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Abstract This paper studies the relationship between demand uncertainty—the key
source of excess capacity—and capacity utilization in the US airline industry. We
present a simple theoretical model that predicts that lower demand realizations are
associated with higher demand volatility. This prediction is strongly supported by the
results of estimating a panel GARCH framework that pools unique data on capacity
utilization across different flights and over various departure dates. A one unit increase
in the standard deviation of unexpected demand decreases capacity utilization by
21 percentage points. The estimation controls for unobserved time-invariant specific
characteristics as well as for systematic demand fluctuations.

Keywords Demand uncertainty · Capacity utilization · Airlines · Panel GARCH ·
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1 Introduction

Sellers that need to decide production levels before demand is realized are likely to fin-
ish the selling season with unsold inventories. This is a typical problem in industries
such as airlines, automobile rentals, hotels, hospitals, restaurants, theaters, fashion
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apparel, and sporting events. These industries are characterized by (1) having a highly
volatile demand, (2) capacity—or inventory—that is fixed or that can only be modified
at a relatively high marginal cost, and (3) excess capacity that expires once the selling
season is over. Unsold inventories are, of course, an inefficient allocation of resources.
Based on data from the Bureau of Transportation and Statistics, 19.8 % of US domestic
flights’ seating capacity was empty in 2009. Dana and Orlov (2009) estimate that for
the US airline industry, a 6.7 % increase in capacity utilization—the ratio of inven-
tories sold to total inventory levels—translates into $2.7 billion in cost savings each
year.1,2 It is easy to understand that the key source behind excess capacity is demand
uncertainty; without demand uncertainty, airlines would simply choose the level of
capacity for a particular flight to match perfectly the level of its demand. Borenstein
and Rose (2007) explain that large volatility in airlines’ profits comes mainly from
large volatility in demand. Hence, demand uncertainty and its effect on capacity uti-
lization are particularly important issues in light of the recent turmoil in the industry
(see Berry and Jia 2010).

Despite its importance, there is relatively little empirical work on capacity uti-
lization, mostly due to the difficulty in many industries of coming with an empirical
measure.3 For the airlines, however, the measure of capacity utilization is relatively
straightforward. Potential capacity is directly observed as the total number of avail-
able seats on a scheduled flight, whereas the utilized capacity equals the amount of
seats sold. While monthly data for calculating capacity utilization is available from
the Bureau of Transportation Statistics T-100 database, these data are perhaps too
aggregate to capture demand uncertainty. In this paper, we follow the recent work
in Escobari (2009, 2012) and observe day-to-day fluctuations in capacity utilization
across different flights and over various departure dates, which are more appropriate
to capture demand uncertainty.

Our work is motivated by a body of literature on capacity utilization. Hubbard
(2003) examines the extent to which the use of on-board computers, which reduces
demand uncertainty, raises capacity utilization and thus productivity in the trucking
industry. Similarly, Dana and Orlov (2009) show that capacity utilization increases
when the proportion of informed consumers in a market is larger. Deneckere and Peck
(2012) present a multiple-period price posting model that predicts no underutilized
capacity because in the last period, sellers set prices to clear the market. Underuti-
lized capacity, however, is possible in stochastic peak load pricing models; if demand
realizations are known only after firms set capacity and prices, idle capacity can
still exist during off-peak times (see e.g., Brown and Johnson 1969; Carlton 1977).

1 For hospitals, Gaynor and Anderson (1995) estimated that increasing the occupancy rate from 65 to 76 %
reduced costs by 9.5 %.
2 Capacity utilization is important for other industries as well. Kim (1999) argues that it is an important
issue in economic analysis, while Schultze (1963) explains that it serves as a productivity measurement and
can be used as an indicator of the strength of aggregate demand.
3 Nelson (1989) discusses practical problems in measuring capacity utilization and offers suggestions for
estimating theoretical measures, while Shapiro (1993) describes how to estimate the capital utilization of an
industry as a whole using the survey data of individual plants. Kim (1999) argues that conventional capacity
utilization measures (e.g., Nelson 1989) appear to be biased and proposes a measure that incorporates
information about production and demand.
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Underutilized capacity is also possible in Prescott’s (1975) competitive model, where
capacity is costly and there are price commitments. Dana (1999) extends this model
to a monopoly and imperfect competition.

Our findings are also related to the literature on irreversible investment and excess
capacity. Pindyck (1988) finds that in a market with volatile demand, firms should
hold less capacity than if future demand is known otherwise. Gabszewicz and Poddar
(1997) also find that excess capacity exists in oligopolistic markets when demand is
uncertain. Alderighi (2010) extends the work of Belobaba (1989) to present theory
and simulations that suggest a negative relationship between demand uncertainty and
capacity utilization. However, Bell and Campa (1997) study the chemical processing
industry and find that volatility in product demand has no effect on capacity utilization.

Against the above background, this paper reexamines—theoretically and
empirically—the relationship between demand uncertainty and capacity utilization.
Our theory builds on the market competition model developed by Prescott (1975). We
show that if prices are set in advance based on a distribution of demand uncertainty,
then higher demand uncertainty is associated with a lower average demand realiza-
tion and thus lower average capacity utilization. Our empirical work takes advan-
tage of a unique panel dataset from the US airline industry. Demand uncertainty is
assumed to follow a GARCH (Generalized Autoregressive Conditional Heteroskedas-
ticity) framework, where we further extend the conventional GARCH model to the
panel regression framework.4 As shown in Cermeño and Grier (2006) and Lee (2010),
there is substantial efficiency gain in the estimation of the conditional variance and
covariance processes in the GARCH model when the estimation also incorporates
interdependence across different flights within each panel.

