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Abstract We use vector error correction models to examine the interdependence
between the high and the low price tiers during the latest housing market boom and
bust. For 118 of the 364 US statistical areas analyzed, the tiered price indexes are
bound by a long-run relationship. In general, low tier homes appreciated more than
high tier homes in the past two decades. In contrast to previous periods of high volatil-
ity, however, low tier homes appreciated more during the boom and lost more value
during the bust of the market. We find a shift in the long-run equilibrium during the
bubble —the cointegration parameter that ties the tiers together is greater in absolute
value during the bubble period compared to the periods of more moderate appreci-
ation and depreciation rates. Moreover, the shift in the long-run equilibrium can be
explained by differences in subprime originations across housing markets. We also
find that short run price dynamics is driven by momentum in both segments of the
market.
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Introduction

The dynamics of U.S. housing prices has been extensively studied in the literature
since the real estate market boom and bust of the past decade. Most of the analyses
examine the dynamics of price indices for the nation and for different geographic
regions. As a result, we now have a better understanding of the contributing forces
to the bubble and the relationship between housing prices and various fundamen-
tal factors, e.g. construction costs,1 loan-to-value and price-to-rent ratios,2 interest
rates, lending standards,3 demographic variables, etc. (see, e.g. (Mayer 2011) for a
survey).

Most studies are based on aggregate indices that condense the appreciation and
depreciation rates of all houses in a metropolitan area into a single measure. While
this approach provides insights into the relationship between aggregate prices and
fundamentals, it masks the effects arising from the interactions among different seg-
ments of the housing market. Recent life cycle models, however, demonstrate that
these interactions are important as they have implications not only for the relation-
ship between various house price tiers, but, through their effects on credit constraints,
on the price dynamics of the entire housing market (Stein (1995) and Ortalo-Magné
and Rady (1999) and (2006)). Thus, identifying trends and relationships between seg-
ments of local housing markets facilitates not only a comparison across time periods
and geographic areas, but also affords tests of market efficiency and informs future
theoretical research on housing markets.

In this paper we study the housing price dynamics at a disaggregated level in 364
U.S. statistical areas using the Zillow Home Value tiered indices during the time
period from April 1996 through November 2014. These indices are constructed with
a hedonic adjustment methodology intended to capture effects that are due to market
trends only. The entire market is stratified in three tiers according to market value
—bottom, middle, and top— and the indices track the appreciation and depreciation
rates of these three segments over time.

We estimate a vector error correction model which accounts not only for the
long run relationship between price tiers, but also for their short run dynamics. We
then allow the cointegrating parameters to vary over time by using a rolling regres-
sion specification. We thus create a panel of estimated cointegrating parameters and

1Glaeser et al. (2008) discuss the role of supply elasticity for the severity and duration of housing bubble
periods.
2Gallin (2006) shows that for the time period 1970-2005 prices and rents are cointegrated. Price-rent ratios
tend to predict future changes of both prices and rents whereby the corrective response of prices is greater
than that of rents.
3See e.g. Mian and Sufi (2009) and Pavlov and Wachter (2011).
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examine how the cointegrating relationship between tiers differs during the period
before and during the housing bubble.

Our analysis generates a number of new insights. First, in agreement with studies
of previous time periods (see, e.g. Poterba (1991) and Mayer (1993) for the period
1970-1990 in a number of metropolitan areas) we find that, for the entire data panel,4

and for the time series of about half of the metropolitan areas,5 the low and the high
price tiers are non-stationary in levels but are stationary in first differences (i.e. are
integrated of order one).

Our second and probably most unexpected finding is the tendency of low tier
homes to appreciate faster than properties at the high end of the market prior to the
housing market bust. After the burst of the bubble, however, low tier homes depreci-
ate faster than high tier properties. As we discuss in more detail in the next sections,
this pattern stands in contrast to previous periods of market volatility. We quantify
the extent of this phenomenon for all metropolitan areas using cointegration tests
between the price tiers. We find that price tiers are cointegrated, i.e. they are bound
by a long run relationship in 118 statistical areas. This suggests that the price tiers
are driven by the same common factors that pull the series together in the long run
(Mayer 1993). Cointegration in our context can also be interpreted as evidence in
support of the efficient market hypothesis in the long run. Meese and Wallace (1994)
find that house prices are cointegrated with home owner cost of capital and rents for
the time period 1970-1988, a finding that they similarly interpret as evidence for the
efficient market condition in real estate. They find, however, that the present value
relation does not hold in the short run.

Third, the short run dynamics between the tiers exhibits strong positive correla-
tion between current appreciation rates and lagged appreciation rates for both high
and low tier homes. As suggested by Case and Shiller (1990), this is evidence for
momentum and information inefficiency in the housing market. While Case and
Shiller (1990) report autoregressive coefficients on the magnitude of 0.3, when bro-
ker down in tiers, we find coefficients for the majority of the metropolitan areas in
excess of 0.5. Because we find that tiers are cointegrated, commonly used univariate
models or vector autoregressive models to assess momentum (as the ones presented in
Case and Shiller 1990) would be subject to an omitted variable bias. Our assessment
of momentum relies on estimates from vector-error correction models thus taking
into account the long-run relationship between tiers. Our finding that dynamics of
real estate prices is driven by momentum in both market segments also accords well
with the recent empirical evidence on social influences in the housing market. Pan
and Pirinsky (2013), for instance, show that the probability of a household to pur-
chase a home is positively correlated with the home ownership rate of ethnic peers

4Panel augmented Dickey-Fuller unit root tests as proposed by Pesaran (2007) reject the null of a unit root
in the first difference both for the low and the high tier at the 1 % significance level.
5Augmented Dickey-Fuller unit root test cannot reject the null of a unit root in levels and reject the null of
a unit root in first differences at conventional statistical levels for 176 out of the 364 statistical areas.
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residing in the same area and report that this effect is particularly strong among
younger, less educated, and poorer individuals. As these individuals are likely to be
the buyers of starter homes, we also conduct formal tests and find that momentum is
significantly stronger for the low tier market segment in about half of the geographic
areas.

Fourth, the cointegrating parameter β is smaller than negative one. That is, for
each dollar of price appreciation in the high tier, the low tier appreciates by a greater
amount in the long run. This result is consistent with recent life cycle models of
housing markets. Ortalo-Magné and Rady (2006) show that, after a positive income
shock or shock to credit constraints, “starter” homes appreciate proportionally and
“trade up” homes appreciate less than proportionally to the magnitude of the shock
in the new steady state. However, Ortalo-Magné and Rady (2006) also find that the
high tier is more volatile in the transition to the new steady state —a feature that does
not accord to our results. Using vector error correction models, Gallin (2006) studies
the time series of prices, rents, and the rent-to-price ratios for the period 1994-2005.
He finds that this ratio helps predict changes in real prices (but not real rents) over
a 4-year period. To our knowledge, we are the first to study the short run and long
run dynamics of the time series of different segments of the market during the recent
market bubble.

Finally, we estimate a rolling regression specification of a vector-error correc-
tion model by estimating the cointegrating factor β for windows of 100 months thus
obtaining a time series of realizations of this parameter for the 118 statistical areas
in which the price tiers are cointegrated. With the resulting panel of metropolitan
areas we test for differences between the cointegrating parameters for the periods
prior to and during the bubble. We find a statistically and economically significant
shift in the long run equilibrium. As statistical areas enter into the bubble period,
the cointegration coefficient increases in absolute value reaching a peak around the
time when the local housing market bubble bursts. That is, prices of low tier homes
are relatively more volatile compared to the prices of high tier homes during the
bubble period. We also find that the cointegration relationship between the tiers
is sensitive to percentage of subprime originations in local areas while the depen-
dence on demographic factors such as population and income is not statistically
significant.

