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Applications of Generalized Method of 
Moments Estimation 

Jeffrey M. Wooldridge 

he method of moments approach to parameter estimation dates back 
more than 100 years (Stigler, 1986). The notion of a moment is funda- 
mental for describing features of a population. For example, the popula- 

tion mean (or population average), usually denoted ,, is the moment that mea- 
sures central tendency. If y is a random variable describing the population of 
interest, we also write the population mean as E( y), the expected value or mean of 
y. (The mean of y is also called the first moment of y.) The population variance, 
usually denoted oM or Var( y), is defined as the second moment of y centered about 
its mean: Var(y) = E[ (y - A) 2]. The variance, also called the second central 
moment, is widely used as a measure of spread in a distribution. 

Since we can rarely obtain information on an entire population, we use a 
sample from the population to estimate population moments. If { yi: i = 1, . .. , n} 
is a sample from a population with mean ,, the method of moments estimator of A is 
just the sample average: y = (Yi + Y2 + * * + yn) / n. Under random sampling, 

y is unbiased and consistent for , regardless of other features of the underlying 
population. Further, as long as the population variance is finite, y is the best linear 
unbiased estimator of ,. An unbiased and consistent estimator of M2 also exists and 
is called the sample variance, usually denoted s2.1 

Method of moments estimation applies in more complicated situations. For 
example, suppose that in a population with , > 0, we know that the variance is 
three times the mean: M = 3,. The sample average, y, is unbiased and consistent 

1 See Wooldridge (2000, appendix C) for more discussion of the sample mean and sample variance as 
method of moments estimators. 

* Jeffrey M. Wooldridge is University Distinguished Professor of Economics, Michigan State 
University, East Lansing, Michigan. His e-mail address is (wooldril@msu.edu). 
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for ,u, but so is a different estimator, namely, s2/3. The existence of two unbiased, 
consistent method of moments estimators raises an obvious question: Which should 
we use? One possible answer is to choose the estimator with the smallest sampling 
variance, so that we obtain the most precise estimator of ,. But in this case, it turns 
out that for some values of ,, the sample average has a smaller variance, while for 
other values, s2/ 3 has the smaller variance. Is there an estimator that combines the 
information in 

- 
and s2/3 and performs better than either would alone? Yes, 

provided we restrict ourselves to large-sample comparisons. The theory of general- 
ized method of moments (GMM) tells us how to use the two sets of population moment 
conditions, which in this case can be written as E(y) = ,u and E[ (y - A) 2] = 3, 
in a manner that minimizes the asymptotic variance among method of moments 
estimators of ,u. 

The preceding setup illustrates two features that are common in applications 
of generalized method of moments. First, we have two population moment condi- 
tions but only one parameter, ,u, to estimate. If we replace the population moments 
E( y) and E[ (y - A) 2] with their sample counterparts, we obtain two equations in 
one unknown, the estimate 4. The two sample equations can be written as y = ,u 
and [ (yi - ,)2 + * + ( - )2] / n = 3,u. Generally, there is no value of 4 
that solves both of these equations. Instead, GMM weights the two sample moment 
conditions to obtain an asymptotically optimal estimator. A second noteworthy 
feature of this example is that at least one moment condition is nonlinear in the 
parameter, ,u, something that is common in advanced applications of GMM.2 

In estimating the parameters of a population regression function, a parallel 
situation can arise. When the error term is heteroskedastic, it is generally possible 
to add moment conditions to those used by ordinary least squares and obtain an 
asymptotically more efficient estimator. The key is to weight the entire set of 
moment conditions in an optimal way. 

Method of Moments Estimators: From Ordinary Least Squares to 
Generalized Method of Moments 

Many commonly used estimators in econometrics, including ordinary least 
squares and instrumental variables, are derived most naturally using the method of 
moments. As a starting point, consider a population linear regression model 

Y = f0 + f1 Xl + 02X2 + * * * + !kXk + U, 

2 Some authors prefer not to make a distinction between method of moments and "generalized" method 
of moments. Early applications of the method of moments were to estimate the parameters of univariate 
population distributions where the number of moment conditions was equal to the number of param- 
eters to be estimated. In these applications, the moment equations usually could be solved in closed 
form. In addition to allowing more moments than parameters to estimate, GMM was constructed 
directly for econometric applications with complicated models and data structures. 
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where y is the dependent or response variable, the xj are the covariates or explan- 
atory variables, and u is the unobserved error or disturbance. The goal is to estimate 
the k + 1 regression parameters, f3j, given a random sample on (y, xl, x2, ... ., Xk) . 

A common assumption in linear regression is that the population error has a 
mean of zero and that each xi is uncorrelated with the error term, that is, 

E(u) = 0, E(xju) = 0, j= 1, .. ., k. 

