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A SIMPLE, POSITIVE SEMI-DEFINITE, HETEROSKEDASTICITY AND
AUTOCORRELATION CONSISTENT COVARIANCE MATRIX

By WHITNEY K. NEWEY AND KENNETH D. WEST!

MANY RECENT RATIONAL EXPECTATIONS MODELS have been estimated by the
techniques developed by Hansen (1982), Hansen and Singleton (1982), Cumby, Huizinga,
and Obstfeld (1983), and White and Domowitz (1984). These estimation techniques make
use of an orthogonality condition Eh,(6*)=0, where 6* is a (k x 1) vector of unknown
parameters and h,(0) is a (rx 1) vector of functions of the data and parameters, where
r= k. This orthogonality condition can be employed to form a generalized method of
moments (GMM, Hansen (1982)) estimator of 6* by choosing 6 as the solution to

(1) minhy(6) Wrhr(6),

where h-(0) =Y.T_, h,(6)/ T is the vector of sample moments of h,(6) and WT is a (possibly)
random, symmetric weighting matrix.

As shown in Cumby, Huizinga, and Obstfeld (1983), Hansen (1982), and White and
Domowitz (1984), the asymptotic covariance matrix of 6 is given by

(2) VT:(HT,WTHT)_IHT,WTSTWTHT(H,T WrHr)™!

where Hy =Y 1_, E[h,,(0*)]/ T and h,(0) is the (rx k) matrix of partial derivatives of
h,(9), Wy is a nonrandom matrix such that plim (Wr—Wr)=0, and Sr=
Zs Y7, E[h,(6*)h,(6*)']/ T. Consistent estimation of this asymptotic covariance matrix
is essentlal for the construction of asymptotic confidence intervals and hypothesis tests.
Estimation of Hy and Wi is stralghtforward since WT forms a natural estimator of Wy
and under the regularity conditions in Hansen (1982) or White and Domowitz (1984) it
will be the case that

P
(3) Hy— T=1 he(8)/ T — 0.

Estimation of S; is more difficult, and is also more important. As shown by Hansen
(1982), an optimal GMM estimator (m the sense that V- is as small as p0551ble) is obtained
when WT is a consistent estimator of (S;)~', so that estimation of Sy is also important
for the formation of an optimal GMM estlmator

The simplest estimator of Sy that has been proposed takes the form

m T

(4) Sr=0t T [0+ Q=% hhi /T,
t=y

where h =h, (0) The bound m on the number of sample autocovariances .(2 used to form
ST, is in many studies equal to the number of nonzero autocorrelations of h (6%*), which
is known a priori (e.g., Cumby, Huizinga, and Obstfeld (1983), Hansen and Singleton
(1982), and West (1986a)). In some studies the number of nonzero autocorrelations is not
known a priori and may not even be finite (e.g., West (1985, 1987)). In such cases S; may
still be consistently estimated by S (e, ST S+ -5 0) if m is chosen to be a function
m(T) of sample size and is allowed to grow slowly enough with the sample size (see
White and Domowitz (1984) and Theorem 2 below).

While S, is consistent, it need not be positive semi- -definite in any finite sample when
m is not zero. It follows that an estimator of V; that uses S, as the middle matrix need

! We are grateful to Stephen Cecchetti, Lars Hansen, John Huizinga, and two referees for helpful
comments. We are also grateful to the NSF for research support under Grants SES-8410249 and
SES-8511070. This paper was revised while West was a National Fellow at the Hoover Institution.
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not be positive semi-definite. This property of S; interferes with asymptotic confidence
interval formation and hypothesis testing. Estimated variances and test statistics will be
negative for some linear combinations of § when the estimated covariance matrix is not
positive semi-definite. In addition, an estimator of S; that is not positive semi-definite
may be troublesome because, as pomted out to us by John Huizinga, iterative techmques
for computing an optlmal GMM estimator with WT (ST) ! may behave poorly if ST
is not positive semi-definite.

Time domain techniques to calculate an estimator of S; that is positive semi-definite
have been suggested by Eichenbaum, Hansen, and Singleton (1985) and by Cumby,
Huizinga, and Obstfeld (1983). These techniques appear to be difficult to apply in practice.
Hansen (1982) suggested the use of spectral methods for the estimation of Sy, motivated
by the fact that in the covariance stationary case the limit of Sy is 27 times the spectral
density of h,(6*) at frequency zero. Although frequency domain techniques for estimating
Sr are cumbersome, a time domain approach turns out to be very useful. As in West
(1985) we consider an estimator ST of Sy that is as simple to compute as ST

(5) Sr =0+ Z w(j, m)[Q+ 2], w(j, m)=1-[j/(m+1)].
=1

This estimator is numerically equal to 2 times an estimator of the spectral density of
h,(6*) at frequency zero, where the modified Bartlett weights are used to smooth the
sample autocovariance functlon see Anderson (1971, Section 9.2). Note that ST is obtained
in a similar fashion to Sp, except that the sample autocovariances are weighted by
w(j,m)=1—[j/(m+1)], which declines as j increases. Such a covariance smoothing
approach to estimation of Sr has been suggested by Doan and Litterman (1983).> That
Sr is positive semi-definite follows from the positive semi-definiteness of the sample
autocovariance function.