The rest of the paper is organized as follows. Section “Data” presents a
description of the dataset and provides details on the Zillow tiered home price
indices. Sections “Existence of a Long-run Equilibrium and Price Convergence”,
“Estimating the Long-run Equilibrium and Short-run Dynamics” and “Stability of
the Long-run Equilibrium” present the empirical results, and deal with stationarity
of the time series and unit root tests, long run and short run dynamics, and equi-
librium stability, respectively. In Section “Comparison to Previous Bubble Periods”
we review the similarities and differences between the latest and previous housing
market cycles. Section “Explaining the Tiered Price Dynamics” explores to what
extent demographic variables, lending practices and autocorrelation in appreciation
rates (momentum) can explain the observed price dynamics during the bubble period.
Section “Conclusion” summarizes the main findings and implications.
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Data

This study uses the seasonally adjusted monthly low and high tier segments of the
Zillow Home Value Index (ZHVI).6 The ZHVI as well as the Case-Shiller index
(CSI) capture changes in single-family home prices over time. We opted for the ZHVI
over the CSI for two key reasons. First, the ZHVI is a hedonic price index that, as
explained in Dorsey et al. (2010), overcomes limitations of repeat-sales indexes such
as the CSI. The ZHVI is constructed from the same deed records as the CSI but
includes also the properties that sold just once during the relevant period in addition
to the repeat sales transactions used for the construction of the CSI index. Further,
ZHVI utilizes attributes of individual houses such as size and the number of bed-
room and bathrooms thus capturing their changes over time. Guerrieri et al. (2013)
provide a detailed discussion on the similarities and differences between the two
indices and report a correlation coefficient of 0.96 between their appreciation rates
during the time period from 2000 to 2006. Second, while the CSI is constructed only
for twenty metropolitan statistical areas, the ZHVI covers a much larger number of
areas. Our sample includes the low tier and high tier segments of the ZHVI for 364
statistical areas and spans the period from April 1996 through November 2014.7 This
allows us not only to study the dynamics for a large number of areas, but also to
exploit existing cross-sectional differences.8

The ZHVI and CSI are monthly indexes designed to reflect changes due to mar-
ket trends only and not to physical changes in individual houses or neighborhoods.
The tiered indexes are obtained by assigning properties into one of three price tiers.
The thresholds for the price tiers are determined from the distribution of home val-
ues within each statistical areas in such a way that an equal number of homes appear
in each tier. The repeat sales methodology used in the CSI entails forming pairs of
recorded prices from arms-length transactions of the same property. While repeat-
sales indexes contain valuable information on the dynamics of prices, there are some
concerns when using repeat sales indices to estimate autoregressive model specifica-
tions as the ones studied here. They are related to the potential bias and efficiency loss
due to the inclusion only of properties which sold more than once in a given period.
These houses constitute only a relatively small subsample of the entire market. The
ZHVI that we use is created from estimated sales prices of every home, not just the
ones that have recently been sold. Hedonic measures of house prices more accurately
reflect changes in the characteristics of individual houses, but requires high qual-
ity data on a number of additional characteristics of houses. The ZHVI uses home

6The data is obtained from the online real estate database Zillow, available at http://www.zillow.com/
research/
7The statistical areas include both metropolitan and micropolitan statistical areas.
8An alternative index that can be used for an analysis of house price dynamics is the repeat sales index
constructed by the Office of Federal Housing Enterprise Oversight (OFHEO). This index, however, is
limited to houses for which mortgages were provided by Fannie Mae and Freddy Mac thus excluding the
subprime segment of the market. For a discussion on the use of indexes in studying house price dynamics
see Miao et al. (2011).

http://www.zillow.com/research/
http://www.zillow.com/research/
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attributes that include physical facts about the home and land, prior sale transactions,
tax assessment information and geographic location.

In the Appendix we present the list of the 364 statistical areas used in this study.
For practical reasons, in Table 1 we present the summary statistics of the low tier
(LOWTIER) and the high tier (HIGHTIER) indexes for only a selected group of areas.
In particular, following an alphabetical order, we include the first four and the last
four areas as well as the descriptive statistics for the whole sample. We have 224
geographic area time series in the sample comprising a total of 81,536 tiered index
observations. All indices are equal to 100 on April 1996.

Existence of a Long-run Equilibrium and Price Convergence

We denote by LOWTIERSA
t and HIGHTIERSA

t the low and high price tiers, respec-
tively, for a given statistical area (SA) during month t . With the following linear
combination of these two price tiers,

LOWTIERSA
t + βHIGHTIERSA

t = dSA
t , (1)

we say that a long-run equilibrium exists if for a given constant β the difference
dSA
t is stationary. That is, short-run deviations away from the long-run equilib-

rium LOWTIERSA
t = −βHIGHTIERSA

t are observed when dSA
t �= 0. However, the

Table 1 Summary statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LOWTIER HIGHTIER

Statistical Area Obs. Mean S.D. Min Max Mean S.D. Min Max

Aberdeen, WA 224 92.22 15.19 69.32 121.1 132.5 28.81 96.38 183.5

Adrian, MI 224 117.1 20.60 86.42 153.8 131.4 18.96 100 162.8

Akron, OH 224 124.1 13.99 100 144.8 120.8 10.07 99.65 136.0

Albany, GA 224 124.6 14.32 100 147.9 134.8 17.80 100 157.1
.
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York, PA 224 135.9 24.98 100 175.4 138.0 27.72 98.83 184.0

Youngstown, OH 224 103.9 10.18 88.52 123.2 123.1 10.60 100 139.2

Yuba City, CA 224 170.6 72.06 100 332.7 166.6 55.65 90.68 282.6

Yuma, AZ 224 139.7 38.09 98.68 219.0 154.8 41.70 99.84 237.0

Overall (# SAS=364) 81,536 141.6 43.09 68.43 404.2 153.2 45.74 79.90 500.3

Notes: The sample contains monthly observations from 1996m4 through 2014m11. There are 224 times-
series observations of LOWTIER and HIGHTIER for each of the 364 statistical areas
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stationarity of dSA
t means that these deviations are by definition only transitory. If a

long-run equilibrium exists, we say that LOWTIERSA
t and HIGHTIERSA

t are cointe-
grated with vector [1, β]; moreover, the price tiers are integrated of order one, I (1),
while dSA

t is integrated of order zero, I (0).
We also define convergence between price tiers if the long-term forecast of both

price tiers is the same:

lim
k→∞ Et

(
LOWTIERSA

t+k

∣∣�t) = lim
k→∞ Et

(
HIGHTIERSA

t+k|�t

)
, (2)

where �t denotes the information set at time t . Price convergence is first tested by
restricting β in Eq. 1 to be equal to negative one. There is a number of unit root
tests that can be used to analyze the stationarity of dSA

t in Eq. 1 and convergence in
Eq. 2. In this paper we employ the GLS augmented DF tests as originally proposed
by Dickey and Fuller (1979) along with the more recent panel unit root test proposed
by Pesaran (2007).9

We initially test for the stationarity for the variables in levels (LOWTIERSA
t and

HIGHTIERSA
t ), the variables in first-differences (�LOWTIERSA

t and �HIGHTIERSA
t ),

and the difference in price tiers (LOWTIERSA
t −HIGHTIERSA

t ). This is done for every
time series in the sample as well as for the pooled panel. Table 2 presents the unit
root test results for the first four and the last four statistical areas —organized in
alphabetical order— as well as the panel unit root test for all the 364 SAs in our
panel. The first and fifth columns report the ADF t-statistics, τdf, for the tiers in levels
showing very little evidence of stationarity. We reject the unit root null at at least
10 % level for LOWTIERYork, LOWTIERYuba City, and LOWTIERYuma. All the other
SA high and low tiers reported in the table have a unit root, which means that shocks
are permanent. Overall at a 10 % significance level 306 (364−58) of the 364 low tiers
and 320 (364 − 44) of the 364 high tiers have a unit root. Columns three and seven
show that for the series in differences the low tiers in 244 SAs and the high tiers in
255 SAs are stationary. Combining these results with the results in levels we find that
at 10 % significance level, 176 of the series are integrated of order one, I (1). Keeping
track of these 176 SAs is important because this is the set of SAs for which we will
test for a cointegrating relationship. The bottom part of Table 2 shows the Pesaran
(2007) panel results. Both levels are non-stationary, while both first-differences are
stationary. The null hypothesis in this test is that all series are non-stationary and the
alternative is that only a fraction of the series are stationary.

