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E C O N O M E T R I C A  


MAXIMUM LIKELIHOOD ESTIMATION OF 

MISSPECIFIED MODELS 


This paper examines the consequences and detection of model misspecification when 
using maximum likelihood techniques for estimation and inference. The quasi-maximum 
likelihood estimator (QMLE) converges to a well defined limit, and may or may not be 
consistent for particular parameters of interest. Standard tests (Wald, Lagrange Multiplier, 
or Likelihood Ratio) are invalid in the presence of misspecification, but more general 
statistics are given which allow inferences to be drawn robustly. The properties of the 
QMLE and the information matrix are exploited to yield several useful tests for model 
misspecification. 

1. INTRODUCTION 

SINCER. A. FISHER advocated the method of maximum likelihood in his 
influential papers [13, 141, it has become one of the most important tools for 
estimation and inference available to statisticians. A fundamental assumption 
underlying classical results on the properties of the maximum likelihood estima- 
tor (e.g., Wald [32]; LeCam [23]) is that the stochastic law which determines the 
behavior of the phenomena investigated (the "true" structure) is known to lie 
within a specified parametric family of probability distributions (the model). In 
other words, the probability model is assumed to be "correctly specified." In 
many (if not most) circumstances, one may not have complete confidence that 
this is so. 

If one does not assume that the probability model is correctly specified, it is 
natural to ask what happens to the properties of the maximum likelihood 
estimator. Does it still converge to some limit asymptotically, and does this limit 
have any meaning? If the estimator is somehow consistent, is it also asymptoti- 
cally normal? Does the estimator have properties which can be used to decide 
whether or not the the specified family of probability distributions does contain 
the true structure? This paper provides a unified framework within which specific 
answers to each of these equations can be given. 

The consistency question was apparently first considered independently by 
Berk [7, 81 and Huber [20]. Berk takes a Bayesian approach and mentions in 
passing the information theoretic interpretation emphasized here. Huber's ap- 
proach is classical; he provides very general conditions, building on those of 
Wald [32], under which the maximum likelihood estimator converges to a 
well-defined limit, even when the probability model is not correctly specified. 

' I  am indebted to Jon Wellner, Tom Rothenberg, the referees, and the participants of the 
Harvard/MIT econometrics workshop for helpful comments and suggestions. 
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Huber's limit is identical to that of Berk; however, Huber does not explicitly 
discuss the information theoretic interpretation of this limit. This interpretation 
has been emphasized by Akaike [3], who has observed that when the true 
distribution is unknown, the maximum likelihood estimator is a natural estimator 
for the parameters which minimize the Kullback-Leibler [22] Information Crite- 
rion (KLIC). Huber also elegantly treats the asymptotic normality question, and 
Souza and Gallant [30] definitively treat the related problem of inference, in a 
general implicit nonlinear simultaneous equations framework. 

In Section 2, we provide simple conditions under which the maximum likeli- 
hood estimator is a strongly consistent estimator for the parameter vector which 
minimizes the KLIC. Our conditions are more closely related to the classical 
treatment of maximum likelihood given by LeCam [23] than to the earlier 
conditions of Wald [32]. While not as general as Huber's [20] conditions, they are 
nevertheless sufficiently general to have broad applicability. They are also more 
easily verified in common situations and have somewhat greater intuitive appeal 
than do Huber's. 

Our treatment of asymptotic normality, given in Section 3, builds on the 
assumptions used to obtain consistency. While it too is more restrictive than 
Huber's approach, it does include LeCam's [23] asymptotic normality result as a 
special case. An interesting feature of this result is that with misspecification, the 
asymptotic covariance matrix of the QMLE no longer equals the inverse of 
Fisher's information matrix. Nevertheless, the covariance matrix can be consis- 
tently estimated and, as expected, simplifies to the familiar form in the absence 
of misspecification. 

This latter property is exploited in Section 4 to yield a new test for misspecifi- 
cation, applicable to a broad range of problems, including omnibus or directional 
tests for univariate or multivariate normality, as well as tests for misspecification 
of linear or nonlinear regression equations. 

In Section 5, properties of the QMLE are further exploited to yield specifica- 
tion tests of the Hausman [17] type. A new statistic, based on evaluating the 
scores for a maintained log-likelihood at an alternative consistent QMLE, is 
proposed and shown to be asymptotically equivalent to the Hausman statistic. 
This new statistic is often simpler to compute, since it doesn't require full 
maximization of the likelihood function. 

2. CONSISTENCY 

Our first assumption defines the structure which generates the observations. 

ASSUMPTIONAl :  The independent random 1 x M vectors U,,t = 1, . . . ,n, 
have common joint distribution function G on 2, a measurable Euclidean space, 
with measurable Radon-Nikodym density g = dG/dv.  

Since G is unknown a priori, we choose a family of distribution functions 
which may or may not contain the true structure, G. It is usually easy to choose 
this family to satisfy the next assumption. 
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ASSUMPTIONA2: The family of distribution functions F(u, 6)  has Radon- 
Nikodjlm densities f(u, 6) = dF(u,6)/dv which are measurable in u for every 6 
in O, a compact subset of ap-dimensional Euclidean space, and continuous in 6 
for every u in Q. 

Next, we define the quasi-log-likelihood of the sample as 

and we define a quasi-maximum likelihood estimator (QMLE) as a parameter 
vector 6, which solves the problem 

THEOREM2.1 (Existence): Given Assumptions A 1 and A2, for all n there exists 
a measurable QMLE, dn. 

All proofs are provided in the Mathematical Appendix. Theorem 2.1 ensures 
that a QMLE always exists, but does not say anything about uniqueness. 

Given the existence of a QMLE, we may examine its properties. It is well 
known that when F contains the true structure G (i.e., G(u) r F(u, 6,) for some 
6, in 0) the MLE is consistent for 6, under suitable regularity conditions (Wald 
[32. Theorem 21; LeCam [23, Theorem 5.al). Without this restriction Akaike [3] 
has noted that since L,(U,6) is a natural estimator for E(logf(U,,B)),$,, is a 
natural estimator for 6,, the parameter vector which minimizes the Kullback- 
Leibler [22] Information Criterion (KLIC), 

Here, and in what follows, expectations are taken with respect to the true 
distribution. Hence, 

I ( g  :f , 6 )  = /logg(u)dG(u) - Jlogf(u,e)dG(u). 

The opposite of I ( g  :f ,6)  is called the entropy of the distribution G(u) with 
respect to F(u, 6). Intuitively, I (  f :g, 6) measures our ignorance about the true 
~ t ruc ture .~  

To support Akaike's observation that 6, is a natural estimator for O,, we 
impose the following additional condition. 

ASSUMPTIONA3: (a) E(logg(U,)) exists and llog f(u, 6)j 5 m(u) for all 6 in O, 
where m is integrable with respect to G; (b) I ( g  :f, 6)  has a unique minimum at 
6, in O. 

