict higher prices
as a response to higher demand realizations.

Unlike other industries where observed input prices
drive output prices, in airlines, the main cost-based
source of price dispersion within the same flight
depends on the optimal peak-load pricing strategy.
Borenstein and Rose (1994, p. 666) explain that this
cost-based price variation among passengers on the
same flight or on the same flight number over different
departure dates depends on the perceived probability
that demand will exceed capacity. Holding capacity
fixed over flights with the same flight number, we proxy
for this cost-based source using realized demand—seats
already sold. The intuition is simple, keeping the num-
ber of days to departure fixed, a larger realized demand
means that there are fewer available seats, which in turn
translates into a larger shadow cost of capacity for the
next available seat that the airline needs to price. Notice
that this is consistent with dynamic pricing in airlines,
where the sellers dynamically adjust prices as the depar-
ture date nears. The key idea in dynamic pricing is that
the airline will set higher prices if realized demand is
larger than expected, whereas lower prices will be set
if demand is falling short (see, e.g., Escobari (2012)).
Then, the current inventory captures the cost-based price
variation on the same flight (as in dynamic pricing) and
on the same flight number over different departure dates
(as in the current paper).

To characterize the time variation in the response of
prices to costs, we use a first-order Markov-switching
process as in Hamilton (1989) for the fixed transition
probabilities (FTP) and as in Filardo (1994) for the
time-varying transition probabilities following themeth-
odology proposed in Lo and Piger (2005). After testing
for the existence of any asymmetry in the response, we
examine whether the time variation of the response
can be explained by specific sources of asymmetries.
In particular, the paper considers four sources of asym-
metries: (i) to test for asymmetric pricing, we focus on
the direction of the cost shift (positive vs. negative);
(ii) the size of the cost shift; (iii) asymmetry related to
the specific departure days (weekdays vs. holidays and
weekends); and (iv) asymmetry related to the sales
season (summer vs. fall). The time-varying transition

probabilities characterizing the regime shift are modeled
as a function of state variables that describe each of
these four sources of asymmetries. The benefit of this
approach is that it does not force the time variation in
the coefficients to correspond to a particular asymmetry
and that various manifestations of asymmetries can be
modeled jointly, which is helpful when sources of
asymmetries are correlated.

The results show strong support for an asymmetric
response, with the time variation in the response switch-
ing between periods of high and period of low response.
Furthermore, there is strong statistical evidence that two
particular sources of asymmetries explain the time
variation between regimes. Positive demand shifts have
a positive effect on prices, whereas negative demand
shifts have no effect. In addition, there is evidence that
cost shifts during the summer departure dates have a
positive larger effect on prices than cost fluctuations once
the summer travel season is over. There is little evidence
that the asymmetric response is driven by the size of the
cost shift or by travel during the weekends or holidays.

The organization of the paper is as follows. Section 2
explains the collection of the data, while the empirical
strategy is presented in Section 3. The estimation results
are presented in Section 4, followed by Section 5 that
discusses various theoretical models to explain the
findings. Section 6 concludes.

2. DATA

The data set was collected during 126 consecutive days
(18weeks) betweenMonday June 1 and SundayOctober
4, 2009 from the online travel agency Expedia.com. The
data collection is initially similar to the study of Stavins
(2001) but with two important improvements. First,
following Escobari (2009), Escobari and Gan (2007)
and Escobari (2012), it has information on seat invento-
ries at each price, obtained from the seat availability
map where the available preferred or prime seats are
counted as available seats. Second, it spans over a large
number of departure dates to allow observing fluctua-
tions in demand realizations (measured via inventories).
To control for the effect of days to departure, all fares
and inventory levels were collected at 8 days prior to
the corresponding departure date. Therefore, the actual
departure dates occur between Tuesday June 9 and
Monday October 12, 2009.

To make price and costs comparable over time, we
follow Borenstein and Rose (1994, p. 666), who explain
the existence of cost-based price variation among
passengers on the same flight number over different
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departure dates. Hence, the collection keeps track of 32
different flight numbers (e.g., American Airlines flight
1419 from St. Louis (STL) to Las Vegas (LAS)), where
each flight number is offered every day with the same
aircraft size.2 Each flight number belongs to one of 18
different segments, where a segment is defined as a pair
of departing and destination airports. We follow the
same strategy as Escobari (2009) and Escobari (2012)
to control for various sources of price dispersion in the
industry. Each recorded fare corresponds to the least
expensive economy-class, one-way ticket in a nonstop
flight. By choosing the least expensive available fare,
we control for the existence of more expensive refund-
able tickets. Focusing on economy class tickets controls
for price differentials associated with different fare clas-
ses. Moreover, selecting one-way flights is important to
control for price differentials associated with round-trip
tickets, such as minimum-stay and maximum-stay, and
Saturday-night-stayover restrictions. Choosing nonstop
flights controls for price variation related to more sophis-
ticated itineraries that may include open jaws, connecting
flights, and different combination of segments.