9The Pesaran (2007) test uses a system of ADF regressions:

�
(
LOWTIERSA

t − HIGHTIERSA
t

) = ρSA
(
LOWTIERSA

t−1 − HIGHTIERSA
t−1

)

+
kj∑

j=1

φSA(j)�
(
LOWTIERSA

t−j − HIGHTIERSA
t−j

) + εSA
t ,

where the statistic of interest (Z̄adf) is distributed standard normal standard normal. It is based on means
of individual ADF t-statistic (τdf) for each SA.
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Column 9 in Table 2 presents the tests for the existence of a long-run equilib-
rium while imposing the restriction that β in Eq. 1 is equal to one. This test for
the stationarity of LOWTIERSA

t − HIGHTIERSA
t can also be viewed as a test for the

existence of price convergence between tiers as defined in Eq. 2. The results show
important evidence of price convergence (and long-run equilibrium) between price
tiers. From the eight SAs we report, only for York and Yuma there is no evidence of
convergence at a 10 % significance level. Overall at a 10 % level there is no evidence
of convergence for 97 of the 364 SAs in the sample (i.e., there is evidence of con-
vergence for about 3/4 of the areas). In line with these findings the Z̄adf statistic for
the panel fails to reject the null that price convergence (long-run equilibrium) exists.
The constraint in these tests is that it is assumed that β = −1. In the next section we
provide cointegration tests that analyze the existence of a long-run equilibrium with
an unrestricted β.

Estimating the Long-run Equilibrium and Short-run Dynamics

While Eq. 1 characterizes the long-run equilibrium, this simple specification is
unlikely to capture the true data generating process. We therefore estimate a more
flexible vector-error correction model which accounts both for the long-run equi-
librium and the short-run dynamics around the long-run equilibrium. The model is
described by the following equations:

�LOWTIERSA
t = aL + αL

(
LOWTIERSA

t−1 + βHIGHTIERSA
t−1

)

+
k∑

j=1

aLL(j)�LOWTIERSA
t−j +

k∑

j=1

aLH (j)�HIGHTIERSA
t−j + εLt , (3)

�HIGHTIERSA
t = aH + αH

(
LOWTIERSA

t−1 + βHIGHTIERSA
t−1

)

+
k∑

j=1

aHL(j)�LOWTIERSA
t−j +

k∑

j=1

aHH (j)�HIGHTIERSA
t−j + εHt , (4)

where εLt and εHt are white-noise disturbance terms that may be correlated. The term
in parenthesis, which is the same as dSA

t in Eq. 1, captures the long-run equilibrium
dynamics. The left-hand side variables capture the short-run dynamics, while αL and
αH are the speed-of-adjustment coefficients. If deviations are positive (i.e., dSA

t > 0)
and we have a negative β, the low tier index is relatively larger than the high tier index
and it is reasonable to believe that we will have a decrease in the low tier index (i.e.,
�LOWTIERSA

t < 0) and an increase in the high tier index (i.e., �HIGHTIERSA
t > 0).

Hence, we would expect αL to be negative and αH to be positive. The lag dependent
variables in this system of equations are included to control for serial correlation and
to test for momentum.

Note that if there is no cointegrating relationship between the price tiers, that is,
if we restrict αL = αH = 0, Eqs. 3 and 4 define a Vector Autoregressive model.
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Our vector-error correction model thus is a generalized version of an autoregressive
specification that allows us to test for momentum in the dynamics of price tier. From
Eqs. 3 and 4 we can see, for example with k = 1, that a positive coefficient aLL can
be interpreted as a momentum effect in LOWTIER. That is, an increase (decrease) in
the low tier price in the last period, �LOWTIERSA

t−1, is associated with an increase
(decrease) in the price in the current period, �LOWTIERSA

t . Likewise aHH would
capture the momentum in HIGHTIER. While each of these coefficients aLL and aHH

come from separate equations, the estimation of the vector-error correction model as
a system of equations allows us to test whether momentum is particularly greater for
a specific tier.10

The estimation of the vector-error correction model follows the methods in
Johansen (1988) and Johansen and Juselius (1990). While Engle and Granger’s (1987)
two-step error-correction model may also be used in this context, the Johansen’s
error-correction model yields more efficient estimates of the cointegrating coeffi-
cients. This is because it is a full information maximum likelihood estimator which
allows testing for cointegration in the system of equations in a single step without
requiring a specific variable to be normalized. Moreover, it avoids carrying over the
errors from the first step into the second, and does not require any prior assumptions
regarding the causality of the variables.

In Table 3 we present tests for the existence of a cointegration relationship between
the high and the low tier in each statistical area. As we are testing for cointegration
between two time series in each statistical area, the number of cointegrating equations
can be at most one, which occurs when a coefficient β exists such that the error terms
εLt and εHt defined in Eqs. 3 and 4 are stationary.11

The maximum eigenvalue statistic reported in columns 1 and 2 presents a
likelihood-ratio test of the null hypothesis that there are exactly r cointegrating equa-
tions against the alternative that there are r +1 cointegrating equations. Based on this
test, the null hypothesis of no cointegration between the price tiers can be rejected
for Aberdeen WA, Albany GA, Winston-Salem NC, and Wooster OH at the 5 % sig-
nificance level. The null hypothesis of the trace statistic reported in columns 4 and 5
is that there are no more than r cointegrating equations. Consistent with the findings
in Lütkepohl et al. (2001), the maximum eigenvalue in columns 1 through 3 and the
trace statistic in columns 4 through 6 yield similar results. The number of cointegrat-
ing equations reported in columns 3 and 6 is equal to one in 63 and 62 of the 176
statistical areas, respectively.12

We interpret this as a mixed evidence of a cointegrating relationship between tiers
when no breaks are allowed based on the maximum eigenvalue and trace statistic.

10Note that, under the existence of a long-run equilibrium between price tiers, simpler autoregressive
(AR) or vector-autoregressive (VAR) specifications of the first-differences of the price tiers would provide
biased estimates of the momentum coefficients. An AR would not control for the link between price tiers,
while a VAR would be missing the dynamics around the long-run equilibrium.
11In general, with n time series, there might exist up to n − 1 cointegrating vectors. Johansen’s (1988)
approach can be used to estimate these distinct relationships.
12Notice that we only work with the 176 SAs that have both tiers integrated of order one, to follow the
definition of cointegrating relationship.
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Table 3 Cointegration tests

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Maximum Eigenvalue Trace Statistic Minimum Hannan-Quinn

Statistical Area r = 0 r = 1 # Eq. r = 0 r ≤ 1 # Eq. r = 0 r = 1 r = 2 # Eq.