In line with the theoretical prediction, our empirical results specifically indicate
that a one unit increase in the standard deviation of unexpected demand is associated
with a 21 percentage point decrease in capacity utilization. This result is robust to
cumulative ticket sales data at different points prior to the departure date as well as
different sets of control variables. Besides controlling for unobserved time-invariant
flight number-, route-, and carrier-specific characteristics, the estimation controls for
systematic demand fluctuations associated with the different days of the week and
major holidays.

The organization of the paper is as follows. In Sect. 2, we develop a sim-
ple theoretical model to illustrate the link between demand uncertainty and capac-
ity utilization. Section 3 describes the data. The empirical model and estimation
methods are outlined in Sect. 4. Section 5 presents the estimation results. Finally,
Sect. 6 concludes.

2 Demand uncertainty and average capacity utilization

This section presents a simple theoretical model based on Prescott (1975) to understand
the link between demand uncertainty and capacity utilization. Reflecting some key

4 The GARCH modeling approach is widely used in the financial economic literature to measure market
uncertainty with conditional volatility over time.
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features of airline markets, this model explains price dispersion and underutilized
capacity in perfect competition where there exists demand uncertainty and firms decide
output in advance (i.e., capacity is costly). We begin by providing motivation for the
existence of an upward schedule of prices, as largely documented in the airline industry
(see, e.g., Bilotkach et al. 2010; Escobari and Gan 2007; Mantin and Koo 2009). To
this end, we follow Prescott (1975) and Dana (1999) and derive a price schedule by
assuming that prices are set in advance based on the aggregate demand uncertainty
distribution. Next, we use this price schedule to show how the mean of the distribution
of demand realizations is lower when the demand uncertainty is higher.

2.1 Price schedule and demand realizations

Consider a competitive model in which sellers that offer airline seats take the distribu-
tion of prices and quantities as given. There is aggregate demand uncertainty in the form
of H + 1 demand states denoted by h = {0, 1, 2, . . . , H}. We use {ρ0, ρ1, . . . , ρH } to
denote the probability associated with each of the demand states. Let DEMANDh be the
number of consumers who buy plane tickets at demand state h. We assume that demand
states are ordered, meaning that consumers who buy tickets at demand state h will
also buy tickets at a higher-numbered demand state, i.e., DEMANDh+1 ≥ DEMANDh .
Hence, the probability that at least DEMANDh consumers buy tickets is obtained by
adding the probabilities of all higher-numbered demand states,

∑H
κ=h ρκ . Of course,

∑H
h=0 ρh = 1.
As in Prescott (1975) and Dana (1999), airlines face a unit cost of capacity equal

to λ for all seats on a particular flight, whether they are sold or not. In equilibrium and
under the assumption of a competitive market, the expected (economic) profit is zero.
Then, the model predicts dispersed prices given by:

pω = λ
∑H

h=ω ρh
for ω = {0, 1, 2, . . . , h} (1)

over the range λ ≤ pω ≤ θ , where θ is the highest reservation value for a given
seat. There are ω = {0, 1, 2, . . . , h} different batches of consumers who buy tickets
at demand state h, and each of the batches pays a different price as given by Eq. (1).
This is the widely used Prescott (1975) spot market equilibrium (see also Eden 1990;
Dana 1998, 1999).

The intuition behind the dispersed prices in Eq. (1) is simple. Consider the following
example in which the unit cost of capacity is λ = 1 and there are two equally likely
demand states. During low demand, only one consumer buys a ticket; during high
demand, two consumers buy tickets. The first consumer buys in both demand states;
hence, she buys with probability 1 and pays a price of $1. The second consumer buys
only during the high demand state, which occurs only half of the times, thus she pays
$2. Notice that in both demand states the expected profit is equal to the unit cost of
capacity, hence complying with the zero expected profit condition.

Even though the above setting is a one-period model because sellers are not allowed
to update their prices during the selling season, it can have an interesting dynamic inter-
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Demand uncertainty and capacity utilization in airlines 5

pretation.5 Different batches ω can be thought of as arriving sequentially and because
airline seats are homogeneous, consumers always prefer the cheapest remaining ticket.
Then, the next batch of consumers arrives and buys at the next available lowest price.
There is price dispersion across consumers of different batches and those consumers
who arrive in latter batches pay higher prices.

Given the price schedule in Eq. (1), we now derive the corresponding equilibrium
demand realizations.6 Suppose that airplane seats are homogeneous, and let consumers
within each batch ω have reservation values that are uniformly distributed [0, θ ].
Therefore, the number of seats sold for each of the batches can be written as:

DEMANDω − DEMANDω−1 =
(

1 − pω

θ

)
for ω = {1, 2, . . . , h}, (2)

where DEMAND0 = 0. Hence, the realized aggregate demand at state h is obtained
by summing across all batches in h:

DEMANDh =
h∑

ω=1

(
1 − pω

θ

)
. (3)

2.2 Link between demand uncertainty and capacity utilization

As in Prescott (1975) and Dana (1999), one key characteristic of this model is that
airlines set the schedule of prices based on the distribution of demand uncertainty, and
those prices remain fixed throughout the selling period. Now, to see the predictions of
this model for the link between volatility in demand realizations and average demand
realizations, we first derive the price schedule using Eq. (1) for a given distribution
of demand uncertainty. By keeping prices fixed a priori, we will then use Eq. (3) to
show the effects of a change in the mean of the distribution of demand uncertainty on
both the mean and variance of the demand realizations.