For brevity, we call this the "zero correlation assumption." This assumption implies 
that k + 1 population moments involving the covariates and the error are identi- 
cally zero. If we write the error in terms of the observable variables and unknown 
parameters as u = y - P- 0 1X1 - 32x2 - * - f3kXk, and we replace the population 
moments with their sample counterparts, the moment conditions implied by the 
zero correlation assumption lead to the first-order conditions for the ordinary least 
squares estimator; see, for example, Wooldridge (2000, equation 3.13). 

The zero correlation assumption is the weakest sense in which the covariates 
are exogenous in the population linear model. If these assumptions are the only 
ones we are willing to make, ordinary least squares is the only sensible estimator of 
the P3. 

Often we are willing to make a stronger exogeneity assumption. If we assume 
that the error term has a zero mean conditional on the covariates, 

E(u xl, X2, * * *, Xk) 0 ?, 

alternatives to ordinary least squares become available. Why? Because the zero 
conditional mean assumption ensures that any function of the covariates is uncor- 
related with u. For example, all functions of the form xhXJ, h, j = 1, . . ., k, are 
uncorrelated with u, even though these squares and interactions do not appear in 
the original model. If the model is a wage equation and the covariates include 
education and experience, the zero conditional mean assumption implies that the 
error is uncorrelated with the squares of education and experience and an inter- 
action between them, even if these functions are not in the original model. 

Under the zero conditional mean assumption, is it possible, by adding zero 
correlation assumptions involving nonlinear functions of the xj, to improve upon 
the ordinary least squares estimator? The answer is yes, provided there is heteroske- 
dasticity. Specifically, if the zero conditional mean assumption holds and 

Var(ulxl, x ..., Xk) depends on some of the covariates, it is possible to obtain 

3 Other common estimators, such as weighted least squares or the maximum likelihood estimator under 
an assumed distribution for u given x, are generally inconsistent if only the zero correlation assumption 
holds. 
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method of moments estimators that have smaller asymptotic variances than the 
ordinary least squares estimator.4 

Cragg (1983) was the first to discover that one can improve over ordinary least 
squares in the presence of heteroskedasticity of unknown form by applying gener- 
alized method of moments. How does GMM work in this case? First, one must 
decide which extra moment conditions to add to those generated by the usual zero 
correlation assumption. Next, having first done ordinary least squares, one must 
obtain the weighting matrix that is a crucial component to an efficient GMM analysis. 
The weighting matrix is obtained by inverting a consistent estimator of the 
variance-covariance matrix of the moment conditions. If there are m > k + 1 total 
moment conditions, where k is the number of covariates in the model, then the 
weighting matrix has dimension m X m. The GMM estimator minimizes a qua- 
dratic form in the sample moment conditions, where the weighting matrix appears 
in the quadratic form. As shown by Hansen (1982) and White (1982), this choice 
of the weighting matrix is asymptotically optimal.5 The intuition behind the opti- 
mality of this weighting matrix is easiest when the moment conditions are uncor- 
related with one another.6 Then, the weighting matrix can be taken to be a 
diagonal matrix, where each diagonal element is the reciprocal of the variance of 
the corresponding moment condition. In other words, moment conditions with 
larger variances receive relatively less weight in the estimation, since they contain 
less information about the population parameters. Moment conditions with smaller 
variances receive relatively more weight. In the more realistic case where the 
moment conditions are correlated, the weighting matrix efficiently combines the 
moment conditions by accounting for different variances and nonzero correlations. 

Several econometrics packages, including EViews, RATS and Stata, implement 
generalized method of moments fairly routinely. Why are Cragg-style estimators not 
used more? One problem is that the researcher must choose the additional 
moment conditions to be added in an ad hoc manner. Two researchers would 
generally use two different sets of moment conditions. Thus, the procedure would 
open one's research to the criticism of searching over different sets of moment 
conditions until the desired result is achieved. In fact, in large samples, one can 
improve on (or at least do no worse than) a previous researcher's estimator by 
adding more moment conditions. Where would one stop? A second issue is that 
ordinary least squares will be unbiased as well as consistent, whereas GMM is 

' The improvements over ordinary least squares estimation of the original model do not come by adding 
nonlinear functions of the x; as independent variables and estimating the expanded equation by 
ordinary least squares or weighted least squares. The covariates appearing in the model do not change 
when we estimate the model by GMM. We simply add more zero correlation assumptions between the 
original error term and additional functions of the original covariates. These extra moment conditions 
take the form E[ f1( x) u] = 0, where fh( x) denotes a nonlinear function of xl, x2 . . ., Xk. 

5 For textbook treatments of the choice of weighting matrix, see Hamilton (1994), Newey and McFad- 
den (1994), Hayashi (2000), Ruud (2000) and Wooldridge (2001). If u is homoskedastic in the model, 
then the ordinary least squares estimator is just as efficient as Cragg's estimator. 
6 For the problem of estimating the population mean when the variance is three times the mean, the two 
moment conditions are uncorrelated whenever y has a distribution symmetric about g. 
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guaranteed only to be consistent. Generally, GMM can suffer from finite-sample 
problems, especially if one gets carried away and adds many moment conditions 
that do not add much information; for discussion, see Bound, Jaeger and Baker 
(1995), Altonji and Segal (1996) and Staiger and Stock (1997). 