' ~ k a i k e[3] provides a useful discussion of the appropriateness of the KLIC for discriminating 
between models. Renyi 1271 gives a n  axiomatic justification for the entropy as an information 
measure. Important properties of the KLIC which will be used later are I ( g  :f,8)  2 0 for all 0 in O, 
and I ( g  :f,8,) = 0 for some 8, in O if and only if g(u) = f (u ,  0,) almost everywhere - v (Rao [26, 
Theorem le.6(ii)]). 
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Assumption A3(a) ensures that the KLIC is well-defined; for example, if 
M = 1 and f and g are normal density functions Assumption A3(a) is satisfied 
whenever the true variance a: is finite and O does not contain a2= 0. Assump- 
tion A3(b) is the fundamental identification condition (cf. Bowden [9]), which, 
for example, rules out redundant regressors in the linear regression framework 
and is equivalent to the rank condition in the simultaneous equations framework3 
(cf. Rothenberg [28]). When Assumption A3(b) holds, we say that 8, is globally 
identifiable. We can now state the desired result. 

THEOREM2.2 (Consistency): Given Assumptions A 1-A3, 8, 8, as n + co for 
A a c

almost every sequence ( U,); i .e . , 6, + 8,. 

In other words, the QMLE is generally a strongly consistent estimator for 6,, 
the parameter vector which minimizes the KLIC. This ensures that we minimize 
our ignorance about the true structure; thus we might call the QMLE the 
"minimum ignorance" estimator. 

If the probability model is correctly specified (i.e., g(u) = f(u,8,) for som: 6, 
in O), then I ( g :  f ,6 )  attains its unique minimum at 6,= do, so that 6, is 
consistent for the "true" parameter vector 6,. The present result with g(u) = f(u, 
8,) is closely related to the classical MLE consistency result of LeCam [23, 
Theorem 5a]; it is straightforward to verify that given Assumptions A1-A3 and 
g(u) = f(u,8,), LeCam's [23, pp. 303-3041 consistency conditions (i)-(ic) are 
satisfied. 

It is important to point out that the correct specification of the probability 
model is a sufficient, but by no means a necessary condition for the consistent 
estimation of particular parameters of interest. For example, even when the true 
distribution is not normal, maximum likelihood carried out under the assumption 
of normality (i.e., least squares) yields consistent estimates of the mean and 
variance of distributions for which these quantities are finite. Indeed, it is the 
consistency of the QMLE for the parameters of interest in a wide range of 
situations which ensures its usefulness as the basis for the robust estimation 
techniques (the M-estimators) proposed by Huber [20]. This fact also provides 
the basis for specification tests of the Hausman [17] type, which we develop in 
Section 5. 

Although 8:, can fail to be consistent for the parameters of interest as a result 
of the failure of the distributional assumptions (e.g., many robust estimation 
techniques require symmetric distributions for consistency), another important 
reason for this failure is the failure of restrictions implicitly or explicitly imposed 
on the elements of 8, particularly on the location parameters. As a simple 

3Strictly speaking, the regularity conditions given here allow our results to be applied only to 
regression equations with i.i.d. regressors (e.g.. as in White [33, 361). Nevertheless, we expect the 
conclusions of our theorems to hold under similar conditions for the general implicit nonlinear 
simultaneous equations model, as the results of Souza and Gallant [30]suggest. The present approach 
is taken to avoid burying the reader in a mass of notation and detail. 
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example, incorrectly assuming that the mean is zero when one estimates the 
variance of a population leads to inconsistent estimates. In the linear regression 
framework, omitting a relevant variable correlated with the included regressors 
will lead to inconsistent parameter estimates. Similarly, incorrect parametric 
constraints in the simultaneous equations framework can lead to inconsistent 
estimates. 

3. ASYMPTOTIC NORMALITY 

With additional conditions provided in this section, we can show that the 
QMLE is asymptotically normally distributed. When the partial derivatives exist, 
we define the matrices 

If expectations also exist, we define the matrices 

When the appropriate inverses exist, define 

ASSUMPTIONA4: a log f(u,e)/a6,, i = 1, . . . , p , are measurable functions of u 
for each 6 in O and continuously differentiable functions of 6 for each u in Q. 

ASSUMPTION~ 5 :  6)laeia6,I and lalog f ( ~ ,  . aiog f(u, 6)/a6,1, la2iog f ( ~ ,  6)/a6, 
i , j = 1, . . . , p  are dominated by functions integrable with respect to G for all u 
in and B in O. 

ASSUMPTIONA6: (a) 8, is interior to O; (b) B(B,) is nonsingular; (c) 6, is a 
regular point of A (6). 

Assumption 4 ensures that the first two derivatives with respect to B exist; that 
these derivatives are measurable in u follows from Assumption A2, since the 
derivative can be considered as the limit of a sequence of measurable difference 
quotients. These conditions allow us to apply a mean value theorem for random 
functions given by Jennrich [21, Lemma 31. Assumption 5 ensures that the 
derivatives are appropriately dominated by functions integrable with respect to 
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G, which ensures that A(8) and B(0) are continuous in 6 and that we can apply 
a uniform law of large numbers (LeCam [23, Corollary 4.11; Jennrich [21, 
Theorem 21) to A,($) and B,(B). In Assumption A6(c), we define a regular point 
of the matrix A(0) as a value for 8 such that A(6) has constant rank in some 
open neighborhood of 8. 

Before stating the asymptotic normality result, we give a very general result for 
the identification problem. Before, we observed that if Assumption A3(b) holds, 
6, is globally identifiable; we say that 6, is locally identifiable if for some open 
neighborhood 97,c O, I ( g  :f, 6) has a unique minimum at 8,. 

THEOREM3.1 (Identification): (i) Given Assumptions A 1 -A 3(a) and Assump- 
tions A4-A6(a), if 6, is globally (locally) identifiable and if 6, is a regular point of 
A (B), then A (6,) is negative definite. (ii) Given Assumptions A 1-A3(a) and 
Assumptions A4-A6(a), if A (6,) is negative definite and if 6, minimizes I ( g  :f, 8 )  
in an open neighborhood 9L c O, then 8, is locally identifiable. 

This result shows that the identification problem has content even when the 
model is misspecified. If we further suppose that g(u) = f(u, 6,) for 8, in O and 
that Assumption A7 below holds, the identification results of Rothenberg [28, 
Theorem 11 and Bowden [9, p. 10731 follow as corollaries. Theorem 3.1 shows 
that a necessary condition for the identifiability ?f 8, is the negative definiteness 
of A (6,). If we find that the sample analog A,, (6,) is singular or nearly singular, 
we have an indication that Assumption A3(b) does not hold. 

THEOREM3.2 (Asymptotic Normality): Given Assumptions A 1 -A6 

Moreover, C,(~,)TC(6,), element by element. 