Aberdeen, WA 33.25 2.176 1 41.43 2.176 1 6.392 6.288 6.297 1

Albany, GA 20.89 2.200 1 23.09 2.200 1 4.537 4.488 4.494 1

Albertville, AL 4.035 0.242 0 4.278 0.242 0 6.091 6.118 6.132 0

Albuquerque, NM 3.990 0.0167 0 4.007 0.0167 0 4.871 4.898 4.913 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Winston-Salem, NC 67.30 0.0168 1 67.32 0.0168 1 1.911 1.655 1.670 1

Wooster, OH 16.48 2.979 1 19.46 2.979 1 3.626 3.597 3.599 1

Yakima, WA 5.925 0.952 0 6.877 0.952 0 3.150 3.169 3.180 0

Youngstown, OH 13.55 0.00201 0 13.55 0.00201 0 3.094 3.079 3.094 1

Overall (# SAS=176):a 63 62 118

Notes: Critical values for the maximum eigenvalue for r = 0 are 14.07 (5 %), 18.63 (1 %); and for r = 1
are 3.76 (5 %), 6.65 (1 %). Critical values for the trace statistic for r = 0 are 15.41 (5 %); 20.04 (1 %).
For r ≤ 1 are 3.76 (5 %); 6.65 (1 %). a number of SAs in which there is a cointegrating equation

The number of cointegrating equations in a vector error correction model can also
be determined by minimizing the Hannan and Quinn information criterion (see e.g.
Gonzalo and Pitakaris (1998), Aznar and Salvador (2002)). For every SA in which
the maximum eigenvalue and the trace statistic found a single cointegrating equa-
tion, the minimum Hannan-Quinn statistic also found a single cointegrating equation.
However, the minimum Hannan-Quinn finds evidence of cointegration in more sta-
tistical areas. The last column reports that a cointegrating relationship exists for
Aberdeen WA, Albany GA, Winston-Salem NC, Wooster OH, and Youngstown OH.
Overall based on this criteria there exists a cointegrating relationship in 118 of the
areas. We will use this set of 118 SAs when estimating the vector-error correction
model.

It is possible that the lack of cointegration between some of the housing tiers is
due to the fact that the Johansen methods do not allow for shifts. Table 4 presents
the cointegration tests proposed by Gregory and Hansen (1996a) and Gregory and
Hansen (1996b) that include regime and trend shifts. The test’s null hypothesis is no
cointegration against the alternative of cointegration with changes in level and trend.
We run this test only for the 58 statistical areas in which the minimum Hannan-
Quinn statistics did not find a cointegrating equation. The different columns in
Table 4 present three test statistics, the ADF-type test, the Zα-type test and the Zt -
type test for eight of the SAs and a summary of the overall results. These tests
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Table 4 Cointegration tests with shifts

(1) (2) (3) (4) (5) (6) (7)

ADF-type test Zα-type test Zt -type test

Statistical Area t-stat Break Lags Zα-stat Break Zt -stat Break

Albertville AL −6.376* 2000m5 1 −6.195* 1996m12 −42.66† 1996m6

Albuquerque NM −4.896 1998m6 1 −5.758† 1998m3 −36.00 1998m4

Astoria OR −4.606 1994m7 3 −7.084* 1993m4 −23.90 2000m10

Athens TN −5.785† 2001m6 3 −7.188* 2001m11 −36.80 1996m2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Wapakoneta OH −5.954† 1997m10 3 −6.550* 1997m10 −41.72† 1998m2

Wausau WI −4.922 1993m6 1 −5.073‡ 1994m4 −32.99 1993m5

Whitewater WI −6.602* 1994m5 1 −6.147* 1994m1 −38.03‡ 1994m8

Yakima WA −4.235 1999m9 1 −5.633† 2001m2 −27.22 2000m8

Overall (# SAS=58):a

10 % 27 51 18

5 % 16 46 11

1 % 6 32 2

Notes: Optimal lag for ADF-type test chosen by Akaike criterion. All specifications model a change in
regime and trend. * significant at 1%; † significant at 5 %; ‡ significant at 10 %. Critical values for the
ADF-type test are −6.02 (1 %); −5.50 (5 %); −5.24 (10 %). Critical levels for the Zα-type test and the
Zt -type test are different for different SAs. a number of SAs in which there is a cointegrating equation at
10 %, 5 % and 1 % significance levels

can be viewed as multivariate extensions of Perron (1989), Banerjee et al. (1992),
Perron and Vogelsang (1992), and Zivot and Andrews (1992). The Zα-type statistic
is the one that finds the most evidence supporting the existence of cointegrating rela-
tionships. Overall at a 10 % significance level there is a cointegrating relationship for
51 of the 58 SAs. Columns 2, 5, and 7 estimate the dates of the shifts.

Table 5 presents the maximum likelihood estimation of the system of Eqs. 3 and 4
for each of the 118 SAs that have both tiers integrated of order one and for which a
cointegration equation exists.13 The lag length is selected based on the Akaike Infor-
mation criterion. The long-run equilibrium is captured by the cointegrating vector
[1, β], with the estimates of β being reported in column 9. The results show that there

13This estimation does not take into account shifts. However, later on we estimate a rolling regression
that allows for a time-varying β, which is more in line with the evidence of shifts in the cointegrating
relationships found in Table 4.
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exists important heterogeneity in the point estimates of β across SAs with the aver-
age β being −1.121. This long-run equilibrium has an interesting interpretation. On
average we have LOWTIERt = 1.121 · HIGHTIERt . That is, a one point increase in
the high tier price index is linked with a 1.121 points increase in the low tier index.
Without any assumptions of the causality between LOWTIER and HIGHTIER, a β

coefficient that is greater than one (in absolute value) means that fluctuations of the
low tier are larger than fluctuations in the high tier. In the next section we analyze the
role of the housing bubble for the stability of β.

From the estimates of aLL and aHH reported in Table 5 we can see that there
is strong evidence for momentum in both tiers. At the 1 % level aLL and aHH are
both statistically significant for all the 118 SAs in this sample. The momentum in
the low tier ranges between 0.464 for Provo, UT to 0.994 for Key West, FL and a
similar range is observed for the high tier. Given the estimate of β that indicates that
fluctuations in the low tier are larger than in the high tier, we also explore whether the
momentum effect is stronger in the low segment of the market. Column 10 provides
the p-values of the null of aLL = aHH versus the alternative aLL > aHH . The
results show that at a 10 % significance level we reject the null for 63 of the 118
areas in this sample. One of the interpretations for the observed momentum effect is
buyer irrationality in the real estate market (Pan and Pirinsky, 2013). Enders (2010)
p. 367 explains that at least one of the speed of adjustment terms in Eqs. 3 and 4
must be nonzero to establish that the short run dynamics responds to deviations from
long run equilibrium. Column 11 reports the p-values of testing the null hypothesis
αL = αH = 0. We find that at 10 % significance level, the null is rejected for 112 of
the 118 statistical areas in the sample. We will next use these 112 SAs in our analysis
of the stability of the long-run equilibrium.

Stability of the Long-run Equilibrium

The estimation of the system of Eqs. 3 and 4 assumes that β is time invariant. This
is potentially a strong assumption given the woes faced by the housing markets since
the onset of the subprime crisis. To assess the stability of the long-run equilibrium
relationship (LOWTIERSA

t−1 + βHIGHTIERSA
t−1) we use a rolling regression approach

in which we allow β to change over time.14 For a given window of size w we estimate
the system of Eqs. 3 and 4 using the first w observations, [1, w]. Then we estimate
the system again using the sample [2, w + 1] and so forth until we exhaust the data
using the subsequent samples [2, w + 1], [3, w + 2], . . . , [N − w + 1, N ]. This pro-
cedure generates a sequence {βt } of coefficients that characterize the dynamics of
the cointegrating equation. Because we do this for every statistical area i we actually
obtain a panel of βit estimates.