Suppose the demand uncertainty that a flight faces when deriving its price schedule
follows a discrete uniform distribution with H = 20, i.e., h = {0, 1, 2, . . . , 20}. Hence,
ρh = 1/(H +1). Furthermore, let λ = 1 and θ = 10. Using the price schedule derived
from Eq. (1), we fix the mean of h at 10 and present in Table 1 the means and standard
deviations of the demand realizations DEMANDh for different standard deviations
of the distribution of demand uncertainty. The results show that a higher volatility
in the realizations of demand, as measured by standard deviation of DEMANDh , is
associated with lower average demand realizations.

The intuition behind this negative relationship is illustrated in Fig. 1. Based on the
previous example, the fourth quadrant plots two different distributions of h, i.e., h =
{2, . . . , 18} and h = {5, . . . , 15}. The solid line in the first quadrant is the DEMANDh

5 The dynamic interpretation is in line with Hazledine (2010) and Kutlu (2012), although these papers
work under demand certainty. Deneckere and Peck (2012) present a generalization of Prescott’s (1975)
one-period model to allow sellers to change prices over different periods.
6 Notice that we keep track of two distributions that capture demand uncertainty. The first is the distribution
of demand states h and the second is the distribution of demand realizations, DE M AN Dh .
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6 D. Escobari, J. Lee

Table 1 Demand uncertainty and mean demand realizations

h SD of h SD of DEMANDh Mean of DEMANDh

{0, . . . , 20} 5.774 4.305 8.662

{1, . . . , 19} 5.196 3.901 8.858

{2, . . . , 18} 4.619 3.568 8.996

{3, . . . , 17} 4.041 3.214 9.111

{4, . . . , 16} 3.464 2.826 9.194

{5, . . . , 15} 2.887 2.414 9.256

Price schedule derived with h = {0, 1, 2, . . . , 20}
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Fig. 1 Demand states h and demand realizations DEMANDh

schedule used in Table 1, which maps the two distributions of h into the distributions of
DEMANDh presented in the second quadrant. Along with the distributional assumption
of h, Eq. (1) generates a nondecreasing convex schedule of prices, which translates
into a nondecreasing concave DEMANDh function. Hence, a larger volatility in the
distribution of demand states causes the last batches of consumers that arrive at higher
demand states to face relatively higher prices. Because individual consumers have
their own downward sloping demand schedules, these higher prices translate into lower
ticket sales and hence a lower mean in the demand realizations. This can be appreciated
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Demand uncertainty and capacity utilization in airlines 7

in the second quadrant at higher demand realizations, where the frequencies get closer
together.7 Notice that while the derivation of the DEMANDh schedule draws on the
particular models found in Prescott (1975) and Dana (1999), our main conclusion does
not need to rely on the specifics of these models or the functional form of the demand.
Figure 1 shows that similar settings that result in a nondecreasing concave function
for DEMANDh can have the same empirical implication.

Notice that if we abstract prices from the analysis, a simplified setup can also illus-
trate the negative link between demand uncertainty and capacity utilization. Assume
that two distributions of demand states share the same mean but one distribution has
a larger variance. If the plane capacity contains the two distributions entirely, then
the mean is the same for both. However, this is not the case if an aircraft’s limited
capacity does not fully contain those distributions so that truncations occur. As a result
of truncation, the observed (conditional) mean will be smaller for the distribution with
higher variance.8

3 Data

For empirical analysis, we collected US airlines’ realized demand data from the popular
online travel agency expedia.com. Following Escobari (2009, 2012), we looked up data
on the map of seats on each aircraft and counted the total number of seats in the aircraft
(total aircraft’s capacity) and the number of seats sold up to 15 days, 8 days, and 1 day
prior to departure, respectively. Because overbookings are usually a small fraction
of ticket sales, we assume that our measure is proportional to bookings.9 For the
production of nonperishable goods, inventories can be used to absorb demand shocks
that can lead to deviations between production and sales. In the case of perishable
goods such as airline seats, however, cumulative ticket sales are a measure of realized
demand, so that unsold inventories are a measure of idle capacity. Realized demand,
which is capacity utilization for a specific flight, is calculated as the ratio of occupied
seats to the total number of available seats on an aircraft.10

We collected three sets of panel data by the number of days prior to departure. Each
dataset is a panel that pools seat inventories of 20 flights (N = 20) across a fixed period
of 126 days (T = 126). More specifically, the first set measures seat inventories at one
day prior to departure for the 20 specific flights over 126 consecutive days between
Tuesday, June 2, and Monday, October 5, 2009. Correspondingly, the second dataset

7 At the highest demand state when h = {2, . . . 18}, the last batch of consumers faces a price larger than θ

and so does not buy any tickets. This explains why the highest demand realization of DEMANDh = 13.59
is twice as likely—during the two highest demand states of h = 17 and h = 18.
8 We thank an anonymous referee for raising this point. In the empirical work below, the effects of truncated
conditional means will be taken into consideration.
9 Seats protected for later purchases (usually labeled as preferred or prime seats) are counted as available
seats. This is consistent with serial nesting of booking classes. In this case, for booking classes within
the same cabin, seats from a higher booking class (e.g., prime seats) are ready to be released into a lower
booking class if needed (e.g., in an expected off-peak fight), see Escobari (2012, p. 719).
10 Bilotkach et al. (2011) use similar information on seat capacity availability to see how yield management
affects a flight’s load factors.
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Table 2 Data descriptive
statistics