While focusing on one-way nonstop tickets help
control for various sources of price dispersion and help
to define a single inventory at each price, the inventory
of seats is also sold as part of round trips and longer itin-
eraries. Even if one-way tickets are a small fraction of
overall tickets sold, this should not affect the pricing
equation that we will estimate as long as the carrier
adjusts the observed one-way price based on the current
inventory. Moreover, focusing on one-way nonstop
tickets may seem restrictive when trying to generalize
the results, for example, to round-trip tickets. However,
this is not different than the standard assumption in
papers that use data from the Bureau of Transportation
Statistics, where the round-trip price is calculated as
two times the one-way price.3

Our measure of costs is captured by relative inven-
tory levels, defined as the ratio of the number of seats
sold to total number of seats in the aircraft. Hence, it will
be zero if the plane is empty and one if it is full. Figure 1
shows the average relative inventory levels (across the
32 flights in the sample) for different departure dates.
The shading represents the flights scheduled to depart
during weekends or during a holiday.4 There are two
main things worth noting in this figure. First, demand
at 8 days to departure appears to have a pattern that
repeats itself every week, with higher costs during the
weekends and lower on Tuesdays. Second, it appears
that costs are lower once the summer is over, where
the difference in costs between weekends and weekdays
becomes greater. One of the goals in this paper is to

specifically test whether this apparently different
demand (cost) behavior acts as source of asymmetry in
the response of prices to costs.

3. EMPIRICAL STRATEGY

The empirical strategy to investigate how prices respond
to costs is similar to the study of Lo and Piger (2005).5

The first step is to decompose the price, PRICEt,
into two unobserved additive components: a permanent
component, PRICEPt , and a transitory component, PRICETt .
That is,

PRICEt ¼ PRICEPt þ PRICETt : (1)

The permanent component is specified with the
following random walk:

PRICEPt ¼ mþ PRICEPt�1 þ nt; (2)

where we assume that the innovation nt is a normally
distributed independent and identically distributed
random variable. The forecast function of Equation (2)
is linear with constant slope m and the level changes with
the realizations of nt.

6 We expect this formulation of the
permanent component to capture structural breaks in the
pricing behavior.

On the other hand, the transitory component PRICETt
is modeled as the following autoregressive process:

f Lð Þ�PRICETt ¼ g0 Lð Þ�COSTt þ g1 Lð Þ�COSTt�St þ et; (3)

f Lð Þ ¼
XK
k¼0

fk�Lk; f0 ¼ 1; gi Lð Þ ¼
XJ
j¼0

gj;i�Lj; (4)

where COSTt is proxied by the realized demand. The
idea behind this proxy is that the main cost-based
source of price dispersion within the same flight
depends on the optimal peak-load pricing strategy.
Borenstein and Rose (1994, p. 666) explain that this
cost-based price variation among passengers on the
same flight or on the same flight number over different
departure dates depends on the perceived probability
that demand will exceed capacity. Holding capacity
and the number of days prior to departure fixed (as
we do in the sample), a higher realized demand means
a larger shadow cost of capacity because there are
fewer empty seats that the airline can sell. A seat sold
today means a forgone sale to a potential passenger
that may arrive closer to departure.

St in Equations (3) and (4) is an indicator variable that
takes the values 0 and 1 to capture the regime switches
in the response of PRICETt to COSTt. This formulation is
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consistent with the theoretical model of price posting in
Deneckere and Peck (2012), where the price responds
to realized demand. This means that COSTt can be treated
as predetermined. f(L) is a polynomial in the lag opera-
tor with all its roots lying outside the unit circle, and the
innovation et is a normally distributed independent and
identically distributed random variable. This specifica-
tion captures how cost fluctuations only affect the transi-
tory component of prices and has no long-run effects on
prices.

The response of the transitory component of prices
to realized demand is allowed to change over time
between two regimes. The regimes will be indexed by
the indicator variable St, which is unobserved by the
econometrician and has to be filtered from the data. To
make the problem tractable, the estimation procedure
assumes that the transition between different response
regimes is governed by a first-order Markov process as
in Hamilton (1989):

P St ¼ 0jSt�1 ¼ 0ð Þ ¼ exp c0ð Þ
1þ exp c0ð Þð Þ ;

P St ¼ 1jSt�1 ¼ 0ð Þ ¼ 1� P St ¼ 0jSt�1 ¼ 0ð Þ;

P St ¼ 1jSt�1 ¼ 1ð Þ ¼ exp c1ð Þ
1þ exp c1ð Þð Þ ;

P St ¼ 0jSt�1 ¼ 1ð Þ ¼ 1� P St ¼ 1jSt�1 ¼ 1ð Þ:

(5)

Equation (5) considers the simple case of time invari-
ant or FTP. With FTP, we will be able to capture the
timing of the shifts in the response of the transitory
component of prices to realized demand. However, to
make the problem more interesting, we will modify
Equation (5) to have a time-varying transition probability
(TVTP) specification as in Filardo (1994) to allow
for the regime-switching process to change over time

and be a function of a q � 1 vector of state variables
zt= (z1t, z2t, . . ., zqt)0:

P St ¼ 0jSt�1 ¼ 0ð Þ ¼
exp c0 þ z

0
t�a0

� �

1þ exp c0 þ z
0
t�a0

� �� � ;

P St ¼ 1jSt�1 ¼ 1ð Þ ¼
exp c1 þ z

0
t�a1

� �

1þ exp c1 þ z
0
t�a1

� �� � :

(6)

We will choose the vector of state variables zt to
address four different asymmetries. In particular, zt will
include different sets of dummy variables to capture
asymmetries with respect to the sign of the cost shift,
the size of the cost shift, the effect of weekends and
holidays, and the effect of summer travel. In addition,
the testing procedure allows us to identify the effect of
combinations of asymmetries (e.g., summer travel and
the sign of cost shifts during the summer). a0 and a1 in
Equation (6) are the q� 1 vectors of coefficients (a01,
a02, . . ., a0q)0 and (a11, a12, . . ., a1q)0 associated with zt
at each state. J lags of each of the dummy variables will
be included in zt to be able characterize the existing
conditions at the time carriers set fares.

The state dummy variable that captures the asymme-
try related to the direction of the cost shift will be SIGNt.
It takes the value of zero if the cost shift at time t is neg-
ative and will equal to one if the cost shift is positive.
For the size of the cost shift, the state dummy variable
SIZEt takes the value of zero if the cost shift at time t is
within one standard deviation of its mean, one other-
wise. WKNDt is the state dummy variable equal to one
if the departure date occurs during the weekend (i.e.,
Saturday and Sunday, not including Friday) or during
a holiday, zero otherwise. Finally, SUMMt is the state
dummy variable that characterizes summer departure

Figure 1. Realized demand (COST). Shaded areas: WKNDt = 1. Year: 2009.

(5)
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dates, being equal to one if the departure date is during
the summer departure dates, zero otherwise.

4. RESULTS

To estimate the model described in the previous section,
we will use the logarithm of the average one-way
nonstop fare across the 32 flight numbers for the PRICEt
variable. In addition, for COSTt, following Lo and Piger
(2005), we will use the deviations from the difference in
the logarithm of the average realized demand across the
32 flight numbers. To be able to use maximum likeli-
hood, we apply the filtering and smoothing algorithm
presented in Kim (1994) to obtain its Markov-switching
state-space representation. An unconditional expecta-
tion of the transition equation to initiate the Kalman
filter portion of the filter is not available because of the
nonstationarity of the transition equation for the state-
space representation of the model. Therefore, the filter
was initiated with guesses on which we place high
variance, and then, to allow the effects of the initial
guesses to dissipate, the likelihood function was
computed only after 2weeks of data. Hence, even
though the data starts earlier, the output will span from
Monday June 27 through Saturday October 12, 2009.

4.1. Significance of the Regime Switch

We now turn to test whether the regime-switching
model represents a significant progress in terms of the
model fit relative to the constant response coefficients.
To do this, we use the testing procedure developed in
Hansen (1992). The significance of the FTP model is
tested against the null hypothesis of constant response
coefficients, that is gj,0 = gj,1 for all j.

7 Using the test in
the study of Hansen (1992) is important because in this
type of Markov-switching models, some of the nuisance
parameters are not identified under the null hypothesis.
Hence, the violation of this regularity condition means
that the standard likelihood ratio test for the null hypoth-
esis has an unknown distribution. The procedure yields
an upper bound of the p-value for the null hypothesis;
thus, it is viewed as a conservative test of the null. The
results provided a likelihood ratio statistic of 2.484 with
an associated upper bound for the p-value of 0.01. This
is interpreted as strong evidence favoring the regime-
switching response coefficients.

4.2. Asymmetries in the Response

After finding that the response of prices to costs is
characterized by a regime-switching model, we now

move to search for specific type of asymmetries and
consider the TVTP with transition probabilities
characterized by Equation (6).Within the TVTP specifi-
cation, P(St=1|St�1 = 1) will be modeled as a time-
invariant parameter because the estimation results
showed that St=1 during very short periods. Hence,
there is little role for zt to play in explaining variation
within P(St=1|St�1 = 1), and the discussion will
focus on the time variation in the transition probability
P(St=0|St�1 = 0).