14In the context of bubbles, Driffill and Sola (1998) use similar rolling regression approach in a random
walk with drift regression to provide evidence of instability and regime-switching. Swanson (1998) uses
rolling regressions in vector error correction models similar to the ones we estimate here.
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Fig. 1 Tiers and Rolling Regressions Estimates of β. Notes: The upper section of the figure presents
the average TIERLOW and TIERHIGH across all statistical areas. The lower section presents the average
rolling regressions estimates of the βs along with their 95 % confidence intervals

Using this panel, we analyze how the housing bubble has affected the long-run
relationship between price tiers. The model we estimate is the following:

βit = δ · I|τi−t |≤θ + μi + ηit , (5)

where I is an indicator function capturing the period of bubble formation and burst.
It assumes the value of one during the time of the bubble, i.e. when |τi − t | ≤ θ ,
where τi denotes the time at which the housing bubble in metropolitan area i bursts
and θ is a positive integer that captures the time distance away from the burst.15 The
coefficient of interest δ captures any shift in the cointegrating coefficient βit in the
neighborhood around the burst of the bubble. μi is the statistical area time-invariant
specific effect, and ηit is the remaining stochastic term. We use θ = (3, 6, 12) as
robustness checks to account for the uncertainty regarding the beginning and end
dates of the bubble.

Figure 1 illustrates the shift in the long-run equilibrium during the bubble for the
sample of 112 SAs that comply with the conditions for a vector error correction
model. In the upper part of the figure we have the average low and average high

15The time of the burst τi is obtained as the date in which LOWTIERSA
t for the corresponding SA reaches

its maximum.
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price tiers. Averages are obtained at every point in time across all SAs. The average
burst date across statistical areas (shown as the vertical line on December 2007) is
computed as τ = 1

N

∑N
i=1 τi . In the lower part we plot the average βs across SAs

along with their 95 % confidence intervals.16

The salient feature of Fig. 1 is that during the early years of the sample β appears
very stable and close to −1. This means that the long-run relationship between
LOWTIER and HIGHTIER was very close to a one-to-one relationship —for every
point in the appreciation of the LOWTIER index, the HIGHTIER index would also
appreciate by one point. However, around the date of the burst during the bubble
years β appears to be larger in absolute value suggesting a higher appreciation and
depreciation of the low tier. The formal analysis of any possible shift in the long-run
relationship between LOWTIER and HIGHTIER follows the estimation of Eq. 5. The
results are presented in Table 6. Different columns report different sets of estimates
of β prior to the bubble burst (βPRE), during the bubble (βDUR), and the difference
between the two (βDUR − βPRE). The odd-numbered columns present pooled regres-
sion estimates while the even-numbered columns report fixed effects estimates that
control for any time-invariant SA specific characteristic. For example with θ = 3 the
estimates in the second column indicate that during the six months period around the
bubble burst, a one point increase (decrease) in the HIGHTIER index was associated
with a 1.238 points increase (decrease) in the LOWTIER index. This implies that the
rate of appreciation (depreciation) of the low tier housing prices was greater than the
rate of appreciation (depreciation) of the high tier housing prices.

Column 2 also shows that the point estimate of βPRE is closer to −1, but the p-
value associated with the null of βPRE = −1 shows strong evidence against the null.
The difference between βPRE and βDUR is statistically significant at at least 1 %.
Consistent with Fig. 1, differences in the appreciation/depreciation rates between
LOWTIER and HIGHTIER are greater around the bubble burst. Columns 3 through
6 present robustness checks to account for the uncertainty about the beginning and
end of the bubble periods. Columns 3 and 4 consider a six-month window (θ = 6),
while columns 5 and 6 a one-year window (θ = 12). All the point estimates are
statistically significant at at least 1 % level. The last row in Table 6 (above the number
of observations) presents the p-values of the null hypothesis that βPRE = βDUR with
the alternative that βPRE > βDUR. The results across columns indicate strong evidence
against the null hypothesis —the β coefficient shifted away from one around the
bubble periods. The point estimate in the last column reads that the difference in the
appreciation/depreciation rates between the two price tiers is 0.166 smaller in the
years leading to the bubble period than during the bubble.

As a robustness check and to see if a larger number of statistical areas meet the
requirements for the estimation of vector error correction models, we take the natural
logarithms of HIGHTIER and LOWTIER and follow the same steps as before for the
transformed variables. The unit root tests, cointegration tests, and the estimation of
these additional vector error correction models with the variables resulted in a set of

16The estimation uses a window w = 100. The lines were smoothed using the fitted cubic splines.
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Table 6 Long run equilibrium

(1) (2) (3) (4) (5) (6)

Within θ = 3 Within θ = 6 Within θ = 12

Variables Pooled FE Pooled FE Pooled FE

βPRE −1.075* −1.077* −1.067* −1.070* −1.048* −1.055*

(0.00870) (0.00685) (0.00890) (0.00701) (0.00934) (0.00737)

H0 : βPRE = 0 [0] [0] [0] [0] [0] [0]

H0 : βPRE = −1 [0] [0] [0] [0] [3.29e-07] [0]

βDUR −1.281* −1.238* −1.265* −1.227* −1.257* −1.221*

(0.0408) (0.0322) (0.0287) (0.0227) (0.0204) (0.0161)

H0 : βDUR = 0 [0] [0] [0] [0] [0] [0]

H0 : βDUR = −1 [0] [0] [0] [0] [0] [0]

βDUR − βPRE −0.206* −0.161* −0.199* −0.157* −0.209* −0.166*

(0.0417) (0.0329) (0.0301) (0.0238) (0.0224) (0.0178)

H0 : βDUR = βPRE
a [7.84e-07] [1.07e-06] [0] [0] [0] [0]

Obs. 13,888 13,888 13,888 13,888 13,888 13,888

Notes: Figures in parentheses are standard errors. Figures in brackets are p-values. * significant at 1 %; †
significant at 5 %; ‡ significant at 10 %. a the alternative hypothesis is Ha : βDUR < βPRE.

123 statistical areas. We obtain new βs from rolling regression of the variables in
logarithms and then estimated Eq. 5 again. The results are reported in Table 7. As the
new variables are logarithm transformations, the interpretation of the βs is in terms
of percentage changes. Column 6 indicates that a one percentage increase (decrease)
in HIGHTIER is associates with a 1.106 % increase (decrease) in LOWTIER in the
period prior to the bubble. The elasticity increases to 1.289 during the bubble period
with the difference between the period prior to the bubble and the bubble period being
statistically significant. The results are robust to changes in the length of the bubble
period θ as observed across different columns.