Capacity (seats) Utilized capacity

At 1 day At 8 days At 15 days

Mean 103 0.89 0.82 0.74

SD 39.52 0.14 0.16 0.18

Minimum 50 0.20 0.17 0.14

Maximum 166 1.00 1.00 1.00

consists of inventories at 8 days prior to departure for the same 20 flights and over
126 consecutive days between Tuesday, June 9, and Monday, October 12, 2009. The
third consists of corresponding data at 15-days-to-departure for flights departing from
Tuesday, June 16, to Monday, October 19, 2009. Accordingly, each dataset contains
a total of 2,520 observations, where each cross-sectional unit is a nonstop, one-way
flight number from a carrier on a particular domestic route in the US. Each flight
number (e.g., American Airlines Flight 637 from Miami, FL to New Orleans, LA) is
offered every day with the same aircraft size. A route is defined as a pair of departure
and destination airports, and the carriers with flights in the data sample are Alaska,
American, Delta, United and US Airways. In model estimation, the panel structure of
the data will allow us to control for unobserved time-invariant flight number-, carrier-,
and route-specific characteristics that may affect demand realizations. Time-invariant
characteristics include the distance between airports, the aircraft type, and the unit
cost of capacity λ.

Table 2 displays some descriptive statistics for the airline data across the panel of
20 flights over the different sample periods of 126 days. The 20 flights had an average
capacity of 103 seats. The smallest aircraft carried a capacity of 50 seats, and the
largest aircraft carried a capacity of 166 seats. The columns in the panel of utilized
capacity show the statistics for the proportions of seats sold to total seats in the aircraft
at 15-days, 8-days, and 1-day prior to flights departures. An average of 74 % of seats
were sold 15 days prior to departure, compared to 82 % for 8 days, and 89 % for one
day prior to departure. The dispersion of utilized capacity across flights, as measured
by the standard deviation, ranges from 0.18 in the 15-days-to-departure panel to 0.14
in the 1-day-to-departure panel.

4 Empirical model

In this section, we present the empirical model for estimating the relationship between
demand uncertainty and capacity utilization in the airline industry. Realized demand
for air travel is measured by cumulative ticket sales for a particular flight. A flight’s
capacity utilization is the ratio of purchased seats to the total number of seats in the
aircraft. Given the panel nature of our dataset and our focus on demand uncertainty,
we consider GARCH-type models that also take into account interdependence across
flights. For a cross section of N flight numbers, T departure dates and a fixed number
of days to departure, the conditional mean equation for air travel–realized demand
(DEMANDit ) can be expressed as a dynamic panel model with fixed effects:
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DEMANDit =
K∑

k=1

αkDEMANDi,t−k

+xi tβ + μi + εi t , i = 1, . . . , N ; t = 1, . . . , T, (4)

where the subscript i refers to a specific flight number, and the subscript t refers to
a given departure date. Notice that the definition of the variable DEMANDit in this
section is analogous to DEMANDh in the theoretical model of Sect. 2. The subscript
h is replaced by the subscripts i and t because, for simplicity, the theoretical section
presents a single period model, while the empirical model in this section identifies
demand uncertainty through different demand realizations DEMANDit across flights
i and over time t . The term xi t is a vector of exogenous variables with coefficients
captured by the vector β. The term μi captures possible time-invariant effects associ-
ated with the given routes, carriers, airports, and flights, and εi t is a disturbance term
with the following conditional moments:

E[εi tε js] = 0 for i �= j and t �= s, (5)

E[εi tε js] = 0 for i = j and t �= s, (6)

E[εi tε js] = σ 2
i j,t for i �= j and t = s, (7)

E[εi tε js] = σ 2
i t for i = j and t = s, (8)

The first condition assumes no noncontemporaneous cross-sectional correlation, and
the second condition assumes no autocorrelation. The third and fourth assumptions
define the general conditions of the conditional variance–covariance process.

Demand uncertainty is captured by conditional volatility in the disturbance term
in the condition mean Eq. (4). Due to its popularity and parsimony, the conditional
variance and covariance processes of εi t are assumed to follow a GARCH(1, 1) process:

σ 2
i t = φi + γ σ 2

i,t−1 + δε2
i,t−1, i = 1, . . . , N , (9)

σi j,t = ϕi j + ησi j,t−1 + ρεi,t−1ε j,t−1, i �= j, (10)

Using matrix notation, Eq. (4) can be written as:

DEMANDt = Ztθ + μ + εt (11)

where DEMANDt and εt are N × 1 vectors, μ is the corresponding N × 1 vector

of individual-specific effects, s and Zt = [DEMANDt−1 . . .
...xt ] is a matrix with their

corresponding coefficients in θ = [αk . . .
...β ′]′. The disturbance term has a multivariate

normal distribution N (0,�t ).
Because the disturbance term εt is conditional heteroskedastic and cross-sectionally

correlated, the least squares estimator for this model is no longer efficient even though it
is still consistent. Alternatively, Cermeño and Grier (2006) and Lee (2010) suggest the
application of the maximum-likelihood (ML) method, which maximizes the following
log-likelihood function:
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10 D. Escobari, J. Lee

L = −1

2

{

N T log(2π) +
T∑

t=1

log |�t |

+
T∑

t=1

[(DEMANDt − Ztθ − μ)′ × �−1
t (DEMANDt − Ztθ − μ)]

}

.