The first specification for zt does not include any
dummy variables and corresponds to the FTP model
where Equation (6) reduces to Equation (5). The first
three columns of Table 1 contain the Schwarz infor-
mation criterion, the Akaike information criterion
(AIC), and the maximized value of the log of the like-
lihood function. The four TVTP specifications for zt
represent the four characterizations of the asymmetries
explained earlier, that is, SIGNt, SIZEt, WKNDt, and
SUMMt. To see whether positive cost shifts affect
prices differently than negative cost shifts, the second
characterization of zt presented in Table 1 includes the
dummy variables capturing the direction of the cost
shift, zt= (SIGNt, SIGNt�1) 0. The likelihood ratio test
suggests that it can explain the asymmetric response
in prices. When considering whether the size, weekend
travel, or summer travel drive the regime switch, the
AIC prefers the zt= (SUMMt, SUMMt�1) 0 model. More-
over, the likelihood ratio test also supports SUMMt as a
source of the asymmetric response.

4.3. Estimation Results

The model specification selection described earlier
suggests that the response of the transitory component
of price to cost shifts varies between two regimes, and
the regime shifts can be explained by specific sources
of asymmetries. The probability of a regime switch

Table 1. Model Selection

Elements
of zt SIC AIC

Log
likelihood

LR
test

a

FTP
None �2.5543 �2.8374 155.7086
TVTP
SIGN �2.5205 �2.8551 158.6084 0.0550
SIZE �2.4816 �2.8161 156.6226 0.4009
WKND �2.4947 �2.8293 157.2945 0.2048
SUMM �2.5256 �2.8601 158.8659 0.0425

SIC, Schwarz information criterion; AIC, Akaike information
criterion; LR, likelihood ratio; TVTP, time-varying transition proba-
bility; FTP, fixed transition probabilities.
ap-value for a test of the null of the FTP.
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was found to depend, to a minor extent, on (i) whether
the cost shift is positive or negative and, with slightly
more evidence, on (ii) whether the cost shift occurs
during summer travel or during the fall. For compari-
son purposes, the first column in Table 2 presents the
maximum likelihood estimates of the simple FTP
model. The results for the TVTP models for different
specifications of zt are presented in columns 2 through
5. While none of the TVTP specifications find a statis-
tically significant sn, the positive and significant
estimate of sn in the FTP specification suggests the
existence of a permanent shock to prices.

The transitory component of price for the SIGN
specification is presented in Figure 2, where the shaded
areas correspond to the dates characterized by positive
cost shifts, SIGNt=1. This figure shows some relation-
ship between increases in PRICETt and episodes of
positive cost shifts. The sharp increase in demand on
Friday, October 9 may be explained by Columbus Day
holiday, celebrated the following Monday October 12.
Moreover, there is evidence of a positively skewed
PRICETt , as the positive deviations from the permanent

component PRICEPt appear larger than the negative
deviations.

To simulate the path of PRICETtþj as captured by
Equation (3) and the estimates of the regime-switching
response coefficients, g0,0, g1,0, g0,1, and g1,1, Figures 3
and 4 provide the state-dependent impulse response
functions for the SIGN and SUMM specifications, respec-
tively. The results reported in the second (SIGN) and fifth
(SUMM) columns of Table 2 show that the indicator
variable St divides the cost shifts in two: the ones that
have a relatively large and the ones that have relatively
small effect on the transitory component of prices. The
cost shift COSTt is set to be equal to 0.055, which is its
historical standard deviation and corresponds to a 5.5%
change in capacity utilization—ratio of occupied seat to
total seats. The responses are obtained under four
possiblerealizationsof theindicatorvariables:St= St+1=0;
St = 0 and St+1 =1; St=1 and St+1 =0; and St=St+1 = 1,
where the responses only depend on St and St+1 because
J=0, 1. As is standard in the computation of impulse
response function, we make the following additional
assumptions: PRICETt�1 ¼ PRICETt�2 ¼ 0, et+j=0, 8 j and

Table 2. Parameter Estimates
FTP TVTP

Elements of zt:
Parameter

None SIGN SIZE WKND SUMM

(1) (2) (3) (4) (5)

sn 0.0039 0.0061 0.0046 0.0008 0.0051
(0.0005) (0.0037) (0.0064) (0.0038) (0.0049)

se 0.0472 0.0462 0.0460 0.0478 0.0455
(0.0041) (0.0038) (0.0039) (0.0039) (0.0037)

f1 0.1995 0.1235 0.1911 0.2190 0.1856
(0.1173) (0.0935) (0.1228) (0.0137) (0.0858)

f2 �0.0100 �0.0038 �0.0091 �0.0120 �0.0086
(0.0117) (0.0058) (0.0117) (0.0598) (0.0080)

g0,0 0.0995 0.1518 0.0908 0.0861 0.0862
(0.1150) (0.0966) (0.1073) (0.0882) (0.0971)