Given the additional decisions required in using estimators in the style of 
Cragg (1983) to improve on ordinary least squares results, it is little wonder that 
most applied researchers opt to stick with ordinary least squares. If they are 
concerned about heteroskedasticity, they have methods for computing standard 
errors and test statistics that are robust to heteroskedasticity of unknown form, as 
in White (1980). With large sample sizes, the additional efficiency gains that might 
be realized by Cragg's method probably pale in comparison to the questions raised 
by adding moment conditions to the ordinary least squares moment conditions. 
With small sample sizes, finite-sample bias in generalized method of moments 
estimators becomes an issue. 

Whether one prefers ordinary least squares under the zero correlation assump- 
tion or a Cragg estimator under the zero conditional mean assumption, they share 
an important feature: each consistently estimates the parameters of interest without 
further distributional assumptions involving the error u. If possible, we want 
estimators to be robust to the failure of model assumptions that are not central to 
the problem at hand, like whether heteroskedasticity exists, or whether u has a 

particular distribution. Such robustness is the hallmark of method of moments 
estimation. 7 

Hansen's (1982) seminal work on generalized method of moments estimators 
demonstrated that moment conditions could be exploited very generally to esti- 
mate parameters consistently under weak assumptions. Hansen essentially showed 
that every previously suggested instrumental variables estimator, in linear or non- 
linear models, with cross-section, time series or panel data, could be cast as a GMM 
estimator. Perhaps even more important, Hansen showed how to choose among 
the many possible method of moments estimators in a framework that allows for 

heteroskedasticity, serial correlation and nonlinearities. 
As we saw with Cragg's (1983) estimator, an important feature of generalized 

method of moments is that it allows more moment conditions than there are 

parameters to estimate-that is, it allows the parameters to be overidentfied. Gen- 

erally, given the set of population moment conditions, an optimal weighting matrix 
can be obtained for a GMM analysis. (For details, see the textbook references given 
in note 5.) 

One case where overidentification plays an important role is in the context of 

7 This notion of robustness is distinct from insensitivity to data outliers, or fat-tailed distributions, which 
is often the kind of robustness that is the focus in the statistics literature. In our usage, the sample 
average is a robust estimator because it is consistent for the population mean whenever the population 
mean exists, regardless of distribution. But the sample average is very sensitive to outliers. Method of 
moments estimators are based on sample averages, and so they generally will be sensitive to outliers. 
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instrumental variables estimation.8 Suppose that one or more of the xj in the 
population linear model is correlated with u, but that we have some variables 
properly excluded from the model that are uncorrelated with u. Provided the 
excluded variables are sufficiently correlated with the endogenous explanatory 
variables, we can use the excluded exogenous variables as instrumental variables.9 
When we have more instrumental variables than are needed to estimate the 
parameters, the most common estimation method is two-stage least squares. The 
two-stage least squares estimator is a generalized method of moments estimator that 
uses a weighting matrix constructed under homoskedasticity. The optimal GMM 
estimator uses a weighting matrix identical to that described for Cragg's estima- 
tor.10 The optimal GMM estimator is asymptotically no less efficient than two-stage 
least squares under homoskedasticity, and GMM is generally better under 
heteroskedasticity. 

A common theme about generalized method of moments is developing here. 
GMM estimators often can be found that are more efficient than common method 
of moments estimators-such as ordinary least squares and two-stage least 
squares-when textbook auxiliary assumptions such as homoskedasticity fail. The- 
oretically, this would seem to make a strong case for always using a GMM proce- 
dure. However, while virtually every empirical researcher has used ordinary least 
squares or two-stage least squares, most have probably never used a sophisticated 
method of moments estimator, which I take to be synonymous with GMM. In the 
next several sections, I discuss the scope of GMM for standard applications as well 
as for more sophisticated problems. 

Cross-Section Applications 

As mentioned in the previous section, it is always possible with overidentified 
parameters to improve upon two-stage least squares in the context of heteroske- 
dasticity of unknown form. Still, application of generalized method of moments in 
place of two-stage least squares is rare for cross-section applications. The reason, I 
think, is that even when heteroskedasticity clearly exists, it often has only a minor 
impact on estimates of coefficients and statistical significance. Moreover, as is the 
case with ordinary least squares, there are methods for calculating standard errors 
for the two-stage least squares estimator that are robust to heteroskedasticity. The 

8 Instrumental variables and two-stage least squares are discussed in the paper by Angrist and Krueger 
in this symposium. 
9 In Cragg's (1983) estimator, the "instruments" are simply nonlinear functions of the original explan- 
atory variables. The more common usage of instruments arises when some of the explanatory variables 
are endogenous, and then the instruments come from outside the equation of interest. 
10 The precise definition of heteroskedasticity when u is the error and z denotes the entire set of 
exogenous variables is that E(u2Iz) depends on z. White (1982) called the GMM estimator the two-stage 
instrumental variables estimator. If E(u21 z) is constant, two-stage least squares is an efficient GMM 
estimator. 
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additional gains from using GMM may be small. Besides, as practitioners know, the 
most important step in applying instrumental variable methods is finding good 
instruments. With poor instruments, the efficient GMM estimator is not likely to 
help much. 