(12)

However, there is yet another issue in the estimation. Because capacity utilization
is constrained to be less than 100 %, the disturbance term εt has a truncated nor-
mal distribution. As a result, estimation with the log-likelihood function of Eq. (12)
would result in biased coefficient estimates. To estimate the dependent variable that
is truncated from above, we adopt Wooldridge’s (1999) quasi-conditional maximum
likelihood (QCML) method, which essentially augments the log-likelihood function
with a condition that depends on the truncation.

5 Estimation results

Our empirical work begins with specifying a baseline model for estimating realized
demand for airline tickets. For each of the alternative 1-day-, 8-days-, and 15-days-
in-advance tickets, the conditional mean equation is expressed as an AR(7), meaning
that 7 autoregressive lagged values of the dependent variables are included in Zt . This
model specification is determined in light of the Bayesian Information Criterion, which
suggests a rather long lag structure. The particular autoregressive model specification
is also in line with the number of days within a week. As pointed out above, realized
demand—DEMANDit in Eq. (4)—is measured as the ratio of occupied seats to the
total number of available seats.

Table 3 presents the estimation results for the AR(7) model of airline ticket demand
estimated with OLS along with heteroskedasticity and autocorrelation-consistent
(HAC) standard errors. The different columns show the individual regression results
of 1-day-, 8-days-, and 15-days-in-advance tickets for the 20 particular flight numbers
in the sample. Except for the second lag, most coefficient estimates are statistically
significant. The positive coefficients for the first and seventh lags—which are the
largest—imply that demand is positively correlated with the demand the previous
day and the demand the same day of the week from the week before. The negative
coefficient for the second lag is only significant at a 10 % level for the 1-day-in-
advance specification. As discussed below, the statistical significance of this lag dis-
appears once we include the GARCH process in the model. The R2 statistics indicate
that the three regressions explain 50–65 % of variations in the measures of realized
demand.

Given the OLS regression results for the AR(7) specification of the conditional
mean equation, Table 4 reports diagnostic statistics for testing serial correlation. The
Ljung-Box Q-statistics and partial correlations are computed for both the residuals
and squared residuals in orders up to 7 autoregressive lags. In the case of residuals,
most partial correlations are not statistically significant. The only exceptions are the
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Table 3 OLS estimation results

HAC standard errors are in
parentheses. The number of
observations is 2,520
* Statistical significance at the
10 % level
** Statistical significance at the
5 % level
*** Statistical significance at the
1 % level

1 day 8 days 15 days

Mean equation

Intercept 0.09*** 0.08*** 0.07***

(0.02) (0.02) (0.02)

DEMANDi,t−1 0.39*** 0.33*** 0.30***

(0.03) (0.03) (0.02)

DEMANDi,t−2 −0.06 −0.03 −0.01

(0.03) (0.03) (0.03)

DEMANDi,t−3 0.08** 0.06** 0.05**

(0.04) (0.03) (0.02)

DEMANDi,t−4 0.05 0.06** 0.001

(0.03) (0.03) (0.02)

DEMANDi,t−5 0.12*** 0.08** 0.08**

(0.03) (0.03) (0.03)

DEMANDi,t−6 0.09** 0.10*** 0.13***

(0.03) (0.03) (0.03)

DEMANDi,t−7 0.27*** 0.31*** 0.32***

(0.03) (0.03) (0.03)

σ 2 0.08 0.12 0.13

Log-likelihood 2,707.14 1,738.93 1,546.45

R2 0.65 0.51 0.50

Table 4 Autocorrelation diagnostics

Lag Partial correlation

Residuals Squared residuals

1 day 8 days 15 days 1 day 8 days 15 days

1 −0.01 0.00 −0.02 0.25*** 0.23*** 0.22***

2 0.01 0.01 −0.01 0.28*** 0.25*** 0.19***

3 0.02 10.02 0.03 0.23*** 0.17** 0.18**

4 0.02 0.03 0.03 0.18 0.19*** 0.15***

5 0.01 0.01 0.01 0.19*** 0.19*** 0.18***

6 −0.02 −0.03 −0.02 0.21*** 0.21*** 0.23***

7 −0.04∗ −0.06∗ −0.07∗ 0.20*** 0.22*** 0.23***

Q(7) 7.14 13.17 19.83 832.28*** 737.99*** 657.98***

* Statistical significance at the 10 % level
** Statistical significance at the 5 % level
*** Statistical significance at the 1 % level

estimates for the seventh lag. The significant estimates reflect correlation between
ticket sales during the same day of the week. The negative estimates may reflect
airlines’ increased efforts in reducing any idle capacity observed in the past. There
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12 D. Escobari, J. Lee

Table 5 LR tests for individual effects

1 day 8 days 15 days

Variance equation (9) 72.01*** 128.72*** 265.79***

Covariance equation (10) 720.46*** 421.81*** 434.61***

*** Statistical significance at the 1 % level

is scant evidence of serial correlation in the residuals, meaning that the condition in
(6) is satisfied. However, the partial correlations for squared residuals suggest a rather
high-order ARCH process. These statistics support the application of a GARCH-type
model.