One concern when studying the link between market segments is the existence of
a spurious correlation if any of the segments has a trend (deterministic or stochastic).
Granger and Newbold (1974) explain that spurious correlation may still exist even
after detrending. In the estimation of the vector error correction models we need
the variables to be stationary, in addition to having a cointegrating relationship. This
approach means that we only estimate the βs for the statistical areas for a reduced
sample where there is a genuine relationship and where a long-run relationship exists.
If the focus is on the appreciation and depreciation rates and we are not interested
in distinguishing between long- and short-run dynamics, we can implement a much
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Table 7 Long run equilibrium (in logs)

(1) (2) (3) (4) (5) (6)

Within θ = 3 Within θ = 6 Within θ = 12

Variables Pooled FE Pooled FE Pooled FE

βPRE −1.127* −1.129* −1.118* −1.122* −1.099* −1.106*

(0.00904) (0.00725) (0.00925) (0.00742) (0.00972) (0.00780)

H0 : βPRE = 0 [0] [0] [0] [0] [0] [0]

H0 : βPRE = −1 [0] [0] [0] [0] [0] [0]

βDUR −1.378* −1.339* −1.342* −1.307* −1.322* −1.289*

(0.0420) (0.0338) (0.0297) (0.0239) (0.0210) (0.0169)

H0 : βDUR = 0 [0] [0] [0] [0] [0] [0]

H0 : βDUR = −1 [0] [0] [0] [0] [0] [0]

βDUR − βPRE −0.251* −0.210* −0.224* −0.185* −0.224* −0.183*

(0.0430) (0.0345) (0.0311) (0.0250) (0.0232) (0.0187)

H0 : βDUR = βPRE
a [5.52e-09] [1.21e-09] [0] [0] [0] [0]

Obs. 15,252 15,252 15,252 15,252 15,252 15,252

Notes: For 123 SAs. Figures in parentheses are standard errors. Figures in brackets are p-values. * sig-
nificant at 1 %; † significant at 5 %; ‡ significant at 10 %. a the alternative hypothesis is Ha : βDUR <

βPRE

simpler analysis by using the whole sample.17 Figure 2 presents the scatterplots and
the histograms of the returns of the low and high segments. The histograms and data
points on the scatterplot with black border correspond to the observations prior to the
bubble, while the gray histograms and data points correspond to the periods during
the bubble.

Figure 2 shows a relationship between the returns of the high and low segments
that is close to a one-to-one as the data points appear to be scattered around the 45o

line. Moreover the returns for both segments appear to be lower prior to the bubble.
A Wilcoxon test of the null hypothesis that the distributions are the same prior and
during the bubble finds strong evidence against the null for both price segments. In
addition, simple t-tests with the null of equality between means prior and during
the bubble also find strong support against the null. This evidence using the whole
sample is consistent with the shifts in the betas. In the next two sections we compare
our results to the literature on the price dynamics during previous bubble periods.

17One key benefit from separating the dynamics into a long-run and a short-run dynamics is that momen-
tum is a short-run concept while the long-run shift that we find is interpreted as a shift in the permanent
components of the price indexes.
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Fig. 2 LOWTIER and HIGHTIER returns. Notes. This figure presents the scatter plot of the returns of
LOWTIER and HIGHTIER along with the corresponding histograms. The periods prior to the bubble are
illustrated in the scatter plot and histogram in grey, while the observations that correspond to the bubble
periods are in black

Moreover, we present some cross-sectional characteristics that might help explain the
observed variation in the βs.

Comparison to Previous Bubble Periods

One of the unique aspects of the recent housing bubble, as supported by our esti-
mates of β, was the tendency of low tier homes to appreciate faster during the
boom and to fall more precipitously during the bust of the market. This feature
stands in stark contrast to previous housing market cycles. Smith and Tesarek
(1991) find that during the boom period between 1970 and 1985 in Houston,
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high value homes appreciated at an annual rate of 9 % while low value homes
appreciated by only 8.3 %. In the subsequent downturn period 1985-1987, how-
ever, high-quality houses lost nearly 30 % of their value while low quality houses
depreciated by only 18 %. Seward et al. (1992) document similar price dynam-
ics during the same time period for St. Petersburg, Florida. The only exception
known to us is the study by Case and Shiller (1994) who compare Los Angeles
and Boston during the period 1983-1993. For the most part the price tiers move
closely together in both cities, yet in Boston the low tier continued to rise as the
upper tier flattened out and then fell more sharply during the downturn of the mar-
ket. The Boston housing market exhibited a similar trend during the recent housing
bubble as well.

Poterba (1991) presents a more comprehensive analysis of house prices over the
time period 1970-1982 in four cities: Atlanta, Chicago, Dallas, and Oakland. He
reports that houses in the top quartile appreciate faster than houses in the bottom
quartile. Probably most closely related to the present paper is the study by Mayer
(1993). Analyzing the same four cities, he concludes that “...homes do not appreciate
at the same rate, but that more of the volatility occurs among high-priced homes.” He
offers two explanations for his findings. The one is that periods of rising prices mit-
igate the down payment constraints for trade up homes (see, e.g. Stein (1995)). The
other is that periods of home appreciations improve the “balance sheet” of house-
holds leading to an increased demand for luxury goods, in particular more expensive
houses. Our rolling regression approach leads us to conclude that low tier homes in
the entire panel appreciated faster during the price run-up and depreciated more pre-
cipitously after the bubble burst after controlling for metropolitan area-specific fixed
effects (see Table 6).

Explaining the Tiered Price Dynamics

In this section we explore to what extent demographic variables, lending practices,
and behavioural factors (momentum) can explain the observed price dynamics during
the bubble period.

Demographic Variables and Lending Practices

When viewed as entirely investment assets, according to the efficient market hypoth-
esis, different houses should experience roughly the same rates of appreciation if we
assume that they are linked to the same market risk factors. Further, according to
the construction cost viewpoint, if house prices merely reflect the variation in con-
struction inputs, in markets without substantial frictions, price tiers should exhibit
roughly the same patterns over time (Poterba (1991)). If this pattern holds in the
long-run we should observe a β = −1. The dynamics of our rolling estimates of
β over time presented in Fig. 1 suggests, however, that beta drops below −1 and is
generally lower during the period 2006-2010 reaching a minimum around the time
when the local housing market bubbles bursted during the period 2007-2008. The
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Table 8 Explaining long run equilibrium shifts

(1) (2) (3) (4) (5) (6)

Variables OLS OLS OLS FE FE FE

HIGHERPRICED −0.338* −0.338* −0.242† −0.355* −0.371* −0.383*

(0.0971) (0.0973) (0.0972) (0.0690) (0.0690) (0.0782)

I|τi−t |≤θ 0.00470 0.0479 −0.211* −0.211*

(0.0724) (0.0715) (0.0538) (0.0538)

POPULATION −5.69e-07* 5.87e-07

(6.98e-08) (8.58e-07)

INCOME 0.0132* −0.00197

(0.00233) (0.00562)

Constant −1.145* −1.146* −2.107* −1.131* −1.083* −1.100†

(0.0867) (0.0882) (0.217) (0.0616) (0.0626) (0.553)

Obs. 3,015 3,015 3,015 3,015 3,015 3,015

Notes: The dependent variable is βit . The sample is from January 2007 through December 2013. Figures
in parentheses are standard errors. θ = 3. * significant at 1 %; † significant at 5 %; ‡ significant at 10 %

more formal results presented in Tables 6 and 7 also support this conclusion. We
find strong evidence that β deviates away from −1 during the bubble period. These
observed equilibrium shifts may be the result of demographic factors and behavioral
forces related to demand. We therefore further investigate the impact of subprime
lending practices as well as the effect of population and income on the β coefficients.