If we further assume that the model is correctly specified, so that g(u) =f(u, 
6,) for some 8, in O, then Theorem 3.2 contains the asymptotic normality result 
of LeCam [23, Theorem 6.(i)]. LeCam also requires 

for all 6 in O. Equation (3.1) is the familiar equality in maximum likelihood 
theory which ensures the equivalence of the Hessian (left-hand side) and outer 
product (right-hand side) forms for the information matrix. 

In the present case, this equivalence generally won't hold, as an example below 
demonstrates. However, when the model is correctly specified and the next 
assumption holds, we obtain an information matrix equivalence result. 
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ASSUMPTIONA7: la[af(u, 8)/aO, .f (u ,  8)]/a8,1. I ,  j = I ,  . . . ,p, are dominated 
by functions integrable with respect to v for all 8 in 0, and  the minimal support 
of f (u ,  8 )  does not depend on 8." 

THEOREM3.3 (Information Matrix Equivalence): Given Assumpr~ons A ILA7, f 
g ( u )  = f(u,B,) for 8, in 0, ihetz 8,= 8, and A(8,) = - B(8,). so that C(8,) = 

- A (8,)- ' = B(8,) ', here -A (8,) is Fisher' F itformatton rnatrir. 

Together. Conditions A1-A7 and  g (u )  = f(u.8,) for 8, in O may be thought of 
as the "usual maximum likelihood regularity conditions," since they ensure that 
all the familiar results hold. 

T o  see that A (8,) will not generally equal -B(B,), consider the estimation of 
the mean and variance of i.i.d. random variables U,, assumed to be distributed as 
N (  yo.0;). The quasi-log-likelihood of an  observation is 

log f(U,. p, a') = - . 5 l o g 2 ~- .510goZ- .5( Cr, - ,p)'/a2. 

Provided that U, has nonzero variance and  finite fourth moment. it follows that 
p* = yo and 0: = a:, while 

where JP, and p2 are the skewness and kurtosis measures, ,I,, = E [ ( U ,- yo)']/ 
0: and /3, = E [ ( U ,- p,)4]/ai. Obviously, a necessary and sufficient condition 
that A(  p,, a;) = - B(  p,, a;) is ;PI = 0 and ,R, = 3. for which normality is 
sufficient. With rare exceptions. inferences in the maximum likelihood frarne- 
work are drawn using estimators for A ( p", 0;) or  B (  pl,, a,'), taking advantage of 
the information matrix equivalence. In the present example. the presence of 
skewness and/or  kurtosis can lead to serious errors in inference when standard 
techniques are applied. Note that inferences about the mean based on a n  
estimator for A ( p,, a;) will be correct due to the diagonality of A(  p,,a;). 
However, inferences about o i  will be affected. as will inferences about either po 
or a; based on an estimator for B( y,,a;) such as B , (  $,,, 6;). 

This example makes it clear that care must be taken in drawing inferences in 
the presence of model misspecification. The fact that A(8,) generally doesn't 

'This latter condition apparenti) can b e  weakened vanishes on the to a requirement that j ( ~ 1 . 6 )  
boundary of ~ t sminimal support.  
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equal -B(8,) causes the familiar asymptotic equivalence (Silvey [29]) of the 
Lagrange Multiplier (Aitchison and Silvey [2]) and Wald [31] statistics to the 
likelihood ratio statistic to break down, as we show below. Nevertheless, Theo- 
rem 3.2 can be used to construct appropriate statistics for hypothesis testing 
when the model is misspecified. In particular, suppose we wish to test the 
hypothesis H, : s(8,) = 0, where s : RP+ Rr is a continuous vector function of 8 
such that its Jacobian at 8,, Vs(B,), is finite with full row rank r, against the 
alternative H I  : s(8,) # 0. 

The appropriate form for the Wald statistic is given by the following result. 

THEOREM3.4 (Wald Test): Given Assumptions A 1-A 6 and H,, 

Note that the usual Wald statistic uses either -~ , (d , ) - '  or B , ( J~) - '  in place 
of ~ ~ ( 8 , ) .  must be used to ensure that the With model misspecification, ~ ~ ( 4 , )  
test has the proper size. 

Let 8, solve the constrained maximization problem 

maxL,(U,B) subjectto s ( 8 ) = 0 .
8 € 0  

The proper form for the Lagrange Multiplier statistic is given by the next result. 

THEOREM3.5 (Lagrange Multiplier Test): Given Assumptions A 1-A6 and H,, 

Moreover, w,- !?a,+ 
P 0. 

The usual form for the Lagrange Multiplier statistic replaces c,(&) with 
-A,(()-'. Again, ~ ~ ( 8 , )  must be used in the presence of model misspecifica- 
tion to ensure that the test has proper size. 

This result further establishes the asymptotic equivalence of the specification 
robust versions of the Wald and Lagrange Multiplier statistics. However, the 
likelihood ratio statistic is not generally equivalent to these in the presence of 
model misspecification. To see this, we observe that a two term mean value 
expansion of the likelihood ratio statistic for testing the hypothesis 6, = 8' yields 

- ~ H ( L , ( U , ~ ~ )- L , U , , ) )  + ( 6  - B ' ) ~ A ( O ~ ) ( &- 6,) 50. 
The term - n(& - 8 ')'A (8 ')(8,- 8 ') is an appropriate Wald statistic when the 
model is correctly specified. Otherwise, ~ ( 8 ' ) -  ' must replace -A (8') to obtain 
a test of the correct size; the likelihood ratio fails to do this and is not 
asymptotically distributed as X? (cf. Souza and Gallant [30, Theorem 91, Foutz 
and Srivastava [15]). 
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4. THE INFORMATION MATRIX TEST FOR MISSPECIFICATION 

The information matrix equivalence theorem says essentially that when the 
model is correctly specified, the information matrix can be expressed in either 
Hessian form, -A (e,), or outer product form, B(6,). Equivalently, A (6,) + 
B(6,) = 0. When this equality fails, it follows that the model is misspecified, and 
we saw that this misspecification can have serious consequences when standard 
inferential techniques are applied. 

The failure of information matrix equivalence can also indicate misspecifica- 
tions which render the QMLE inconsistent for particular parameters of interest. 
For example, suppose we estimate the variance of random variables U, assumed 
to be distributed as N(O,a$) ,  when in fact E(U, )  = yo#  0 .  Then a*: 
= n - ' C ; = ,  U: converges to a: = a: + y:. With U,-N(yo,  a:), it follows that 
A ( & )  = - .5a: while = .5u: - .5y:/2az. Obviously, = -~ ( 0 2 )  ~ ( a : )  
~ ( 0 : )if and only if yo = 0, so A(a:) # -~ ( o : )indicates estimator inconsis- 
tency. Such examples are easily multiplied, suggesting that A(@,)+ B(6,) is a 
useful indicator of misspecifications which cause either parameter or covariance 
matrix estimator inconsistency. 