To illustrate the differences among ordinary least squares, two-stage least 
squares and efficient generalized method of moments in a cross-section setting, I 
use a subset of the data in Card (1995) to estimate the return to education for 
blacks and nonblacks. I use data on men who were living in the South in 1966; the 
wage data are for 1976. The structural model has log(wage) as the dependent 
variable, where wage is measured hourly. The key explanatory variables are years of 
schooling (educ), a binary indicator for race (black) and an interaction between 
these two. The other explanatory variables include a quadratic in experience, an 
indicator for living in the South in 1976 and an indicator for living in an urban area 
in 1976. 

The ordinary least squares estimates of the coefficients on educ, black and 
black * educ are given in the first column of Table 1. Both the usual and heteroske- 
dasticity-robust standard errors are given (with the latter in brackets). The ordinary 
least squares estimate of the return to education for nonblacks is about 7.1 percent, 
and it is very statistically significant. The estimated return to education is about 
1.1 percentage points higher for blacks, but the coefficient on the interaction term 
is insignificant at the 10 percent level. 

A common concern in these sorts of wage regressions is that the education 
variable may be correlated with unobserved factors that can also affect earnings, 
such as motivation, ability or family background. As a result, the ordinary least 
squares estimator is generally biased and inconsistent for the causal effect of 
schooling on earnings. A standard solution to the endogeneity of education is to 
find an instrumental variable for education. 

Following Card (1995), I use an indicator for whether the man lived near a 

four-year college at age 16 (called nearc4) as in instrument for education, and I use 
the interaction between black and nearc4 as a natural instrument for black * educ. If 
I used only these two instrumental variables, the equation would be just identified, 
and there would be no difference between two-stage least squares and generalized 
method of moments.11 Therefore, I add to the instrument list interactions between 
nearc4 and the four other exogenous variables, resulting in four overidentifying 
restrictions. The two-stage least squares estimates are notably higher than the 
ordinary least squares estimates on educ and the interaction term. While educ 
becomes much less significant (but still significant at the 2 percent level), the 
interaction term black * educ becomes significant at the 0.1 percent level. The point 

11 When the number of instruments is the same as the number of explanatory variables, all general 
method of moments estimators, regardless of weighting matrix, reduce to the standard instrumental 
variables estimator. See Angrist and Krueger, this symposium, for more on the basic instrumental 
variables estimator. 
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Table 1 
Estimates of a Wage Equation 

Explanat oyy Ordinary Least Two-Stage Least Generalized Method 
Variables Squares Squares of Moments 

educ .0708 .1093 .1062 
(.0062) (.0463) (.0454) 
[.0066] [.0461] 

black -.3598 -.6296 -.6351 
(.0972) (.1446) (.1452) 
[.0975] [.1472] 

black educ .0114 .0368 .0371 
(.0077) (.0110) (.0111) 
[.0078] [.0112] 

Observations 1,247 1,247 1,247 
R-Squared .3038 .2521 N/A 

Notes: The equations also contain an intercept along with a quadratic in potential experience and binary 
indicators for living in the South and living in an SMSA. The two-stage least squares and generalized 
method of moments estimates are obtained using all explanatory variables except educ and black * educ 
as instruments, and, in addition, nearc4, black * nearc4 and interactions between black and the other four 
exogenous explanatory variables. For ordinary least squares and two-stage least squares, quantities in 
parentheses are the usual standard errors; those in brackets are robust to general heteroskedasticity. 

estimate implies that another year of education is worth about 3.7 percentage 
points more for a black man than for a nonblack man. 

The generalized method of moments estimator with weighting matrix that 
accounts for heteroskedasticity of unknown form uses the same list of instrumental 
variables as the two-stage least squares estimator.12 As shown in Table 1, the GMM 
estimates and standard errors are very similar to those for two-stage least squares. 
Because the two sets of standard errors for the two-stage least squares estimates are 
very close, heteroskedasticity does not appear to be much of a problem. As a result, 
it is unsurprising that GMM and two-stage least squares yield similar results. One 
reaction to this example is that GMM provides no particular advantage over 
two-stage least squares. The point estimates and statistical significance are quite 
similar. A second reaction is that using GMM does not hurt anything, and perhaps 
with other models or data sets it might have offered greater precision. Both views 
seem sensible. 