THEOREM 1: St is positive semi-definite.

PROOF For any (rx1) vector c, c'S—rc—w0+221_l w(j, m)w(j), where w(j)=
—J+1 (c’ h (¢’ h, =)/ T(j=0,1, , T—1). Let P=[p;] be the (m +1)-dimensional sym-
metric matrix with p;; = w(|i— ]]) Positive semi-definiteness of P is proven, for example,
in McLeod and Jimenez (1984). Letting e be a ([m+1]x 1) vector of ones, we then have

(6) c’§7c=e’Pe/(m+1)20.
Other choices of the weight function w(j, m) will also yield positive semi-definite
estimators of Sy . If the vector of ones in the proof of Theorem 1 is replaced by

(v(0, m), ..., v(m, m)), where each v(j, m) is an arbitrary number, then we find that the
following choice of weights will also yield a positive semi-definite estimator of Sy:

™ w(j, m) = ["'i’ o(&, myv(€+4, m)] / [ S o m)z].

Also, if w(j, m) is chosen to be a weight function that would generate a nonnegative
spectral density estimate for a univariate time series then the resulting estimator of Sy
will be positive semi-definite. Anderson (1971, Section 9.2) discusses the relative merits
of different weighting schemes under a different set of regularity conditions than those
we consider below Gallant (1985) also discusses the choice of weights and presents results
similar to ours.?

Note that for fixed j the weight w(j, m)=1—[j/(m+1)] approaches one as m grows.
It is reasonable to expect that estimators of S; that are formed by smoothing sample

2 Doan and Litterman (1983) do not assert or show that Sy is positive semi-definite, nor do they
establish consistency.
® Gallant’s (1985) manuscript came to our attention after this note was submitted.
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autocovariances with weights that approach one as m grows should be consistent if m is
allowed to grow with the sample size. The consistency of such estimators of S can be
shown to hold under regularity conditions like those of White and Domowitz (1984),
where the interested reader is referred for the notation and definitions that relate to mixing
conditions. For a matrix A=[a;], let | A| denote the norm max, ;|a;|.

THEOREM 2: Suppose that: .

(i) h,(0)=h(z, 8), whereh(z, 0) is measurable in z for all 6, and continuously differentiable
in 6 for all 6 in a neighborhood N of 6*, with probability one;

(ii) (a) there is a measurable function m(z) such that supn|h,(0)|<m(z) and
supy | ho(0)| < m(z), where for some finite constant D, E[m(z,)*]< D for all t; (b) there
are finite constants D, 8 >0 and r=1, such that for all t, E[| h,(6%)]*"*®]< D,

(iii) z, is a mixing sequence with either ¢(€) of size 2r/(2r —1) or a(£) of size 2r/(r—1),
r>1;

(iv) for all t, E[h,(6%)]1=0, and ¥ T(8 — 6*) is bounded in probability;

(v) the weights w(j, m),(m=1,2,...,j=1,..., m) satisfy |w(j, m)|< C for finite con-
stant C and for each j, lim,, ., w(j, m)=1.

Then if m is chosen to be a function m(T) of sample size such that limy_ ., m(T)=+00
and lim_ . [m(T)/ T"*1=0, it follows that

L m(D) oA P
(8) {no+ py w(j,m(T))[.Qj+.(2}]}—ST—»0.

j=

The proof of Theorem 2 is given below.

The assumptions of Theorem 2 require that h,(8) and h,,(0) be dominated by a function
of z, that has uniformly bounded second moment, that h,(6*) have uniformly bounded
moments of up to slightly more than the fourth order, and that the dependence between
observations go to zero at certain rates as the distance between observations increases.
Consistency follows if m(T) goes to infinity with T more slowly than T"*. .

Note that choosing w(j, m) equal to one for each j and m yields the estimator S; of
equation (4), a special case of which was considered by White and Domowitz (1984). The
consistency result of Theorem 2 differs from that of Theorem 3.5 of White and Domowitz
(1984) in two respects. First, the slower rate of growth of m(T) required in Theorem 2,
with m(T) required to grow slower than T'/* rather than slower than T3, results from
a slight correction to the arguments in White and Domowitz (1984), and not from allowing
for a general class of weights. Second, the above consistency result allows for general
forms of nonlinearity in the parameters.