The matrix A(6,) + B(6,) is unobservable, but it can be consistently esti- 
mated by A,(&) + ~ ~ ( 8 , ) .To obtain a test statistic, we consider the asymptotic 
distribution of the elements of ,/n(A,(B*,)+ B,(B*,)), anticipating that under 
appropriate conditions, these elements will be jointly normally distributed asymp- 
totically, with mean zero in the absence of misspecification. Given a consistent 
estimator for the asymptotic covariance matrix, we can form an asymptotic X 2  

statistic of the Wald [31]type. 
It is important to point out that the large sample approach is not the only way 

of proceeding. For example, when estimating the mean and variance from a 
sample hypothesized to be normal, the hypothesis that A(@,)+ B(6,) = 0 is 
equivalent to the joint hypothesis that J P ,  = 0 and P,  = 3. There are presently 
available several useful approximate finite sample omnibus tests for normality 
which make joint use of the sample analogs of J P ,  and P,, i.e., J b ,  and b, (e.g., 
D'Agostino and Pearson [12];Bowman and Shenton [lo];Pearson, D'Agostino, 
and Bowman [25]).These are all possible alternatives to our large sample 
approach. However, since these are specific to the problem of testing normality, 
and since we wish to give a general procedure, we take a large sample approach. 

To simplify the notation which follows, we define 

The test will be based on the "indicators" ~ ~ ( 8 , )  which are = n- 'C:= ,d,(u,, J,), 
the elements of An(dn)+ ~ ~ ( 8 , ) .In many cases, however, it is inappropriate to 
base the test on all p ( p  + 1)/2  indicators. First, some indicators may be 
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identically zero, as in the example of estimating the mean and variance of a 
supposed normal variate. There, D l , (4,) = - 1/6: + 1/6,2 = 0. Second, some 
indicators may be linear combinations of others. This occurs in the linear 
regression framework when the regression contains a constant and polynomial 
terms in a particular regressor (see White [35]). In either case, it is appropriate to 
ignore such indicators. 

Finally, and just as importantly, when one is estimating a moderate number of 
parameters, it may simply be infeasible to test all indicators jointly. For example, 
if p = 10, there can be as many as 55 indicators. Even with a moderately large 
sample, say n = 75, one may be concerned about the available degrees of 
freedom. In such situations it is possible to avoid this problem by performing 
tests on linear combinations of the indicators, or more simply, by considering 
only a subset. This yields a more directional test, and which subset should be 
chosen depends on the alternatives against which power is desired. In the normal 
example, one will obtain tests powerfu! against skewed or kurtotic alternatives 
depending on whether D,,(8,) or D,,(O,) is the basis for a directional test. 

Accordingly, define the q X 1 vector d ( u , 8 )  ( q  S p ( p  + 1) /2 )  so that D,(&) 
= n- 'C:= ,d(U,, 6,) is the q x 1 vector containing the indicators of interest, and 
let D ( 8 )  = E ( d ( U , ,  8 ) ) .  When partial derivatives and expectations exist, define 
the q x p Jacobian matrices 

) and 

where the indexes I = 1, . . . , q have been reassigned appropriately. We add the 
following conditions: 

ASSUMPTIONA8: ad,(u, 8 ) / a e k ,  I = 1, . . . , q, k = 1, . . . ,p,  exist and are con- 
tinuous functions of 8 for each u.  

ASSUMPTIONA9: Id/(u, 6)d,,,(u, @ ) I , lad/(u, 8) /a8kl ,  and Id,(u, 8 )  . slogf (u ,  8 )  
/aekl, k = 1 ,  . . . , p ;  I ,  m = 1, . . . , q, are dominated by functions integrable with 
respect to G for all u and 8 in O. 

These assumptions play roles analogous to Assumptions A4 and A5. Note that 
Assumption A8 requires continuous third derivatives for the quasi-log-likelihood 
function. Among other things, Assumption A9 ensures that V D ( 8 )  is finite for all 
8 in O. 

Next, define 
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It turns out that V(6,) is the asymptotic covariance matrix of JnD,(d,), and we 
make the following assumption: 

ASSUMPTIONA 10: V(6,) is nonsingular. 

In practice, Assumption A10 can always be guaranteed by appropriate choice 
of indicators. 

We require a consistent estimator for V(6,); a natural choice is 

Now we can state the desired result. 

THEOREM4.1 (Information Matrix Test): Given Assumptions A 1-A 10, if g(u) 
A 

= f(:.O0) for 6, in 0, then (i) JnD,(d,)- N(0, V(6,)); (ii) v , ( dn )4  V(B,), and 
Vn(6,) is nonsingular almost surely for all n sufficiently large; (iii) the information 
matrix test statistic 

is distributed asymptotically as 

To carry out the test, one computes (4.1) and compares it to the critical value 
of the X: distribution for a given size of test. If (4.1) does not exceed this value, 
one can't reject the null hypothesis that the model has been correctly specified. 
Otherwise, one concludes that the model is misspecified, implying the incopsis- 
tencv of the usual maximum likelihood covariance matrix estimators -A,(Bn)-' 
or ~ ~ ( 8 , ) ~ '  at the very least, as well as possible inconsistency of the QMLE for 
parameters of interest. (Whether this latter problem exists can be investigated 
using the tests of the next section.) When the null hypothesis is rejected, 
inferences are properly drawn (with respect to 6,) using the Wald or Lagrange 
Multiplier statistics of Section 3. Note that even in the absence of parameter 
estimator inconsistency, a statistically significant value for (4.1) indicates poten- 
tial efficiency gains to removing the misspecification. 

The information matrix test provides a unified framework for specification 
(goodness of fit) tests for a wide variety of probability laws, uni- or multivariate, 
continuous or discrete. In addition, it can reasonably be expected to have validity 
in frameworks much more general than that explicitly considered here. As special 
cases, it contains the heteroskedasticity test of White [35], as well as White's [36, 
Theorem 4.21 specification test for nonlinear regression models. Under appropri- 
ate regularity conditions, the statistic (4.1) should also be applicable to general 
simultaneous equations or limited dependent variables models. 

Although we don't formally consider the power of the information matrix test 



12 HALBERT WHITE 

here, it's reasonable to expect that the test will be consistent (i.e., have unit power 
asymptotically) against any alternative which renders the usual maximum likeli- 
hood inference techniques invalid. Misspecifications which don't affect the usual 
techniques won't be detected. The loss associated with a type I1 error in these 
cases amounts only to the loss in efficiency associated with quasi-maximum 
likelihood estimation, rather than that resulting from parameter or covariance 
matrix estimator inconsistency. 