Recently, GMM has been applied successfully to estimate certain nonlinear 
models with endogenous explanatory variables that do not appear additively in an 
equation. A good example is an exponential regression function with endogenous 
explanatory variables. Mullahy (1997) uses GMM to estimate a model for daily 

12 EViews 4 was used to obtain the GMM estimates using the cross-section version of the weighting matrix 
to account for heteroskedasticity of unknown form. Implementing GMM is straightforward. Just as with 
two-stage least squares, one specifies the dependent variable, the explanatory variables and the list of all 
exogenous variables (including the instruments). The only thing different from two-stage least squares 
is in specifying the use of the efficient weighting matrix that accounts for possible heteroskedasticity. 
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cigarette consumption. Berry, Levinsohn and Pakes (1999) show how GMM can be 
used to estimate structural parameters to evaluate the welfare implications of 
voluntary export restrictions.13 

Time Series Applications 

Hansen (1982) introduced generalized method of moments estimation pri- 
marily with time series applications in mind, and so it is not surprising that GMM 
is relatively advantageous for time series data. In applications of linear time series 
models, serial correlation in the errors is the most important departure from 
common textbook assumptions. This raises the possibility of allowing the GMM 
weighting matrix to account for serial correlation of unknown form, as well as for 
heteroskedasticity, as discussed in Hansen (1982), White (1984) and Newey and 
West (1987).14 

To obtain a more efficient estimator than two-stage least squares (or ordinary 
least squares), one must have overidentifying restrictions. With time series, we can 
add moment conditions by assuming that past values of explanatory variables, or 
even past values of the dependent variable, are uncorrelated with the error term, 
even though they do not appear in the model. The drawback to finding moment 
conditions in this way is that it restricts the dynamics in the model. For example, if 
we start with a static equation, such as a simple Phillips curve with inflation as the 
dependent variable, we could apply generalized method of moments using current 
and lagged unemployment as the instrumental variables. The weighting matrix 
would account for possible serial correlation in the errors (often interpreted as 
supply shocks). But such an approach would assume that current and past unem- 
ployment rates are uncorrelated with the supply shocks, something we may not 
want to assume. 

Using lagged values of dependent and independent variables makes more 
sense in the context of models estimated under rational expectations. Then, the 
error term in the equation is uncorrelated with all variables dated at earlier time 
periods. Campbell and Mankiw (1990) use an instrumental variables approach to 
test the permanent income hypothesis. They also estimate the fraction of consum- 
ers who consume out of current, rather than permanent, income, by estimating a 

13 Unfortunately, generalized method of moments does not help much in relaxing distributional 
assumptions for many important nonlinear models with endogenous explanatory variables, such as 
probit or Tobit. For other models, such as the Box-Cox regression model, parameters can be estimated 
consistently under weak distributional assumptions (Amemiya and Powell, 1981), but then no partial 
effects on the mean or median value of the response variable can be estimated without making stronger 
assumptions. Just because one can estimate parameters by GMM under weak assumptions does not 
necessarily mean that quantities of interest can be estimated under those same assumptions. 
14 Importantly, solving serial correlation problems in u, by feasible generalized least squares, such as 
Cochrane-Orcutt, generally requires certain strict exogeneity assumptions on the regressors; that is, we 
must assume that the covariates in some time periods other than t are uncorrelated with u, (Wooldridge, 
2000, chapter 12). These assumptions are often questionable in time series contexts. 
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simple equation relating consumption changes to income changes. For their 
instrumental variables for income changes, Campbell and Mankiw use lags of 
consumption and income changes dated two or more quarters in the past, as they 
are worried about time aggregation of the consumption and income data inducing 
serial correlation in the errors. Campbell and Mankiw account for serial correlation 
by using two-stage least squares and computing robust standard errors. A similar 
problem is faced by Clarida, Gali and Gertler (2000), who estimate forward-looking 
policy reaction functions for the Federal Reserve. In an equation with the federal 
funds interest rate as the dependent variable, Clarida, Gali and Gertler note that 
the errors will follow a moving average process if the Fed's target horizon for 
inflation or the output gap exceeds the frequency of the quarterly data. These 
authors implement GMM, where the weighting matrix accounts for the serial 
correlation (and possible heteroskedasticity). Moving average error processes also 
arise in estimating asset pricing models where the investment horizon differs from 
the data frequency. In fact, such situations were an important motivation for 
Hansen (1982); see Hansen and Hodrick (1980) for an empirical application. 

Hansen and Singleton (1982) apply generalized method of moments to esti- 
mate nonlinear asset pricing models under rational expectations. The moment 
conditions used by Hansen and Singleton (1982) depend nonlinearly on two 
economic parameters, the discount rate and the coefficient of relative risk aversion. 
GMM has significant advantages over maximum likelihood in this context because 
GMM allows estimation under the restrictions implied by the theory; there is no 
need to add distributional assumptions that are not implied by the theory.'5 
Hansen and Singleton (1982) obtain estimates of the discount rate close to, but 
always less than, unity and a coefficient of relative risk aversion ranging from about 
0.35 to 0.97, depending on the kind and number of returns used and the set of 
instruments used in GMM estimation. Recently, Stock and Wright (2000), Weber 
(2000) and Neely, Roy and Whiteman (2001) offer explanations for the wide 
disparities in estimates of consumption-based asset pricing models. 