g1,0 �0.1122 �0.1390 �0.1288 �0.1098 �0.1404
(0.0954) (0.0879) (0.0948) (0.0929) (0.0913)

g0,1 2.4106 2.0317 2.3063 2.5431 2.2110
(0.5238) (0.5869) (0.6688) (0.4653) (0.5563)

g1,1 0.8779 1.5148 0.9326 0.7594 0.8841
(0.4517) (0.6347) (0.4614) (0.4390) (0.3893)

c0 2.2963 21.3711 1.3803 1.7558 3.4565
(0.5620) (—

a

) (0.8459) (0.5647) (1.0222)
c1 0.0434 �0.3268 �0.0754 0.1339 0.8511

(0.4481) (0.9417) (1.9404) (0.9612) (0.7516)
a01 �9.6909 1.0691 4.6457 �8.0797

(0.5538) (1.2950) (1.6140) (1.2852)
a02 �10.7071 1.0616 19.8223 5.2679

(—
a

) (1.2449) (—
a

) (—
a

)
Log likelihood 155.7086 158.6084 156.6226 157.2945 158.8659

FTP, fixed transition probabilities; TVTP, time-varying transition probability.
aThe maximum likelihood (ML) estimate appears on the boundary, violating regularity conditions. Hence, to calculate the standard errors, this
coefficient was held constant.
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COSTt�j=0, j 6¼ 0. We can observe the positive effect of
cost shifts on the transitory component of prices from the
SIZE specification presented in Figure 3. The contempo-
raneous effect is captured by g0,0 + g0,1 times the size of
the shift. We can see that the effect of a cost shift is larger
when either St=1 or St+1 =1. A one standard deviation
increase in costs increases contemporaneous prices
by 12.2% during high response regime, that is when
St= St+1 = 1 or St=1 and St+1 =0. A one standard devia-
tion increase in costs increases prices by 7.8% the next
period if St=0 and St+1=1. However, when St=St+1=0,
there is only a small contemporaneous increase of
0.8%. Because of the low estimated values of both
f1 and f2, the responses to a cost shock die down fast.
Figure 4 shows very similar results for the SUMM

specification.
To determine the estimates of P(St=0|St�1 = 0) and

P(St=1|St�1 = 1) in the FTP model, we focus our atten-
tion on the estimated coefficients ĉ0 and ĉ1 . The first
one, ĉ0 ¼ 2:296, is highly significant and yields an estimate
of P(St=0|St�1=0)= exp ĉ0ð Þ= 1þ exp ĉ0ð Þð Þ =0.909.
Therefore, if St�1 = 0 meaning that we are in the low

response regime, the probability of staying in this re-
gime is fairly high. On the other hand, if we are in a high
response regime, St�1 = 1, the probability that we stay
in the high response regime is P(St=1|St�1 = 1) =
exp ĉ1ð Þ= 1þ exp ĉ1ð Þð Þ =0.511 or more appropriately
0.5, as the estimated value for ĉ1 ¼ 0:043 is not statisti-
cally significant.

To determine the estimates of the transition proba-
bilities in the SIGN specification, we look at the esti-
mated coefficients ĉ0, ĉ1, â01, and â02. Let us initially
consider the case in which SIGNt�1 = SIGNt= 0.
Then, with ĉ0 ¼ 21:371, P St¼0jSt�1¼0ð Þ¼ exp ĉ0ð Þ=
1þ exp ĉ0ð Þð Þ¼1. This means that if St�1 = 0 and there
has not been a positive demand shift recently, we will
stay in the low response regime with certainty. On the
other hand, if SIGNt�1 = SIGNt=1 meaning that there
has been a positive demand shift recently, the estimates
of â01 and â02 indicate that P St ¼ 0jSt�1 ¼ 0ð Þ ¼
exp ĉ0þ â01þ â02ð Þ= 1þexp ĉ0þ â01þ â02ð Þð Þ ¼0:726.
Hence, the probability of shifting from a low response
regime, St�1 = 0, to a high response regime, St= 1, goes
from zero when there has not been a positive cost shift

Figure 2. Estimated transitory component, PRICETt . Time-varying transition probability: SIGN. Shaded areas: SIGNt=1. Year: 2009.

Figure 3. Impulse response function of PRICETt . Time-
varying transition probability: SIGN.

Figure 4. Impulse response function of PRICETt . Time-
varying transition probability: SUMM.
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recently to P(St=1|St�1 = 0) = 1� 0.726= 0.274 if there
has been. This result indicates that positive cost shifts
are more likely to have a larger effect on prices than neg-
ative cost shifts. Finally, the statistically nonsignificant
ĉ1 ¼ �0:3268 implies that once we are in a high re-
sponse regime, the probability of staying in that regime
is P(St=1|St�1 = 1) = 0.5.