Typically, it's straightforward to determine which alternatives will be detected 
by the information matrix test in specific cases. The information matrix test for 
normality is sensitive to skewness or kurtosis. Other alternatives are ignored at 
little cost since these cause neither parameter nor covariance matrix estimator 
inconsistency when the usual (i.e., least squares) techniques are used. In the 
linear regression framework, the test is sensitive to forms of heteroskedasticity or 
model misspecification which result in correlations between the squared regres- 
sion errors and the second order cross-products of the regressors (see White [35, 
pp. 824-8261), 

As a practical matter, computation of (4.1) can be cumbersome due to the 
presence of VD,(B,), which contains third derivatives. Often it can be shown 
under the null hypothesis that VD(8,) vanishes, so that V(8,) is consistently 
estimated by n- ,d(U,, d , ) d ( ~ , ,  6)'.In White's heteroskedasticity and non- 
linear regression specification tests [35, 361 V D(8)  vanishes under the alternative 
as well. Even when V D(8) doesn't vanish, the null hypothesis can be exploited to 
yield 

so that V(8,) can be consistently estimated by 

This estimator is neither consistent nor necessarily positive semi-definite when 
the null hypothesis fails, so it may be a poor choice in practice. 

5. TESTS FOR PARAMETER ESTIMATOR INCONSISTENCY 

The information matrix test of the previous section is sensitive to model 
misspecifications which invalidate the usual maximum likelihood inference pro- 
cedures. Often, such misspecifications will also cause the QMLE to be inconsis- 
tent for particular parameters of interest, but it may sometimes be difficult a 
priori to tell if this is so. In this section, we present two tests sensitive to 
misspecifications which cause parameter estimator inconsistency. 

Given a correctly specified model, not only can we obtain the maximum 
likelihood estimator (MLE), but it is typically easy to find a QMLE which 
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contains a subset of estimators consistent for particular parameters of interest. 
For example, in the normal location estimation problem, the sample mean is the 
MLE, while the sample median is an alternative consistent QMLE. In the 
regression framework with a normality assumption, least squares gives the MLE, 
while weighted least squares gives a consistent QMLE (White [33, 34, 361.) In the 
simultaneous equation framework, the three-stage least squares estimator yields 
the MLE under a normality assumption, while two-stage least squares equation 
by equation gives a consistent QMLE (e.g., Hausman [17]). 

Whenever the MLE and an alternative consistent QMLE are available, the 
distance between them can be used as an indicator of model misspecification 
since this distance vanishes asymptotically in the absence of misspecification, but 
generally doesn't vanish otherwise. Although this fact has often been exploited 
(e.g., by Byron [ll] ,  Wu [37]), Hausman [17] was apparently the first to advocate 
making this fact the basis for a general class of specification tests. Accordingly, 
we refer to any tests based on a comparison of the MLE to a QMLE as a 
Hausman test. 

For present purposes, we let O and r bep-  and q-dimensional compact subsets 
of Euclidean spaces such that O = B x and T = B x A, where Eb is a compact 
subse: of k-dimensional Euclidean space. A typical element of B is denoted P. 
Let 0; = ( b ~ , $ i )  maximize n-'C:, ,log f(U,, 0) over O, while 7; = (p;,G;) 
maximizes n - ' ~ : ,  ,logh(U,, y) over I?. We require h to be a density function 
satisfying the following assumption. 

ASSUMPTIONA1 1: h satisfies Assumptions A2-A6, and if g(u) = f(u, 0,) for 
any 0; = (&,+A) in O, then y',= (&,a1*)for y* in r. 

This ensures that p,, is a QMLE consistent for Po, the parameter vector of 
interest, and that \ in(& - Do) is asymptotically normal, via Theorem 3.2. 

The misspecification indicator is B,, - b,,, so we investigate the asymptotic 
distribution of Jn (&  - b,,). We anticipate that with appropriate regularity 
conditions, Jn(& - b,,)will be normally distributed asymptotically with mean 
zero in the absence of misspecification. Given a consistent estimator for the 
asymptotic covariance matrix, we can form an asymptotic X 2  statistic of the 
Wald [31] type. 

We adopt the following notation. Let Af(0) = {E(a210g f ( ~ , , e ) / a O ~ a O ~ ) }  and 
let A h(y)  = { ~ ( a ~ l o ~ h ( ~ , ,y) /ayia~i)},  and define Bf(0) and Bh(y) similarly. 
The matrices Af(0) and Bf(0) are p x p ,  while A h(y)  and Bh(y)  are q x q. For 
those values of 0 and y for which inverses exist, we write ~ f ( 0 ) ~ '  and Ah(y)-I.  
We shall often use the k x p  and k x q submatrices of A f ( 8 ) '  and Ah(y)- '  
obtained by deleting the last p - k and q - k rows respectively. These sub- 
matrices will be denoted Af, PB(0)-' and A Py(y)p' .  We define thep x q matrix h 3  
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Next, when inverses exist we define the k x k matrix 

S(B,, y,) turns out to be the asymptotic covariance matrix of Jn(& - pn), SO we 
require the following assumption. 

ASSUMPTIONA12: S(B,, y,) is nonsingular. 

In practice, Assumption A12 can always be satisfied by proper choice of B. 
We need a consistent estimator for S(0,, y,), and a natural choice is 

where A;. py ,  B"n,A/.n pQ,B; are the finite sample analogs of A ". Oy, Bh.Af' @,Bf, 
and 

That Rn(dn, fn) converges to the appropriate limit is ensured by Assumptions A5 
and A1 1. 

THEOREM5.1 (Hausman Test): Given Assumptions A 1-A6, A 11 and A 12, if 
g(u) = f(u,O,) for 9, in O, then 

To carry out the Hausman test, one computes (5.1) and compares it to the 
critical value for the $ distribution at a given significance level. If (5.1) exceeds 
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this value and Assumptions A1-A6, A1 1 and A12 are maintained, one must 
reject the hypothesis that the model is correctly specified. 

This result contains as special cases the linear and nonlinear regression model 
specification tests of White [33, 341. It differs from Hausman's result [17, 
Theorem 2.11 in several particulars, but not in spirit. Hausman's result requires bn 
and bn to be jointly consistent uniformly asymptotically normal (JCUAN) 
estimators for p,. In particular cases, this can be rather tedious to verify (e.g., 
using Parzen's [24] results). Our conditions automatically ensure that fin and bn 
are JCUAN. 

The statistic (5.1) also differs from Hausman's in the choice of the covariance 
matrix estimator. Hausman's statistic replaces sn(Jn ,  yn) with the difference of the 
covariance matrix estimator for &, and that for bn. This estimator is consistent in 
the absence of misspecification (Hausman [17, Lemma 2.1]), and significantly 
reduces the required computation. When the model is misspecified, it can fail to 
be positive semi-definite for any ? and is not necessarily consistent. These 
difficulties are avoided by using Sn(On, Tn).' 

Holly [19] points out that the Hausman test can have low power against 
particular alternatives. However, as Hausman and Taylor [18] show, the Haus- 
man test has optimal power properties against alternatives which result in 
parameter estimator inconsistency. 

Another way to detect the inconsistency of a supposed MLE for the parame- 
ters of interest is to observe that when the model is correctly specified, the 
gradient V Ln(U, 6,) has expectation zero. In the absence of misspecification, it is 
usually easy to find a QMLE consistent for 6,, say 6,. Thus, we would expect 
VLn(U, i n )  to be close to zero in the absence of misspecification, but generally 
not otherwise, since ingenerally won't converge to 6,. 