Next, we evaluate flight-specific effects in the variance and covariance equations
by applying likelihood ratio (LR) tests based on the log-likelihood values of the panel
GARCH(1, 1) model estimated separately with and without individual effects. The
complete model is captured by Eqs. (4) through (10). The conditional mean equation
is the AR(7) as described above. Table 5 shows the LR statistics for testing individual
effects in the variance and covariance equations. All test statistics are statistically
significant, supporting the presence of flight-specific effects for the 1-day-, 8-days-,
and 15-days-in-advance tickets.

Motivated by the test results in Table 5, we report in Table 6 the estimates for the
panel GARCH(1,1) model with individual effects in the variance and covariance equa-
tions. Again, the results are displayed for the 1-day-, 8-days-, and 15-days-in-advance
tickets alternatively. For all three datasets, the log-likelihood values of the QCML
estimation are appreciably higher than their OLS counterparts shown in Table 3, even
though the coefficient estimates in the conditional mean equation are quite similar. For
the 1-day-in-advance cumulative ticket sales, the estimated coefficients on the autore-
gressive terms in the conditional variance and covariance equations are 0.60 and 0.54,
respectively. These estimates indicate that demand volatility in individual flights and
their comovements across flights follow moderately persistent GARCH processes. By
comparison, the measure of persistence in demand volatility is higher at 0.73 for the
8-days-in-advance realized demand, but lower at 0.42 for the 15-days-in-advance real-
ized demand. For the covariance equation, the corresponding measure of persistence
is higher for both 8-days- and 15-days-in-advance data.

In the variance equation, the estimate for the lagged squared disturbance term,
ε2

i,t−1, is the highest (0.93) for seats sold one day prior to departure. This highlights
the greater impact of a shock to market demand on a flight’s utilized capacity one day
prior to departure than 8 or 15 days prior to departure. Similarly, the estimate for the
second term in the covariance equation, εi,t−1ε j,t−1, is statistically significant only in
the case of the 1-day-in-advance tickets. The negative estimate indicates that a shock
to one flight reduces its covariance, or interdependence, with another flight.

To explore the possible association between realized demand and demand uncer-
tainty in air travel, we augment the conditional mean equation with the conditional
standard deviation of shocks to the dependent variable (σi t ), which captures demand
uncertainty. This term is equivalent to the standard deviation of the demand real-
izations, DEMANDh , presented in the third column of Table 1 from the theoretical
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Table 6 Panel GARCH
estimation results

Standard errors are in
parentheses. The number of
observations is 2,520
* Statistical significance at the
10 % level
** Statistical significance at the
5 % level
*** Statistical significance at the
1 % level

1 day 8 days 15 days

Mean equation

Intercept 0.09 0.08*** 0.07***

(0.02) (0.02) (0.02)

DEMANDi,t−1 0.39*** 0.32*** 0.30***

(0.03) (0.03) (0.02)

DEMANDi,t−2 −0.06 −0.03 −0.01

(0.03) (0.03) (0.03)

DEMANDi,t−3 0.08** 0.05** 0.05*

(0.04) (0.03) (0.02)

DEMANDi,t−4 0.05 0.06* 0.001

(0.03) (0.03) (0.02)

DEMANDi,t−5 0.12*** 0.08** 0.08**

(0.03) (0.034) (0.03)

DEMANDi,t−6 0.09** 0.09** 0.13***

(0.03) (0.03) (0.03)

DEMANDi,t−7 0.27*** 0.31*** 0.32***

(0.03) (0.03) (0.03)

Variance equation

σ 2
i,t−1 0.60*** 0.73*** 0.42***

(0.06) (0.03) (0.11)

ε2
i,t−1 0.93*** 0.46** 0.82**

(0.11) (0.06) (0.18)

Covariance equation

σi j,t−1 0.54*** 0.83*** 0.47***

(0.02) (0.02) (0.02)

εi,t−1ε j,t−1 −0.02*** 0.02 −0.01

(0.01) (0.01) (0.01)

Log-likelihood 2,738.53 1,772.23 1,581.27

model in Sect. 2. Extending Engle et al.’s (1987) model to a panel setting, we add σi t

as an additional explanatory variable in the conditional mean Eq. (4). The resulting
regression model is regarded as a GARCH-in-mean process.

The first column of Table 7 shows the estimation results for the panel GARCH-in-
mean model for the 1-day-in-advance realized demand. The coefficient estimate for
the conditional standard deviation term enters with a negative sign and it is statistically
significant at the 1 % level. This estimated coefficient indicates that, all else being equal,
a one unit increase in the standard deviation of unexpected demand decreases capacity
utilization by 21 percentage points. While the inclusion of the GARCH term in the
conditional mean equation does not noticeably affect any of the estimates previously
reported in Table 6, this GARCH-in-mean specification is preferable given its higher
log-likelihood value over the basic GARCH parameterization.
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14 D. Escobari, J. Lee

Similarly, the regression results for the 8-days-in-advance tickets (second col-
umn) and 15-days-in-advance tickets (third column) reaffirm a negative correlation
between conditional volatility and mean realizations in demand for airline tickets.
In comparison with the estimate for the 1-day-in-advance tickets, the absolute size
of the coefficient estimate is about half as large for the 8-days-in-advance tickets,
but rather similar for the 15-days-in-advance tickets. While it is intuitive to argue
for lower demand uncertainty and higher capacity utilization during a date closer to
the flight departure, our theoretical model does not have any predictions on how the
link between these two variables changes as the departure date nears. The point esti-
mates suggest non-monotonicity in the effect. The differences in the point estimates
across columns could be a result of consumer heterogeneity at different points prior to
departure.