The transition probabilities for the SUMM specification
are easier to interpret as we are either in the summer,
SUMMt�1 =SUMMt=1, or in the fall, SUMMt�1 =
SUMMt=0. During the fall, and on the basis of the esti-
mated ĉ0 ¼ 3:46 that yields a P(St=0|St�1 = 0) =0.969,
if St=0, we will stay in the low response regime with
almost certainty. During the summer, and on the basis
of the estimated ĉ1 , â01 , and â02 that correspond to a
P(St=0|St�1 = 0) =0.656, if St=0, we are less likely to
stay in the low response regime. Consequently, the
probability to change from a low response regime to a
high response regime during the summer is 0.344 versus
0.03 during the fall. Finally, and as in the previous case,
the probability of staying in a high response regime is
0.5, regardless on the season.

Figures 5 and 6 visually summarize the preceding
discussion by presenting the filtered probability that
St= 1, P(St= 1|t), for the SIGN and the SUMM specifica-
tions, respectively. These ones are constructed using
the TVTP model of Equations 1 through 6. In Figure 5,
the shaded areas correspond to the periods in
which the demand shift is positive, whereas the shaded
area in Figure 6 illustrates the summer departure dates.
The figures distinguish between the two regimes,
when P(St= 1|t) is close to zero and during very short
periods when it is close to one. On the basis of the fil-
tered probability for both specifications, we can argue
that most of the time, cost shifts have a small effect on
prices, and only during short periods, the effect is

large. In addition, it is easy to see how a large number
of the shaded areas match with periods in which the
probability gets closer to one. While this is not
necessarily clear for SIGN, in the preferred specification
SUMM, it is easier to distinguish the positive probabili-
ties during the summer with almost no activity in the
transition probabilities during the fall.

4.4. Additional Results: Combined Asymmetries

The previous section found that two specifications of the
TVTP were statistically significant, with SUMM being
the preferred specification. We now further explore the
possibility that combined asymmetries explain the shifts
in the response. The first part of Table 3 investigates the
robustness of the SUMM specification by adding to the
vector of state variables, one at the time, SIGN, SIZE,
and WKND. The idea is to test if the additional variable
is significant once the effect of SUMM is accounted
for. The second part of Table 3 investigates whether
SIGN, SIZE, or WKND can explain variation in the
regime shift within the summer departure dates,
where we have three additional specifications for the
state variables zt= (SUMMt, SUMMt�1 SUMMt�SIGNt,
SUMMt�1�SIGNt�1) 0, zt= (SUMMt, SUMMt�1, SUMMt�
SIZEt, SUMMt�1�SIZEt�1) 0, and zt= (SUMMt, SUMMt�1,
SUMMt�WKNDt, SUMMt�1�WKNDt�1) 0. This is not
an unconditional significance of these asymmetries,
but rather we investigate for any significance of the
asymmetries conditional on being in the summer.

The results indicate that within these six additional
models, the Schwarz information criterion and the
AIC select the fourth. For this fourth model and at
significance levels of 4.58% or higher, the likelihood
ratio test rejects the null hypothesis of the model
including only SUMM. Moreover, at a significance

Figure 5. Filtered probability, P(St = 1|t). Time-varying transition probability: SIGN. Shaded areas: SIGNt = 1. Year: 2009.
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level of 1.41% or higher, we reject the null of the
FTP model. When we allow the combination of
asymmetries, we conclude that the preferred specifi-
cation is the one where the regime shift in the response
is characterized by the difference between summer
and fall travel and distinguishes between positive
and negative cost shifts within the summer travel
departure dates.

The results from the preferred specification are
summarized in two figures. Figure 7 shows the
regime-dependent impulse response functions com-
puted under the same settings as before. When St= 1,
a one standard deviation increase in COSTt increases
contemporaneous prices by 10.0% regardless of the
state of the response regime in the following period,
t + 1. During a contemporaneous low response regime,
St= 0, and a high response regime next period, St+1 = 1,
the cost shift has a small contemporaneous effect
(0.9%) but a large effect next period (8.8%). Cost
shifts at t have almost no effect on prices during t+1, if
t+1 belongs to a low response regime, St+1 = 0, being
the responses �0.9 and �0.7% for St=0 and St=1,

respectively. In sum, when either St=1 or St+1 = 1, the
response of the transitory component of prices to cost
shifts is much larger. Cost shifts at t have no effect on
the prices on t+2 and beyond.

Figure 8 illustrates the filtered probabilities P(St=1|t)
to analyze the timing of the regime switches. The shaded
areas correspond to positive cost shifts during the

Figure 6. Filtered probability, P(St=1|t). Time-varying transition probability: SUMM. Shaded areas: SUMMt=1. Year: 2009.