A very useful result can be obtained by constructing inin the following way_. 
As before, let 7; = (b;,',~?;) maximize n- '~:, , logh(U,,  y )  over I'. Next, let #n 

maximize V Ln( U, Dn, #) over (so that V+Ln( U, En, Gn) = O), and set 8:: = ( /j,',
6;).Then VBLn(U, Qn) serves as an indicator of model misspecification and we 
investigate the asymptotic distribution of JnVpLn(U, in). It's reasonable to 
expect that under appropriate regularity conditions, this will be normally distrib- 
uted asymptotically with mean zero in the absence of misspecification. Given a 
consistent estimator of the asymptotic covariance matrix, we can then form an 
asymptotic X 2  statistic. 

In fact, the necessary regularity conditions have already been given. Let 
A,f. PP(6)-' be the k x k submatrix of A,f(B)-' obtained by deleting the last 
p - k columns from A: @(6)- I .  The desired result follows. 

5~ referee points out that the asymptotic slopes criterion of Bahadur [4] (see also Geweke [16]) 
applies here, suggesting that the present statistic will dominate Hausman's under some alternatives. 
This domination is not necessarily uniform over the alternative hypothesis space, indicating that a 
statistic which dominates both Hausman's and the present statistic in the approximate slopes sense 
could be obtained as the maximum of the two. 
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THEOREM5.2 (Gradient Test): Given Assumptions A1-A6, A l l  and A12, if 
g(u) = f(u, 8,) for 8, in O then 

Moreover, X, - 9, + 
P 0. 

The gradient test is performed by comparing 9, to the critical value for the Xi 
distribution at  a given significance level, and rejecting the hypothesis of no 
misspecification if 9, exceeds this value. 

In effect, the gradient test is a Lagrange-multiplier procedure which tests the 
hypothesis that 8, = 8, is consistently estimated by 8,. Theorem 5.2 establishes 
that the 9, statistic is asymptotically equivalent to the Xn statistic under the null 
hypothesis, a fact precisely analogous to the asymptotic equivalence of the Wald 
and Lagrange Multiplier statistics of Section 3. In contrast to the X, statistic, the 
9, statistic doesn't require full computation of the MLE B*,, which is often a 
substantial convenience. Essentially, the 9, statistic compares to the value 
obtained by taking one step of a Newton-Raphson iteration from & (which is 
asymptotically equivalent to the MLE, as LeCam [23] shows). 

6. SUMMARY AND CONCLUDING REMARKS 

In this paper we provide a unified framework for studying the consequences 
and detection of model misspecification when maximum likelihood techniques 
are used. Misspecification can cause parameter estimators to be inconsistent for 
particular parameters of interest, as well as invalidating standard techniques of 
inference. Specification robust procedures are provided here. The properties of 
the QMLE are also exploited to yield several useful tests for model misspecifica- 
tion. 

Taken together, the specification tests of Sections 4 and 5 have the potential to 
detect a broad range of model misspecifications. Given the characteristics of the 
tests, the following sequential procedures may often be convenient. First, apply 
the information matrix test of Section 4. If the null hypothesis of no misspecifica- 
tion is not rejected, one may have confidence that standard maximum likelihood 
techniques of estimation and inference are valid. If the null hypothesis is 
rejected, one can investigate the seriousness of the misspecification using the tests 
of Section 5. If these don't reject the null hypothesis of no misspecification, one 
may have confidence that the estimated parameters will be consistent for 
parameters of interest, although inferences must be based on the specification 
robust procedures of Section 3. Otherwise, one has an indication that the 
parameter estimator is inconsistent for the parameters of interest, so that the 
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model specification must be carefully re-e~amined.~ Since the tests are not 
obviously independent, the actual size of a test for misspecification using this 
procedure may be difficult to determine. Nevertheless, Bonferroni bounds on the 
size of such a test are easily found, and this procedure should provide relatively 
low cost insurance against the improper use of a misspecified model. 

Finally, we note that misspecifications which only result in estimator ineffi- 
ciency (but no parameter or covariance matrix estimator inconsistency) will not 
be readily detected by the tests of Sections 4 and 5. In some cases, one may be 
interested in whether such misspecifications remain. Since I ( g  :f, 8,) = 0 if and 
only if the probability model is correct (see Footnote 2), the KLIC serves as an 
indicator for such misspecifications. The KLIC is not observable; however, it can 
be consistently estimated by 

where is the nonparametric entropy estimator of Ahmad and Li? [I]. Te:ts 
of the hypothesis that I ( g :  f,B,) = 0 might then be based on dnIn(g :  f,B,,). 
However, establishing the asymptotic distribution of this statistic is a non-trivial 
problem which we leave to future work. 
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MATHEMATICAL APPENDIX 

PROOFOF THEOREM2.1: This follows immediately from Lemma 3 of LeCam [23]. 

PROOFOF THEOREM the conditions of Theorem 2.1 of White [36]2.2: Given Assumptions A1-A3, 
are satisfied, and the result follows immediately. 

PROOFOF THEOREM3.1: (i) By the mean value theorem, for all B in O', a convex compact subset 
of O, 

where 0 lies on the segment joining B and B,, since Jlog f (u ,  B)g(u)du is continuously differentiable of 
order two given assumption A3(a), A4, and A5. Further, Assumptions A3(a), A4, and A5 ensure that 

6For an application of this procedure to the nonlinear regression model see White [36].There, it 
turns out that a good choice for the QMLE of the Hausman test is suggested by the results of the 
information matrix test. 
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the derivatives may be taken inside the integrals (Corollary 5.8 of Bartle [S]) so that 

for all 0 in O'. If 0, is globally identifiable, then 0 - O,# 0 implies that 

Further, J'Vlogf(u, O,)g(u)dv = 0 under Assumptions AI-A6(a) (see (A.1) below), so that for all 
0 - o , + o ( o E o ' ) ,  

which implies that A(g) is-negative definite. Now choosing an arbitrary open neighborhood 9t 
appropriately, we can make 0 as close to 0, as we like; since 0, is a regular point of A(O), the rank of 
A(0) is constant in a local neighborhood of O,, so that if A(g) is negative definite in that 
neighborhood, so must be A(0,). 

(ii) If A(0,) is negative definite and A(0) is continuous in 0 (as ensured by Assumptions A4 and 
A5), then there exists an open neighborhood 92 of 0, such that A(0) is negative definite for any 0 in 
%. Since (A.l) holds regardless of whether or not 0, uniquely minimizes I ( g  : f,O) on 92,we again 
have 

Since this holds for all 0 z 0, in EX, 0, is the unique minimizer of I ( g  :f, 0)  in %, and is therefore 
locally identifiable. 