Panel Data Applications 

Some of the most interesting recent applications of generalized method of 
moments are to panel data. I will focus attention on linear unobserved effects 
models where the unobserved effect, or unobserved heterogeneity, is allowed to be 
correlated with the observed covariates. The standard estimator used to eliminate 
the potential bias caused by omitted heterogeneity is the fixed effects, or within, 

15 Generally, there are no computationally simple alternatives to GMM in nonlinear models, as the 
sample moment conditions are nonlinear in the parameters, and so any estimation method requires 
iterative methods. 
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estimator.16 The fixed effects estimator, which is a method of moments estimator 
based on the data after subtracting off time averages, is popular because it is simple, 
easily understood, and robust standard errors are readily available (for example, 
Wooldridge, 2001, chapter 10). 

When analyzing the fixed effects estimator, the standard assumptions are that 
the time-varying errors have zero means, constant variances and zero correlations, 
all conditional on the observed history of the covariates and on the unobserved 
effect (for example, Wooldridge, 2001, chapter 10). The first assumption, that the 
conditional mean of the time-varying errors is zero, implies that the observed 
covariates in every time period are uncorrelated with the time-varying errors in 
each time period. This so-called strict exogeneity assumption for the covariates is 
crucial for consistency of the fixed effects estimator. But the assumptions about 
constant variance and no serial correlation are used primarily to simplify calcula- 
tion of standard errors. If either heteroskedasticity or serial correlation is present, 
a generalized method of moments procedure can be more efficient than the fixed 
effects estimator, although the likely gains in standard applications are largely 
unknown. Extra moment conditions are available from the assumption that the 
covariates in all time periods are assumed to be uncorrelated with each time-varying 
error. Wooldridge (2001, chapter 11) describes how to implement GMM in this 
case.17 

Generalized method of moments is convenient for estimating interesting 
extensions of the basic unobserved effects model, for example, models where 
unobserved heterogeneity interacts with observed covariates. Lemieux (1998) uses 
GMM to estimate the union-wage effect when unobserved heterogeneity is valued 
differently in the union and nonunion sectors. 

Generalized method of moments is applied more often to unobserved effects 
models when the explanatory variables are not strictly exogenous even after con- 
trolling for an unobserved effect. As in cross-section and time series cases, there is 
usually a convenient estimator that is consistent quite generally, but possibly 
inefficient relative to GMM. For example, for studying the effects of prison popu- 
lation on crime rates, Levitt (1996) uses pooled two-stage least squares on a panel 
data set of states, after removing state fixed effects by differencing adjacent years. 
If the errors in the first-differenced equation are homoskedastic and serially un- 
correlated, the pooled two-stage least squares estimator is efficient. If not, a GMM 
estimator can improve upon two-stage least squares. 

Another leading application of generalized method of moments in panel data 
contexts is when a model contains a lagged dependent variable along with an 
unobserved effect. The standard method of estimating such models dates back to 
Anderson and Hsiao (1982): first-differencing is used to eliminate the unobserved 

16 Differencing across different time periods is another common method of eliminating the unobserved 
effects. 
17 Chamberlain (1984) describes minimum distance estimation of unobserved effects panel data mod- 
els. It turns out that the minimum distance and GMM approaches are asymptotically equivalent. 
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effect, and then lags two and beyond are used as instrumental variables for the 
differenced lagged dependent variable. Because the original time-varying errors are 
assumed to be serially uncorrelated, the differenced errors must contain serial 
correlation. GMM is well suited for obtaining efficient estimators that account for 
the serial correlation; see, for example, Arellano and Bond (1991). Van Reenen 
(1996) applies GMM to estimate a dynamic wage equation that measures the 
amount of firm rents captured by workers. For estimating a dynamic labor demand 
model using firm-level data, Blundell and Bond (1998) find that GMM with 
additional moment conditions can provide more precise estimates than can two- 
stage least squares of the parameter on lagged labor demand. 

Concluding Remarks 

The method of moments can be used to obtain parameter estimators that are 
consistent under weak distributional assumptions. In standard settings, where one 
would typically use ordinary or two-stage least squares, or standard panel data 
methods such as fixed effects, generalized method of moments can be used to 
improve over the standard estimators when auxiliary assumptions fail, at least in 
large samples. However, because basic econometric methods can be used with 
robust inference techniques that allow for arbitrary heteroskedasticity or serial 
correlation, the gains to practitioners from using GMM may be small. Significant 
GMM improvements are most likely in time series or panel data applications with 
neglected serial correlation. GMM is indispensable for more sophisticated applica- 
tions, including nonlinear rational expectations models or dynamic unobserved 
effects panel data models. 

m I would like to thank Gary Chamberlain, Bradford De Long, Alan Krueger and Michael 
Waldman for very helpful comments on an earlier draft. Timothy Taylor's editorial advice 
vastly improved the organization and content of the paper. 