Following Mayer and Pence (2009) we use “high-priced” loans as a proxy for
subprime loans. Under the Home Mortgage Disclosure Act (HMDA), most origina-
tors must report attributes of mortgage applications. Avery et al. (2007) explain that
HMDA covers over 80 percent of all home loans and it is considered the most com-
prehensive source of mortgage data. As in Mayer and Pence (2009), we classify a
loan as “high-priced” if the annual percentage rate (APR) is at least three percent-
age points above the Treasury benchmark for first-lien mortgages and if the APR is
five percentage points over that benchmark for junior liens. We construct the vari-
able HIGHERPRICED ∈ [0, 1] that measures the proportion of higher-priced loans
in the statistical area. We then augment the regression Eq. 5 to include this variable
along with the statistical area characteristics POPULATION (measured in number of
individuals), and INCOME (measured in thousands of dollars per year). The results
from this regression are reported in Table 8. Consistent across all columns we find
that HIGHERPRICED has a negative and statistically significant effect on β.18 Higher

18The number of observations is smaller in this table as the sample starts in 2007 and was not available
for all statistical areas.
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proportion of high-priced loans is associated with a greater divergence between price
segments. There results provide further evidence for the role of the mortgage lend-
ing channel for the housing market boom and bust. Mian and Sufi (2009) show that
areas with high latent demand for credit (as measured by the percentage of mort-
gage applications rejected in 1996) saw the sharpest mortgage credit expansion and
experienced the fastest increase in house prices in the 2001-2005 period. Credit was
extended to borrowers with low credit records, who presumably constituted over
proportionally buyers of low tier properties. Further evidence for this conjecture is
provided by Landvoigt et al. (2012). In their analysis of the San Diego housing mar-
ket they conclude that “cheaper credit for poor households was a major driver of
prices, especially at the low end of the market.” Along similar lines, Pavlov and
Wachter (2011) show that financial deregulation, in particular the use of interest-
only and subprime mortgages accentuates the real estate cycle and the price response
to demand shocks. Using a novel measure of a housing bubble, Berkovec et al.
(2012) further show that Alt-A and subprime market shares are correlated with the
bubble.

The contribution of our analysis is in providing further evidence that the equilib-
rium shift between the high and the low price tiers that we observe during the bubble
period is related to subprime lending. The estimated effects of the bubble indicator
variable I|τi−t |≤θ on our cointegration estimates β is consistent with the estimate of
βDUR − βPRE reported in Tables 6 and 7, while POPULATION and INCOME are not
statistically significant when controlling for statistical area specific characteristics in
the fixed effects estimates in column 6.

Momentum Effects

In his Journal of Economic Perspectives summary article to the symposium on bub-
bles, Stiglitz emphasized the central role of momentum and positive feedback for the
formation of bubbles in asset markets. He wrote that a bubble occurs “if the reason
that the price is high today is only because investors believe that the selling price
will be high tomorrow.” (Stiglitz (1990), p. 13). The literature on housing market
has since then taken two distinct approaches to identifying momentum and positive
feedback.

The one approach relies on surveys of households regarding their expectations
about future prices. Piazzesi and Schneider (2009) analyze responses from the
Michigan Survey of Consumers and report that in the early 2000s an increasing num-
ber of households have become optimistic about future expected price appreciation
rates after observing steady increase in prices for several years. They dub these opti-
mistic households “momentum traders” and document that their percentage peaked
to 20.2 percent in 2005 reaching a 25 year high. Using a search model to capture
market frictions in the housing market, they show that that even a small number of
momentum traders can drive up the prices significantly without increasing trading
volume and market shares.

The other approach examines the correlation between lagged and current appre-
ciation rates in housing price time series exploiting the idea that in the presence
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of momentum overly optimistic expectations transform into self-fulfilling prophe-
cies during the buildup of the bubble. These correlations are commonly taken as an
indication that housing markets are not weak form efficient.

Case and Shiller (1989, 1990) study the housing markets in Atlanta, Chicago, Dal-
las, and San Francisco/Oakland for the years 1970 to 1986 and find that appreciation
rates of the previous year enter with an estimated coefficient of 0.3 in their autore-
gressive model specifications. Lags of more than one period are negatively related
to current appreciation rates, although the coefficient is not statistically significant.
More recently, Beracha and Skiba (2011) study autoregressive models of price appre-
ciation in 381 metropolitan areas in the US during the 1983-2008 sample period and
quarterly lags. While the one period lag appears to be negatively correlated —an
indication of a slight mean reversion— the two and three period lags are positive and
significant with coefficients on the magnitude of 15 % and 24 %, respectively. Our
estimates of aLL and aHH in Table 5 are in line with a positive momentum and go
beyond Case and Schiller (1989, 1990) by providing separate estimates for different
market segments. Our empirical specification is more detailed in the sense that we
study momentum for each price tier taking into account that the price tiers are bound
by a long-run relationship. We find a strong evidence of momentum in both market
segments.

Conclusion

It is now generally accepted that that the bust of the US residential housing market
was a major cause for the deepest financial crisis in the US since the Great Depres-
sion (Mian and Sufi 2009). The events leading to the financial turmoil in the US
and globally raised awareness about the systemic links between the housing mar-
ket, the financial sector and the broader economy. Thus, understanding the price
dynamics of residential real estate in the US during this period has been front and
center in the recent academic literature on real estate. Most of the studies focus on
aggregate indexes to identify global trends and information transmission mechanisms
nationally and between various metropolitan areas (Miao et al. 2011).

This article broadens the scope of the existing literature by studying the links
between market segments within statistical areas. Taking advantage of a large sam-
ple of US statistical areas, we analyze the conditions for the existence of a long-run
relationship between the price tiers for each area. We estimate vector-error correction
models with rolling windows and create a panel of cointegration coefficients. Using
this approach, we establish that the cointegration parameter that bounds the tiers
together is greater during the bubble period compared to the period of more mod-
erate price movements. That is, according to the equilibrium relationship, low tier
homes appreciate and depreciate at greater rates during the bubble. We also find evi-
dence that the shift is linked to the percentage of subprime loan originations. While
controlling for the existence of a long-run relationship, we find strong evidence of
positive momentum in both tiers. Our analysis carries implications for a variety of
participants in the real estate market. To current homeowners and prospective home-
buyers it may suggest strategies regarding the timing of their decision to get into



Dynamics of House Price Tiers During the Housing Bubble 25

the market, sell their homes, or move up the property ladder (Seward, Delaney, and
Smith 1992). To real estate investors and property developers it may shed light on the
sources of financial risks. Given that mortgage default rates are linked not only to the
characteristics of the borrowers, but also to home prices, our findings bear implica-
tions also to mortgage lenders and mortgage insurers. Probably the most important
message is that mortgage insurance premiums have to take into account not only the
risk profile of borrowers but also the price dynamics of the relevant housing market
segment.