Given the above findings, we further carry out some sensitivity analysis. In par-
ticular, it is well known that air travel demand is typically higher during weekends
and holidays (e.g., Escobari 2009). To evaluate whether our findings are robust to
the presence of the day of the week and holiday effects, we also estimate the panel
GARCH-in-mean model along with some day-dependent dummy variables. The first
four dummy variables take the value of 1 for flights departing on a Tuesday, Wednes-
day, Thursday, and Friday, respectively, and the value of 0 otherwise. These variables
control for unobserved effects associated with the specific day of the week in compar-
ison with Monday. Another dummy variable is WEEKEND, which takes the value of
1 for Saturdays and Sundays. The final dummy variable, HOLIDAYS, takes the value
of 1 for the days before and after the Independence Day and the Labor Day.

Table 8 shows the results for the three datasets estimated with the addition of
those dummy variables within the panel GARCH-in-mean framework. All the dummy
variables enter with the expected signs and they are also statistically meaningful. More
specifically, the coefficient estimates suggest that airline demand is relatively lower
on flights departing on Tuesdays in comparison with Mondays, but higher during
weekends and national holidays. The estimates are positive for Thursday and Friday
in the cases of the 8-days- and 15-days-in-advance tickets, but not the 1-day-in-advance
tickets. These results suggest that the day of the week matters only for travelers who
purchase airline tickets well in advance.

Despite the consideration of weekday and holiday effects, the estimates on the coef-
ficient of the conditional volatility variable (σi t ) reaffirm our previous finding about the
relationship between realized demand and demand uncertainty. Their quantitative esti-
mates are largely unaffected by the inclusion of additional control variables. Overall,
the results in Table 8 lend strong support to the robustness of our main conclusion.

One dimension that we control in our empirical framework is the effect that days
to departure may have on capacity utilization and demand volatility. This is important
because as Table 2 suggests, capacity utilization is higher and demand volatility is
lower when it is closer to departure; hence, the correlation between capacity utilization
and demand uncertainty can be driven by days to departure. Such identification in this
paper comes from observing demand realizations across different flights and departure
dates, keeping days to departure fixed at 1, 8, or 15 days. This strategy, however, does
not consider ticket prices. This would be a concern if the observed demand realizations
are correlated with the prices of the tickets that have been sold for the same flight
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Table 7 Panel
GARCH-in-mean estimation
results

Standard errors are in
parentheses. The number of
observations is 2,520
** Statistical significance at the
5 % level
*** Statistical significance at the
1 % level

1 day 8 days 15 days

Mean equation

Intercept 0.09*** 0.15*** 0.16***

(0.02) (0.04) (0.03)

DEMANDi,t−1 0.36*** 0.32*** 0.29***

(0.03) (0.03) (0.02)

DEMANDi,t−2 −0.07 −0.04 −0.02

(0.04) (0.03) (0.03)

DEMANDi,t−3 0.06** 0.04** 0.04*

(0.03) (0.03) (0.02)

DEMANDi,t−4 0.03 0.05* −0.001

(0.03) (0.03) (0.02)

DEMANDi,t−5 0.10*** 0.07** 0.07**

(0.03) (0.03) (0.03)

DEMANDi,t−6 0.07** 0.10** 0.13***

(0.03) (0.03) (0.03)

DEMANDi,t−7 0.25*** 0.31*** 0.31***

(0.03) (0.03) (0.03)

σi t −0.21*** −0.10*** −0.14**

(0.04) (0.04) (0.04)

Variance equation

σ 2
i,t−1 0.58*** 0.73*** 0.76***

(0.06) (0.03) (0.04)

ε2
i,t−1 0.37*** 0.46** 0.82**

(0.04) (0.06) (0.18)

Covariance equation

σi j,t−1 0.53*** 0.82*** 0.47***

(0.02) (0.02) (0.02)

εi,t−1ε j,t−1 −0.02** 0.02 −0.01

(0.01) (0.01) (0.01)

Log-likelihood 2,745.60 1,784.43 1,592.11

during previous dates. If that is the case, then our estimates may be biased due to
the omitted price variable. However, two possible conditions about prices can exist
conceptually. First, a seller may lower prices to boost sales, suggesting a negative
correlation between prices and demand realizations. Second, the seller may only want
to lower prices if sales are falling short, which suggests a positive correlation. Thus,
it is in not clear whether we should expect a positive or a negative sign for the price
variable that enters the regression models. Moreover, there are various prices for each
level of capacity utilization, and ultimately, the correlation between previous prices
and capacity utilization depends on the sequences of prices and sales as the departure
date nears. This in turn depends on the degree of price flexibility and how airlines
use advance sales to learn about the aggregate demand. Such issues are beyond the
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Table 8 Panel GARCH-in-mean (with controls) estimation results

1 day 8 days 15 days

Mean equation

Intercept 0.09*** 0.09*** 0.15***

(0.03) (0.04) (0.03)

DEMANDi,t−1 0.39*** 0.32*** 0.27***

(0.03) (0.03) (0.02)

DEMANDi,t−2 −0.05 −0.03 −0.001

(0.03) (0.03) (0.03)

DEMANDi,t−3 0.09*** 0.04** 0.07***

(0.03) (0.02) (0.02)

DEMANDi,t−4 0.06 0.05* 0.03

(0.03) (0.03) (0.02)