Applications of Generalized Method of Moments Estimation 99 

References 

Altonji, Joseph G. and Lewis M. Segal. 1996. 
"Small-Sample Bias in GMM Estimation of Co- 
variance Structures." Journal of Business and Eco- 
nomic Statistics. July, 14:3, pp. 353-66. 

Amemiya, Takeshi andJames L. Powell. 1981. 
"A Comparison of the Box-Cox Maximum Like- 
lihood Estimator and the Non-Linear Two Stage 
Least Squares Estimator." Journal of Econometrics. 
December, 17:3, pp. 351-81. 

Anderson, T. W. and Cheng Hsiao. 1982. "For- 
mulation and Estimation of Dynamic Models 
Using Panel Data." Journal of Econometrics. Janu- 
ary, 18:1, pp. 47-82. 

Areflano, Manuel and Stephen R. Bond. 1991. 
"Some Tests of Specification for Panel Data: 
Monte Carlo Evidence and an Application to 
Employment Equations." Review of Economic Stud- 
ies. April, 58:2, pp. 277-97. 

Berry, Steven, James Levinsohn and Ariel 
Pakes. 1999. "Voluntary Export Restraints on 
Automobiles: Evaluating a Trade Policy." Ameri- 
can Economic Review. June, 89:3, pp. 400-30. 

Blundell, Richard and Stephen Bond. 1998. 
"Initial Conditions and Moment Restrictions in 
Dynamic Panel Data Models."Journal of Economet- 
rics. November, 87:1, pp. 115-43. 

Bound, John, David A. Jaeger and Regina M. 
Baker. 1995. "Problems with Instrumental Vari- 
ables Estimation When the Correlation Between 
the Instruments and Endogenous Explanatory 
Variable is Weak." Journal of the American Statisti- 
cal Association. June, 90:430, pp. 443-50. 

Campbell, John Y. and N. Gregory Mankiw. 
1990. "Permanent Income, Current Income, 
and Consumption." Journal of Business and Eco- 
nomic Statistics. July, 8:3, pp. 265-79. 

Card, David. 1995. "Using Geographic Varia- 
tion in College Proximity to Estimnate the Return 
to Schooling," in Aspects of Labour Market Behav- 
ior: Essays in Honor of John Vandercamp. L. N. 
Christophides, E. K. Grant and R. Swidinsky, eds. 
Toronto: University of Toronto Press, pp. 201- 
22. 

Chamberlain, Gary. 1984. "Panel Data," in 
Handbook of Econometrics, Volume Two. Z. Griliches 
and M.D. Intriligator, eds. Amsterdam: North- 
Holland, pp. 1248-318. 

Clarida, Richard,Jordi Gali and Mark Gertler. 
2000. "Monetary Policy Rules and Macroeco- 
nomic Stability: Evidence and Some Theory." 
Quarterly Journal of Economics. February, 115:1, 
pp. 147-80. 

Cragg, John G. 1983. "More Efficient Estima- 
tion in the Presence of Heteroskedasticity of 

Unknown Form." Econometrica. May, 51:3, pp. 
751-63. 

Hamilton, James D. 1994. Time Series Analysis. 
Princeton: Princeton University Press. 

Hansen, Lars Peter. 1982. "Large Sample 
Properties of Generalized Method of Moments 
Estimators." Econometrica. July, 50:4, pp. 1029- 
054. 

Hansen, Lars Peter and Robert J. Hodrick. 
1980. "Forward Exchange Rates as Optimal Pre- 
dictors of Future Spot Rates: An Econometric 
Analysis." Journal of Political Economy. October, 
88:5, pp. 829-53. 

Hansen, Lars Peter and Kenneth J. Singleton. 
1982. "Generalized Instrumental Variables Esti- 
mation of Nonlinear Rational Expectations 
Models." Econometrica. September, 50:5, pp. 
1269-286. 

Hayashi, Fumio. 2000. Econometrics. Princeton, 
N.J.: Princeton University Press. 

Lemieux, Thomas. 1998. "Estimating the Ef- 
fects of Union on Wage Inequality in a Panel 
Data Model with Comparative Advantage and 
Nonrandom Selection." Journal of Labor Econom- 
ics. April, 16:2, pp. 261-91. 

Levitt, Steven D. 1996. "The Effect of Prison 
Population Size on Crime Rates: Evidence from 
Prison Overcrowding Litigation." Quarterly Jour- 
nal of Economics. May, 111:2, pp. 319 -51. 