Table 3. Model Selection: Combined Asymmetries

Elements of zt SIC AIC Log likelihood LR test
a

LR test
b

TVTP
SUMM, SIGN �2.4805 �2.8665 161.1919 0.0269 0.0977
SUMM, SIZE �2.4356 �2.8216 158.9030 0.1719 0.9636
SUMM, WKND �2.4678 �2.8538 160.5428 0.0464 0.1870

SUMM, SUMM�SIGN �2.4953 �2.8814 161.9495 0.0141 0.0458
SUMM, SUMM�SIZE �2.4629 �2.8489 160.2956 0.0569 0.2394
SUMM, SUMM�WKND �2.4648 �2.8509 160.3938 0.0525 0.2170

SIC, Schwarz information criterion; AIC, Akaike information criterion; FTP, fixed transition probabilities; TVTP, time-varying transition
probability.
ap-value for a test of the null of the FTP model.
bp-value for a test of the null of the SUMM model.

Figure 7. Impulse response function of PRICETt . Time-varying
transition probability: SUMM, SIGN�SUMM.
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summer, SIGNt � SUMMt=1. This figure shows that
P(St=1|t) is very close to one, mostly during the positive
cost shifts in the summer. In addition, it is very close to
zero almost throughout the fall departure dates, indicat-
ing that during this period, prices respond very little to
(positive or negative) demand shifts.

5. EXPLAINING THE ASYMMETRY

The easiest way to explain why prices respond asym-
metrically to cost shift is to understand why invento-
ries or realized demand serve as a proxy for costs.
Airlines set capacity in advance and need to price per-
ishable seats under a highly uncertain demand. Hence,
higher demand realizations imply less available capac-
ity, which translates into a higher opportunity cost of a
sale. A higher (lower) demand realization can be inter-
preted as a higher (lower) opportunity cost of a seat.
Therefore, several of the explanations of asymmetric
pricing in other industries can also be valid for air-
lines. For example, Peltzman (2000) provides as one
possible explanation the input price volatility, which
would be consistent with a large volatility in demand
realizations. Also in the asymmetric pricing literature,
Noel (2008) explains that capacity constraints dimin-
ish the incentives to undercut prices if a firm can no
longer serve the market at the new lower price.8

A second strain of literature that can motivate the
existence of asymmetric price responses to capacity
costs follows models that explain price dispersion as
the result of price commitments, costly capacity, and
demand uncertainty (e.g., Prescott (1975) and Dana
(1999)). In these models, prices are inversely related to
the probability of making a sale. Hence, when the
probability of higher demand states is relatively low,

moving to a higher demand state will trigger a relatively
large response in prices as compared with the response
in prices in lower demand states.

A third strain may come from macroeconomic mod-
els. In a generalization of Ball andMankiw (1994), where
under menu costs and an upper trend in prices—similar to
higher prices in airlines closer to departure—positive
shocks trigger a greater price adjustment than do negative
shocks of the same size. With prices constantly going up
as the departure date approaches, carriers may choose to
wait until the upward trend in prices does much of the
work instead of lowering prices and pay the menu cost.
By contrast, a higher realization of demand induces a
huge desire to increase prices. As a result, positive
shocks are more likely to result in a price adjustment
and positive adjustments are more likely to be larger than
negative adjustments.

Finally, asymmetric price responses can also be
explained by the existence of heterogeneous consu-
mers. Notice that the asymmetry illustrated in Figure 6
can be easily explicated by differences in consumers
between summer and fall travel. Moreover, consumer
heterogeneity can as well explain why midweek flights
appear emptier. This is important in light of recent
literature on asymmetric pricing that considers
consumers’ heterogeneities. Yang and Ye (2008)
consider consumers with heterogeneous beliefs about
costs realizations, then the existence of searchers and
nonsearchers drives the asymmetric price adjustment.
Moreover, in the theoretical model of Cabral and
Fishman (2012), consumers’ willingness to search is
low when they observe small price variations, whereas
in Tappata (2009), consumers have heterogeneous
search costs. In both of these last two models,
consumer’s heterogeneity is key to produce asymmetric
price adjustments.

Figure 8. Filtered probability, P(St = 1|t). Time-varying transition probability: SUMM, SIGN�SUMM. Shaded areas:
SIGNt � SUMMt = 1. Year: 2009.
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6. CONCLUSION

This paper uses a novel airlines daily time series data set
with information on prices and realized demand intensi-
ties to test for the existence of asymmetric pricing. We
find strong evidence that the coefficients measuring the
response shift between a regime of no statistically
significant response and a regime of positive response.
When the timing of the response is allowed to change
with specific sources of asymmetries, the results show
strong support that the sign of the cost shifts along with
the selling season can explain the regime shifts. Positive
cost shifts are more likely to have a positive effect on
prices than negative cost shifts. Moreover, shifts during
the summer travel season were found to have a larger
effect on prices. The size of the cost shift or the ex ante
known periods of high demand of holidays and week-
ends did not appear to explain the shifts in the response.