DEMANDi,t−5 0.19*** 0.07** 0.08**

(0.03) (0.03) (0.03)

DEMANDi,t−6 0.08** 0.10* 0.10***

(0.03) (0.03) (0.03)

DEMANDi,t−7 0.24*** 0.31*** 0.26***

(0.03) (0.03) (0.04)

σi t −0.20*** −0.11** −0.15**

(0.04) (0.03) (0.04)

TUESDAY −0.02** −0.03*** −0.01*

(0.01) (0.01) (0.005)

WEDNESDAY −0.02** −0.01 −0.01

(0.01) (0.01) (0.01)

THURSDAY −0.01 0.03*** 0.04***

(0.01) (0.01) (0.01)

FRIDAY 0.01** 0.05*** 0.06***

(0.006) (0.01) (0.01)

WEEKEND 0.01*** 0.03*** 0.04***

(0.005) (0.01) (0.01)

HOLIDAYS 0.03** 0.05** 0.07**

(0.01) (0.03) (0.03)

Variance equation

σ 2
i,t−1 0.59*** 0.73*** 0.43***

(0.06) (0.03) (0.11)

ε2
i,t−1 0.37*** 0.46** 0.86**

(0.04) (0.06) (0.19)
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Table 8 continued

1 day 8 days 15 days

Covariance equation

σi j,t−1 0.58*** 0.83*** 0.76***

(0.06) (0.02) (0.04)

εi,t−1ε j,t−1 −0.04*** 0.02 −0.01

(0.01) (0.01) (0.01)

Log-likelihood 2,801.60 1,824.21 1,681.96

Standard errors are in parentheses. The number of observations is 2,520
* Statistical significance at the 10 % level
** Statistical significance at the 5 % level
*** Statistical significance at the 1 % level

scope of this study.11 Notice that while we do not have ticket prices in Eq. (4),
including flight number fixed effects allows for systematic price differences across
flight numbers. Moreover, the day-dependent and holiday dummies control for price
differences across different days of the week and holidays.12

Other variables that can potentially affect capacity utilization are, for example,
managerial capacity, whether the flight departs or lands in the carrier’s hub, and the
size of the aircraft. These features can be regarded as time-invariant and thus are
controlled for with the flight number fixed effects. Furthermore, capacity decisions
are usually made months in advance, and modifying the size of the aircraft comes at
a relatively high marginal cost. We did not observe any change in aircraft size for the
same flight number in our sample.

Because perishable inventories such as airline seats are an inefficient allocation of
existing resources, our empirical findings have significant implications for the airlines.
Dana and Orlov (2009) estimate that a 6.7 % increase in capacity utilization in the
airline industry translates into a $2.7 billion in cost savings each year. Against the
backdrop of the tremendous turmoil in the US airline industry in recent years, with
bankruptcies and decreased profits among major airlines (see Berry and Jia 2010),
Borenstein and Rose (2007) explain that large volatility in airlines’ profits comes from
large volatility in airline ticket demand. Our results provide a better understanding of
the airline industry performance by documenting the effect of demand volatility on
capacity utilization.

11 Escobari (2012) empirically studies the dynamics of prices and inventories as the departure date nears.
12 An alternative specification that included contemporaneous posted prices showed that estimates for the
key variable σi t remain close to those reported in Table 8. Because of the potential endogeneity of posted
prices we have included the ticket price variable in an IV model for the conditional mean equation using
a sequential procedure (rather than the simultaneous estimation), in which the GARCH-in-mean term is
included along with the ticket price variable in the second step. The instruments include the lagged values
of the explanatory variables. We do not report those results partly due to a lack of theoretical motivation
for such a specification. In addition, Deneckere and Peck (2012) suggest that airlines post prices based on
beginning-of-period cumulative bookings and not really cumulative bookings as a function of posted prices.
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6 Conclusion

This paper contributes to the existing literature by exploring both theoretically and
empirically the effect of demand uncertainty on capacity utilization in the airline
industry. Unlike other industries, some unique characteristics of airlines make this an
ideal place for examining this relationship: Capacity is set in advance when there is
uncertainty about the demand, and unsold inventories perish once a plane leaves the
gate. In our simple theoretical model, airlines set dispersed prices in advance based
on a distribution of demand states. The main empirical implication is that a larger
variance in demand realizations is associated with lower average capacity utilization
rates.

Our empirical work focuses on testing the theoretical prediction about the link
between demand uncertainty and capacity utilization. The analysis has benefited from
the collection of unique panel datasets, which allowed us to observe fluctuations in
capacity utilization levels over a large number of departure dates and across different
flights. Another contribution of our empirical work stems from the estimation of the
data with GARCH-type models under the panel setting rather than the conventional
time-series setting.

We collected data panels with flight-level seat inventories at three points prior to
the departure date covering a total of 140 departure days. The data are used to esti-
mate GARCH-in-mean models that allow for fixed effects as well as time-varying
conditional variance–covariance processes. In line with our theoretical prediction, the
empirical results indicate a negative link between demand uncertainty and capacity
utilization. More specifically, a one unit increase in the standard deviation of unex-
pected demand for a particular flight is associated with a 21 percentage point decrease
in its capacity utilization. The estimate for this key relationship is robust to cumula-
tive ticket sales data at different points prior to departure. This empirical relationship
has also been found to be robust to the presence of various control variables, includ-
ing systematic demand fluctuations over days of the week and holidays, as well as
unobserved flight-, carrier-, and route-specific characteristics.
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