PROOFOF THEOREM3.2: Given Assumptions A1-A6, the conditions of Theorem 3.3 of White [36] 
are satisfied, and the result follows immediately. For later reference we state several useful intermedi- 
ate results. Given Assumptions A1-A6, 

and 

PROOFOF THEOREM3.3: Given Assumptions A1-A6 and g(u) = f(u,O) for any 0 interior to O, 
(A.1) implies that for any such 0, 

If Assumption A7 holds, then Corollary 5.8 of Bartle [S] allows differentiation to be taken inside the 
integral above, so that 

j(V210gf(u, 0 )  + Vlog f(u,  0)Vlog f(u,  0)') f(u,  0 )  du = 0. 

Since I ( g  :f, 0,) = 0 if and only if g(u) = f(u, 0,) for 0, in O, we have immediately that 0, = 0,. 
Evaluating the integral above at O,, we obtain A(0,) + B(0,) = 0, implying C(0,) = -A(0,)-' 
= ~ ( o , ) - ' .  
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PROOFOF THEOREM3.4: The proof is identical to that of Theorem 3.4 of White [34], where VqP in 
the notation of the proof is replaced by -Vlog f(U,, 0,) in the present notation. 

PROOFOF THEOREM the constrained QMLE, O,, is consistent for 3.5: First we show that under H,, 
0, (which minimizes the KLIC over O). By definition, 6" solves 

max L,(U,O) 
0 EM, 

where 0, = {O E O : s(0)  = 0).  Since s is continuous and O is compact, 0, is compact. Given 
Assumptions A1-A3 (with O, replacing 0 )  and Ho (ensuring 0, E O,), it follows from Theorem 2.2 
that 4 5 0,. 

Given Assumption A4 and since Vs(0,) has full row rank, the Lagrange Multiplier Theorem (e.g., 
Bartle [6,Theorem 42.91) ensures the existence of a real r X 1 vector of Lagrange multipliers A, such 
that 

Given Assumptions A2, A4, and H,, the mean-value theorem for random functions (Jennrich [21, 
Lemma 31) allows us to write 

where (8,) is a sequence tail-equivalent to (8") lying in a convex compact neighborhood of 0, interior 
to 0 ,  and 8, (which varies from row to row of A,) lies on the segment connecting 0, and 0,. Given 
H,, the mean-value theorem applied to s(0,) = 0 yields 

where inlies on the segment connecting & to 0,. Substituting (A.6) and (A.7) into (A.4) and (A.5), 
setting s(0,) = 0 and multiplying by ,/n yields 

n - ' I 2  5Vlog f(Ul,  0,) + ~ ~ ( t 7 ~ ) J n ( 6 ~- 0,) + ~ s ( 8 ~ ) ' d n i ~  
I= 1

(A.8) = 0, 

for all n sufficiently large. 
Since B , ~ o , ~it follows analogously to (A.3) that A , ( B , ) ~ A ( o , ) .  The nonsingularity of A(0,) 

ensures that A,(O,) is nonsingular almost surely for all n sufficiently large, allowing us to premultiply 
(A.8) by VS(~,)A,(&)-',  which yields 

upon setting Vs(in)Jn(8, - 0,) = 0. 
Since VS(~,)A,(B,)- 'VS(~,)'  is nonsingular almost surely for all n sufficiently large, we have 

But by Lemma 3.3 of White [34] this has the same asymptotic distribution as 
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P
since ,/n& - /nX; -0 by 2c.4(x.a) of Rao [26]. This latter fact follows from the consistency of inand 
8, for B,, A,($,,) for A(8,) and continuity, together with the convergence in distribution of 
n -I/~Z:=I ~ ~ ~ g f ( u l ,8,). 


The multivariate Lindeberg-Levy central limit theorem ensures 


Jnh; ~ ( 0 ,Q(B*)), where 

Q(8,) = [~~(8,)~(8,)-'Vs(8,)']-~Vs(8,)~(8,)Vs(8,)'[Vs(B,)~(8,)-~Vs(8,)']-~ given Assump- 
- A

tions A1-A6 and H,. It follows from Lemma 3.3 of White [34] that C%,, = ~ ~ ~ Q , ( & ) - ' A , , - ~ ~ ,  
where 

is consistent for Q(8,) by Lemma 2.2 of White [34], given Assumptions AI-A6 and H,. 
From (A.4) we note that we may write 

to obtain the scores form of the Lagrange Multiplier statistic 

P
The fact that C%, -W,- t O  follows from 2c.4(xiv) of Rao [26] since 

(see the proof of Theorem 3.5 of White [MI), where i,,is the unconstrained QMLE. 

PROOFOF THEOREM4.1: By Theorem 2.2, Assumptions AlLA3 ensure tkat i n F 8 , ;  since f(u,Bo) 
* as.  

= g(u), we h a y  8, = 8,. so that 8, +0,. Thus, there exists a sequence (8,) tail equivalent to (6") 
such that each 8, takes its values in a convex compact neighborhood of Bo, which is interior to @ by 
Assumption A.6(a). Given Assumptions A4 and A8, Lemma 3 of Jennrich guarantees the existence of 
measurable @-valued functions 8, such that 

where each 8, lies on the sequent joining 8, and 8,. (As before, v ~ " ( 0 , )  is a shorthand notation; each 
row of V D, cepends on a different 8,. This makes no difference asymptotically.) 

Since \in(@, - 6 is asymptotically normal by Theorem 3.2 under Assumptions A1-A6 and the 
o! 

tail equivalence of 8, and &,,, and since VD,($,) - V D ( O , ) ~0 by Lemma 3.1 of White [36] given 
P

Assumptions A1-A4, AS, and A9, (VDJB,) - VD(kJo))Jn(6,,- 8,)+0 by 2c.4(x.a) and 2c.4(xiii) of 
Rao [26]. Since 

given Assumptions A1-A6 from the tail equivalence of 6, and in and since V D(8,) is finite by 
Assumption A9, 
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It follows that 

i D n ( & ) . / n ( i n  - 6,) + T D ( B , ) A ( B , , ' ~ ' / ~2 ilogJ(Ul.Ro) $0, 
I =  1 

so that 

JnD,(k)  - 2 Tlogf(U,,Bo) $0.JnD,(Bo) + ~ D ( B , ) A ( B ~ ) ' ~ - ' / ~
/ = I  

Let V(6,)-1/2 be the symmetric positive definite matrix such that V(6',)-'/2~(6,)-'/2 = V(B,) ' ,  
which ex~sts and is finite by Assumptions A9 and A10. Then 

It is easily verified that V(6,)- 'l2V ~ ( 6 , ) ~ ( 6 , ) -  'n ' / 2 ~ : =  'Vlog J(Ul, 6,) is distributed asymptoti- 
cally as N(0, Iq)  given Assumptions A1-A6, A8-A10 using the Lindeberg-Levy central limit theorem. 