Mullahy, John. 1997. "Instrumental-Variable 
Estimation of Count Data Models: Applications 
to Models of Cigarette Smoking Behavior." Re- 
view of Economics and Statistics. November, 79:4, 
pp. 586-93. 

Neely, ChristopherJ., Amlan Roy and Charles 
H. Whiteman. 2001. "Risk Aversion Versus Inter- 
temporal Substitution: A Case Study of Identifi- 
cation Failure in the Intertemporal Consump- 
tion Capital Asset Pricing Model." Journal of 
Business and Economic Statistics. Forthcoming. 

Newey, Whitney K and Daniel L. McFadden. 
1994. "Large Sample Estimation and Hypothesis 
Testing," in Handbook of Econometrics, Volume 
Four. R.F. Engle and D.L. McFadden, eds. Am- 
sterdam: North-Holland, pp. 2111-245. 

Newey, Whitney K. and Kenneth D. West. 
1987. "A Simple, Positive Semi-Definite, Het- 
eroskedasticity and Autocorrelation Consistent 
Covariance Matrix." Econometrica. May, 55:3, pp. 
703-08. 

Ruud, Paul A. 2000. An Introduction to Classical 
Econometric Theory. Oxford: Oxford University 
Press. 

Staiger, Douglas and James H. Stock. 1997. 



100 Journal of Economic Perspectives 

"Instrumental Variables Regression with Weak 
Instruments." Econometrica. May, 65:3, pp. 557-86. 

Stigler, Stephen M. 1986. The History of Statis- 
tics. Cambridge, Mass.: Harvard University Press. 

Stock, James H. and Jonathan H. Wright. 
2000. "GMM with Weak Identification." Econo- 
metrica. September, 68:5, pp. 1055-096. 

Van Reenen, John. 1996. "The Creation and 
Capture of Rents: Wages and Innovations in a 
Panel of U.K. Companies." Quarterly Journal of 
Economics. February, 111:1, pp. 195-226. 

Weber, Christian E. 2000. "'Rule-of-Thumb' 
Consumption, Intertemporal Substitution, and 
Risk Aversion." Journal of Business and Economic 
Statistics. October, 18:4, pp. 497-502. 

White, Halbert. 1980. "A Heteroskedasticity- 
Consistent Covariance Matrix Estimator and a 
Direct Test for Heteroskedasticity." Econometrica. 
May, 48:4, pp. 817-38. 

White, Halbert. 1982. "Instrumental Variables 
Regression with Independent Observations." 
Econometrica. March, 50:2, pp. 483-99. 

White, Halbert. 1984. Asymptotic Theory for 
Econometricians. Orlando, Fla.: Academic Press. 

Wooldridge, Jeffrey M. 2000. Introductory 
Econometrics: A Modern Approach. Cincinnati, 
Ohio: South-Western. 

Wooldridge, Jeffrey M. 2001. Econometric Anal- 
ysis of Cross Section and Panel Data. Cambridge, 
Mass.: MIT Press. 


	Article Contents
	p. [87]
	p. 88
	p. 89
	p. 90
	p. 91
	p. 92
	p. 93
	p. 94
	p. 95
	p. 96
	p. 97
	p. 98
	p. 99
	p. 100

	Issue Table of Contents
	The Journal of Economic Perspectives, Vol. 15, No. 4 (Autumn, 2001), pp. 1-234+i-vi
	Volume Information [pp.  231 - 234]
	Front Matter [pp.  1 - 2]
	Symposium: Econometric Tools
	Symposium on Econometric Tools [pp.  3 - 10]
	Nonparametric Density and Regression Estimation [pp.  11 - 28]
	Semiparametric Censored Regression Models [pp.  29 - 42]
	Binary Response Models: Logits, Probits and Semiparametrics [pp.  43 - 56]
	Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left [pp.  57 - 67]
	Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments [pp.  69 - 85]
	Applications of Generalized Method of Moments Estimation [pp.  87 - 100]
	Vector Autoregressions [pp.  101 - 115]
	The New Econometrics of Structural Change: Dating Breaks in U.S. Labor Productivity [pp.  117 - 128]
	The Bootstrap and Multiple Imputations: Harnessing Increased Computing Power for Improved Statistical Tests [pp.  129 - 141]
	Quantile Regression [pp.  143 - 156]
	GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics [pp.  157 - 168]

	Teaching Statistics and Econometrics to Undergraduates [pp.  169 - 182]
	Free Labor for Costly Journals? [pp.  183 - 198]
	Features
	Retrospectives: Cost-Benefit Analysis and the Classical Creed [pp.  199 - 208]
	Recommendations for Further Reading [pp.  209 - 217]
	Notes [pp.  223 - 230]

	Comments
	A Public Choice Explanation for the Budget Surplus [pp.  219 - 221]
	Response from Alberto Alesina [p.  221]
	Revolutions in Economic Thought [pp.  221 - 222]
	Response from Mark Blaug [p.  222]

	Back Matter [pp.  i - vi]