The results in this paper show the importance of
consumers’ heterogeneity, inventories, capacity con-
straints, and the perishability of airline seats to explain
asymmetric pricing. Under asymmetric pricing, higher
demand states are absorbed by prices to avoid the seller
to sell out too soon. Moreover, lower demand states are
absorbed by lower capacity utilizations rates rather than
by lower prices.
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NOTES

1. For a survey of the literature, see Meyer and von Cramon-
Taubadel (2004).

2. The detail of the flights in the sample appears in
Appendix A. While it would be interesting to see how
between-flight heterogeneity plays a role, in this paper,
we follow most of the literature on asymmetric pricing
(e.g., Borenstein et al. (1997), Enders and Granger
(1998), Bachmeier and Griffin (2003), Müller and Ray
(2007), and Toolsema and Jacobs (2007)) and focus on
the time-series dimension.

3. See, for example, Borenstein and Rose (1994, p. 677),
and Gerardi and Shapiro (2009, p. 5).

4. The official holiday dates during the sample period are
Friday July 3 (Independence Day, observed), Monday
September 7 (Labor Day), and Monday October 12
(Columbus Day).

5. Lo and Piger (2005) analyze the response of output to
monetary policy.

6. A different formulation that modeled the drift m as a
simple random walk, allowing the level as well as the
slope of the forecast function to change over time,
showed no low-frequency shocks to the trend compo-
nent. Hence, we follow the current and simpler formula-
tion of a constant m.

7. To specify the lag orders K and J, we started estimating
the fixed transition probabilities model with K = 7 and
J = 7 and then reduced the lag order until a likelihood ra-
tio test finds a significant value for either fk or gj,i. This
procedure resulted in a lag order of K = 2 and J = 1,
which will be the ones we employ in the rest of the
paper.

8. Some explanations given in the asymmetric pricing liter-
ature appear unlikely to work for airlines. For example,
search costs in retail gasoline prices as in Lewis (2011)
and as cited in Davis (2007). This is because unlike other
industries, in airlines, consumers can costlessly compare
fares across different flights using the Internet.

APPENDIX A
Table A.1. Flights in the Sample

Route Carrier Flights Route Carrier Flights

Atlanta (ATL)–San Jose (SJC) Delta 1579 Miami (MIA)–New Orleans (MSY) AA 637
Atlanta (ATL)–Syracuse (SYR) Delta 5471/5472 Miami (MIA)–New Orleans (MSY) AA 317
Atlanta (ATL)–Syracuse (SYR) Delta 5601 Miami (MIA)–Raleigh-Durham (RDU) AA 1004
Baltimore (BWI)–Phoenix (PHX) US 365/506 Miami (MIA)–Raleigh-Durham (RDU) AA 820/674
Boston (BOS)–Phoenix (PHX) US 367 Miami (MIA)–Raleigh-Durham (RDU) AA 978/1800
Boston (BOS)–Salt Lake City (SLC) Delta 1261/1707 Miami (MIA)–Lambert-St. Louis (STL) AA 583
Charleston (CHS)–Washington-Reagan (DCA) US 4024 Miami (MIA)–Lambert-St. Louis (STL) AA 1905/1811
Cincinnati (CVG)–Las Vegas (LAS) Delta 1543/1551 Portland (PDX)–Las Vegas (LAS) AL 626
Dallas-FortWorth (DFW)–NewYork-JFK (JFK) Delta 6758 Portland (PDX)–Las Vegas (LAS) AL 622
Dallas-FortWorth (DFW)–NewYork-JFK (JFK) AA 400/490 Portland (PDX)–Las Vegas (LAS) AL 624
Houston (IAH)–New York-JFK (JFK) Delta 6822 Washington-Dulles (IAD)–Charleston (CHS) UN 7887/7983
St. Louis (STL)–Las Vegas (LAS) AA 1419 Washington-Dulles (IAD)–Charleston (CHS) UN 7337/7888
Los Angeles (LAX)–Orlando (MCO) AA 244 Washington-Dulles (IAD)–Charleston (CHS) UN 7918/7923
Los Angeles (LAX)–Orlando (MCO) Delta 1430 Washington-Dulles (IAD)–Charleston (CHS) UN 7979/7906
Los Angeles (LAX)–Orlando (MCO) Delta 1480/1432 Washington-Dulles (IAD)–Salt Lake City (SLC) Delta 1214/1209
Miami (MIA)–New Orleans (MSY) AA 1451/1329 Washington-Reagan (DCA)–Las Vegas (LAS) US 48/873

When two flight numbers appear, the flights had the same schedule (plus/minus 15minutes) and the aircraft size was the same.
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