By Lemma 3.3 of White [34] and the tail equivalence of b,, and 8;, it follows that ,/nD,(bn)A N(0, 
V(6,)) and that 

4 ,  = n ~ , ( i ~ ) ' v , ( i ~ ) - ' ~ , ( i ~ ) L ~ ~ ~  

provided that V,(in) is consistent for V(6,). But this follows from repeated application of Lemma 3.1 
of White [36] given Assumptions A1-A6, A8, and A9, and the proof is complete. 

PROOFOF THEOREM5.1: Given Assumptions A1-A6, (A.2) implies 

similarly, given Assumptions A1 and A l l ,  (A.2) implies 

Since we are interested only in the k x 1 subvectors /3 of 6 and y, we specialize the above to 

where Af. 0 8 ( 6 , )  a d  A ( y ) '  are the appropriate k X p  and k x q submatrices of A ~ ( B , ) - '  
and A " ( y , ) '  and we have used the fact that 8; = ( p i ,  I&),y'* = ( P i ,  a'*) when g(u) = J(u. 6,) for 
6, in O. It follows that 

-A "(y*)v. , logh(~, ,  y*))] 1 0 ,  

where S(6,, y,)- 'I2 is the symmetric positive definite matrix such that S(B,, y , )  ' / 2 ~ ( 6 , ,  y,); ' I2 
= S(B,, y*)-' ,  which exists and is finite given Assumptions A5, A1 1, and A12. It is easily verified 
that 
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is distributed asymptotically as N ( 0 , I,) given Assumptions A1-A6, A l l ,  and A12 using the 
Lindeberg-Levy central limit theorem. This fact and (A.l l)  imply by Lemma 3.3 of White [34] that 

provided that S,(B,, K) is consistent for S(8,, y,). But this follows from repeated application of 
Lemma 3.1 of White [36] given Assumptions A1-A6, and A l l ,  so the proof is complete. 

For the next result, partition Af(8) as 

and Af(B)-l as 

PROOFOF THEOREM5.2: Given Assumption A1 1, it follows from Theorem 2.2 that inis a QMLE 

consistent for p,, i.e., P, - as.  
3P, when g ( u )  = f(u, 8,) f?r 8, in O. By definition, $a maximizes.-IC I = l l o gn f(U,, f in,+) over q ;we need to show that 4, is consistent for 4,. Given Assumptions 

A1-A3 L,(U, 8)  converges to E(1og f(U,, 8)) uniformly for all 8 in O and_ almost every sequence (U,) 
by Theorem Z of Jennrich [21].Choose (U,) so that this occurs and also /3,-+ Po. Since q is compact, 
a sequence (Gn) has a limit point in 9,say +*. Consider a subsequence (+,) which converges to +*. 
By the triangle inequality 

Since L,(U,B) converges uniformly to E(logf(U,, 8)), the first term on the right of (A.12) can be 
made arbitrarily small for all n, sufficiently large. The second term is_ arbitrarily ;mall for all n, 
sufficiently large by the uniform continuity in 8 of E(log f(U,, 8)), since P ,  + /3, and +,-t +*. Hence 
for 6 > 0 and all n, sufficiently large 

so that 

Since +,, maximizes L,,(U, p,,, +), 

Since L, is uniformly continuous in 8 and P, 3Po, for all n sufficiently large 

so that 

E(logf(U,, Po,+*))  2 L,,(U, po,+o) - 26 

The uniform convergence of L,(U, 8 )  to E(1og f(U,, 8)) guarantees that 

IL , (U,  Po,+,) - E(logf(U1, Po,+,) < 6 
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for all n, sufficiently large, so that 

Since 6 is arbitrary and since Assumption A3 guarantees that $, uniquely maximizes E(log f(U,, Po, 
$)) when_ g(u) = f(u,Bo) for 8, in O, it follows that $* = +,, regardless of the subsequent? (4,)
Hence (4,) converges to 4,. Since the uniform convergence of L,(U, 8 )  to E(logf(U,, 8)) and P,+ P, 

. ..- a,*.
fail only on a set of measure zero, 4, + 4,. 

Now consider the asymptotic behavior of n ' / 2 C : =  lVplogf(Ul, in) .  Given g(u) = f(u, 8,) for 8, 
in O, Assumptions A l ,  A2, A4, and A6, Lemma 3 of Jennrich [21] (the mean-value theorem for 
random functions) allows us to write 

where (6,) is a sequence tail equivalent to ( in)  lying in a convex compact neighborhood of 8,, and 8,, 
(which differs from row to row of V$~log f )  lies on the segment connecting & to 8,. To  proceed, we 
replace Jn(_B, - 8,) with an asymptotically equivalent expression. From (A.2) and the tail equivalence 
of P, and P,,, 

By applying a mean-value expansion to n - 'C:= IVJog f(  U,, 8") = 0, it is straightforward to show 
that, given g(u) = f(u,B,) for 8, in O, Assumptions AI-A6 and A1 I, 

Also, given Assumptions A1-A6 and A1 I, n - 'C:= when g(u) =Vielog f(U,, B,)Y~ ~ ~ ( 8 ~ )f(u, 8,) 
for 8, in O; applying 2c.4(xiii) of Rao [26],we use (A.13), (A.14) and (A.15) to obtain 

Next, we observe that the rule for partitioned inversion implies 

so that (A.14), (A.15), and (A.16) imply 

NOWA; Bfl(ia)-'%A,. fl0(Bo)-l given Assumptions A1-A6 and A l l  (cf. (A.3)). The tail equiva- 
lence of 8, and 8;, and the convergence in distribution of n 1 / 2 ~ y =  I V O  log f(U,, 8,) ensured by 
(A.16) via 2c.4(x.a) of Rao [26] imply that 
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by 2c.4(x.b) of Rao [21] so that 

(A.17) A/ ~ ~ ( 6  5 V log f ( U  , i  ) -i) ' n l / '  - ~ n ( i  P 

Let S(B,, y,)- 'I2 be the symmetric positive definite matrix such that S(Bo, y,)-1/2~(6, ,  y,)-'I2 
= S(B,, y,)-I, which exists and is finite given Assumptions A5, A l  I, and A12 and g(u) = f(u, go) for 
8, in O. Then 

In view of (A. 11) and the argument following (A. 1 I) we have 

from Lemma 3.3 of White [34], provided S,(i,,, L) is consistent for S(B,, y,). But this follows from 
repeated application of Lemma 3.1 of Whiie [36]given Assumptions AI-A6, A1 1 and g(u) = f(u, 8,) 
for 8, in O. F o r  all n sufficiently large S,(@,,, L ) I ' / ~exists and has bounded elements almost surely. 

P
as does S,(8,, %)-'/' of Theorem 5.1. Since S,(B,, K ) ' i 2- s,(Bn, ?,,)- ' /2+0 when g(u) = f(u, 8,) 
for 8, in O, it follows from (A.17) that 

PIt follows immediately from 2c.4(xiv) of Rao [26] that 'X,- 5,,+0. 
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