Appendix

The following is the list of all the SAs employed in the analysis. a denotes that
the SA meets only the stationarity requirements. b denotes that the SA addition-
ally meets the cointegration requirements. c denotes that the SA additionally meets
the requirement that at least one of the speed of adjustment coefficients is nonzero
in the vector error correction model: Aberdeen, WAc; Adrian, MI; Akron, OH;
Albany, GAb; Albany, NY; Albany, OR; Albertville, ALa ; Albuquerque, NMa ;
Alexandria, LA; Allegan, MIc; Allentown, PA; Anderson, INc; Anderson, SC; Ann
Arbor, MIc; Appleton, WIb; Asheville, NC; Ashtabula, OH; Astoria, ORa ; Athens,
GAc; Athens, TNa ; Atlanta, GA; Atlantic City, NJ; Auburn, INc; Auburn, NYa ;
Bainbridge, GAa ; Bakersfield, CA; Baltimore, MD; Baraboo, WIa ; Batavia, NY;
Battle Creek, MIc; Bay City, MIc; Beaver Dam, WIc; Bedford, INa ; Bellingham,
WA; Bend, OR; Big Rapids, MIa ; Binghamton, NYc; Birmingham, ALc; Blooming-
ton, ILc; Bloomington, IN; Bloomsburg, PAa ; Boise City, ID; Boston, MA; Boulder,
CO; Bremerton, WA; Burlington, NCc; Calhoun, GAa ; Cambridge, MDc; Canton,
OH; Cape Cod, MA; Carson City, NV; Cedar Rapids, IAc; Cedartown, GAa ; Cen-
tralia, WAc; Champaign-Urbana, ILc; Charleston, SC; Charlotte, NC; Chattanooga,
TNc; Chicago, IL; Chico, CA; Cincinnati, OH; Clarksville, TN; Cleveland, OH;
Cleveland, TNc; Clewiston, FLa ; College Station, TXc; Colorado Springs, CO;
Columbia, MOa ; Columbia, SC; Columbus, GAc; Columbus, OH; Concord, NH;
Connersville, INc; Coos Bay, ORc; Corning, NYa ; Cortland, NYc; Corvallis, OR;
Crawfordsville, INc; Cumberland, MD; Dalton, GA; Davenport, ILc; Dayton, OHc;
Daytona Beach, FL; Decatur, INa ; Defiance, OH; Denver, CO; Des Moines, IAc;
Destin, FL; Dover, DE; DuBois, PAc; Dubuque, IAc; Duluth, MNc; Dunn, NCc;
Durango, CO; Durham, NC; Dyersburg, TNa ; Eagle Pass, TX; East Liverpool, OHa ;
East Stroudsburg, PA; Easton, MDc; Eau Claire, WIc; El Centro, CA; Elizabeth
City, NCc; Elkhart, INc; Ellensburg, WAc; Elmira, NYa ; Erie, PAa ; Eugene, OR;
Eureka, CAc; Evansville, INc; Fallon, NVa ; Fargo, NDa ; Fayetteville, AR; Fayet-
teville, NC; Flagstaff, AZ; Florence, SC; Fond du Lac, WIc; Fort Collins, COa ;
Fort Myers, FL; Fort Smith, ARa ; Fort Valley, GAa ; Frankfort, INc; Fremont,
NEc; Fremont, OHa ; Fresno, CA; Gainesville, FL; Gainesville, GA; Georgetown,
SCc; Glens Falls, NY; Gloversville, NYa ; Grand Island, NEc; Grand Junction,
CO; Grand Rapids, MI; Grants Pass, ORc; Greeley, CO; Greensboro, NC; Greens-
burg, IN; Greenville, OHc; Greenville, SCc; Hanford, CA; Harrisburg, PA; Hartford,
CT; Heber, UTc; Hickory, NCc; Hinesville, GAa ; Holland, MIb; Honolulu, HI;
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Hot Springs, ARa ; Houma, LAc; Humboldt, TN; Huntington, INa ; Indianapo-
lis, IN; Ithaca, NYc; Jackson, MS; Jackson, TNc; Jacksonville, FL; Jacksonville,
NCc; Jasper, IN; Jesup, GAc; Johnson City, TNa ; Kankakee, IL; Kapaa, HI;
Keene, NHa ; Kendallville, INc; Kennewick, WAc; Key West, FLc; Kingsport, TNa ;
Kingston, NYc; Klamath Falls, OR; Knoxville, TN; La Crosse, WIa ; La Follette,
TNa ; Lafayette, INb; Lake Charles, LA; Lake Havasu City, AZ; Lakeland, FL;
Lancaster, PA; Lancaster, SCc; Lansing, MI; Las Vegas, NV; Lawrenceburg,
TN; Lebanon, PA; Lewisburg, TNc; Lewiston, IDc; Lexington Park, MD;
Lexington, KYc; Lima, OH; Lincoln, NEc; Lincolnton, NCc; Little Rock, ARc;
Logansport, INc; Longview, WAc; Los Angeles, CA; Louisville-Jefferson County,
KYc; Macon, GA; Madera, CA; Madison, IN; Madison, WIc; Manitowoc, WIc;
Marion, INc; Martin, TN; McMinnville, TNc; Medford, OR; Melbourne, FL;
Memphis, TNc; Merced, CA; Miami-Fort Lauderdale, FL; Minneapolis-St Paul,
MN; Mobile, AL; Modesto, CA; Morristown, TNa ; Moses Lake, WAc; Mount
Vernon, WAc; Muskegon, MI; Muskogee, OKc; Napa, CA; Naples, FL; Nashville,
TN; New Haven, CT; New London, CT; New Philadelphia, OHa ; New York, NY;
Nogales, AZ; Norwalk, OHb; Oak Harbor, WAa ; Ocala, FL; Ocean City, NJ;
Ocean Pines, MD; Ogden, UTc; Ogdensburg, NYa ; Oil City, PA; Okeechobee, FLc;
Oklahoma City, OKc; Olean, NYc; Olympia, WA; Omaha, NEc; Orlando, FL;
Oshkosh, WIa ; Oxford, MSc; Pahrump, NV; Palatka, FLa ; Palm Coast, FL; Panama
City, FL; Paris, TN; Payson, AZc; Pendleton, OR; Pensacola, FL; Peru, INa ;
Philadelphia, PA; Phoenix Lake, CAa ; Phoenix, AZ; Pittsburgh, PAa ; Plymouth,
INc; Port St. Lucie, FL; Portland, OR; Portsmouth, OHc; Pottsville, PA; Poughkeep-
sie, NY; Prescott, AZ; Prineville, OR; Providence, RI; Provo, UTc; Pueblo, COc;
Punta Gorda, FL; Racine, WIa ; Raleigh, NC; Reading, PA; Redding, CAc; Reno,
NV; Richmond, INc; Richmond, VA; Riverside, CA; Roanoke, VAc; Rochester, NYc;
Rocky Mount, NCc; Rome, GAb; Roseburg, ORc; Sacramento, CA; Saginaw, MI;
Salem, OR; Salinas, CA; Salisbury, MD; Salisbury, NC; Salt Lake City, UTa ; San
Diego, CA; San Francisco, CA; San Jose, CA; San Luis Obispo, CA; Sandusky,
OHc; Sanford, NCc; Santa Cruz, CA; Santa Fe, NM; Santa Rosa, CA; Sarasota, FL;
Savannah, GAa ; Searcy, AR; Seattle, WA; Sebring, FL; Seneca Falls, NY; Sevierville,
TN; Sheboygan, WIc; Shelbyville, TNc; Shelton, WA; Show Low, AZ; Sidney, OH;
Sierra Vista, AZ; Spartanburg, SCc; Spokane, WA; Springfield, IL; Springfield, MA;
Springfield, MOc; Springfield, OHc; St. George, UTa ; St. Louis, MOc; St. Marys,
GA; Stamford, CT; State College, PAa ; Statesville, NCa ; Stockton, CA; Syracuse,
NY; Tallahassee, FL; Tampa, FL; Terre Haute, IN; Thomasville, NCc; Tiffin, OH;
Toledo, OH; Torrington, CT; Trenton, NJ; Truckee, CAa ; Tucson, AZ; Tullahoma,
TNc; Tulsa, OK; Tuscaloosa, ALa ; Union City, TNa ; Urbana, OHc; Utica, NYc;
Vallejo, CA; Ventura, CA; Vero Beach, FLc; Vineland, NJ; Virginia Beach, VA;
Visalia, CA; Wabash, INc; Walla Walla, WAa ; Wapakoneta, OHa ; Warner Robins,
GA; Warsaw, INc; Washington, DC; Waterloo, IAc; Watertown, NY; Watertown,
WI; Wausau, WIc; Whitewater, WIa ; Willimantic, CT; Wilmington, NC; Winchester,
VA; Winston-Salem, NCa ; Wooster, OHc; Worcester, MA; Yakima, WAa ; York, PA;
Youngstown, OHc; Yuba City, CA; Yuma, AZ.
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