It should be noted that the derivation of the slower than T'* growth rate for m(T)
depends heavily on the use of mixing conditions. If h,(6*) is an infinite order moving
average with absolutely summable coefficients and i.i.d. innovations, where the innovations
have finite fourth moments, then the proof of Theorem 2 and Theorem 7.2.3 in Fuller
(1976) can be combined to show that a growth rate of slower than T'2 for m(T) will
suffice for consistency of S;. On the other hand, as pointed out to us by Lars Hansen, it
may be difficult to obtain an appropriate growth rate for m(T) under weaker dependence
restrictions than mixing, such as the stationary, ergodic situation considered in Hansen
(1982).

The specification of an appropriate growth rate for m(T) gives little guidance concerning
the choice of m in practice. Cross-validation methods (e.g., Wahba and Wold (1975)) and
the testing approach suggested by White and Domowitz (1984) may prove useful. The
assessment of such suggestions using Monte Carlo work or more refined asymptotics is
an important topic of future research. It would also be useful to know if the estimators
suggested by Cumby, Huizinga, and Obstfeld (1983) and Eichenbaum, Hansen, and
Singleton (1984) provide better estimators of S than S; when the number of nonzero
autocorrelations is known a priori.
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PROOF OF THEOREM 2: A sequence of symmetric matrices {A} converges to a
symmetric matrix A, if and only if ¢’Arc > ¢’Aqc for all comfortable vectors c. Then taking
a linear combination c’h where, e.g., |c’h |=<r] c||h |, we can restrict attention to the scalar
case with r=1. .

Let S, =YY", hz/T+22'" w(j, m)Y.T. r=j+1 h,h,_,/T and h, = h,(6*). For notational con-
venience we will suppress the T argument in m(T). It follows by the triangle inequality
and the form of S; that

9) [Sr—Sr|<|S

[z W/T+2Z‘WL"0 5 hhﬁ/T“

j= 1=j+1

S (- E[R)/T
"1

m T
+2 Z W(j, m) Z . (hlhl—j—E[hihl—j])/Tl
t=j+

j=1

im) ¥ E[hh, )/T-5;

J=1 1=j+1

I

T m T
—[ E h?/T+2 Z W(j, m) Z h:hr—j/T:”
t=1 ji=1 t=j+1

+I§(M—Emﬂvr

m

+22 w(j, m) Z (hh,_;— E[hrhl—j])/T’

Jj= 1=j+1

+2% IW(J,M)—II Z lE[hh—,]l/T

=1

T-1
+2 ¥ Z |E[hh, ]I/ T.
J=m+1 t=j+1

The fourth term goes to zero as T goes to infinity by Lemma 6.17 of White (1984) and
lim o m =+oco,

By Corollary 6.16 in White (1984), there is a sequence y(¢) (£=1,...,), and a finite
constant D’ such that | E[hh,_;]| < D'y(j) for all T and for all j, wnh Z[ L Y(£) < +oco.
Then Y1 —j+1|E[hh 0/ T< D 'y(]) for all T and j. Since lim4_, w(j, m) =1 for each j
follows from assumption (v), the dominated convergence theorem, applied to the counting
measure on the positive integers, implies that the third term in equation (9) goes to zero
as T goes to infinity.

Let Z,;,=h h,_, E[hh,_;]. Assumption (ii) (b) implies that there is a finite constant
D’ such that E(Zz, |2('+5)) < D' for all t and j. The proof of Lemma 6.19 in White (1984)
is incorrect as stated and so cannot be used to show that the second term in equation (9)
converges in probablllty to zero. Nevertheless, if one replaces (in our notation) the double
sum Z/ s >T ¢i1 on page 153 of White (1984) with the correctly indexed sum
2Tty T j+1+¢ and apphes the same argument as in the proof of Lemma 6.19 in White
(1984) one finds that there is a finite constant D* such that for all j between zero and
T, and for all T,

2
(10) E{[ f Z,,] }S(T—j)(j+l)D*sT(j+1)D*, j=0.

1=1+1
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It follows from w(j, m) uniformly bounded by C that Y./_,| w(j, m)|< mC. Then for any
& > 0, the triangle inequality, the implication rule (i.e., if the occurrence of event A implies
that event B has occurred, then Prob (A) < Prob (B)), the fact that the probability of the
union of several events is less than or equal to the sum of the probabilities, Chebyshev’s
inequality, and equation (10) imply

m T m T
ay A Ewam 3 2,| /o) <p(§ wiml 3 2,7i>e)
ji= j=1 t=j+1

1=j+1

< P(| i Z,j/T|>s/Cm>

r=j+

i3

J

S
J

[Nk

(Cm/€)*D*(j+1)/ F=D*C*m*(m+3)/(2°T).

Then the second term in equation (9) converges in probability to zero by the fact that m
grows more slowly than T"*, equation (10) (with j=0) applied to ¥.{_, (ki —E[h])/T,
and the triangle inequality.

By (iv), 8 lies in N with probability approaching one as T grows, so that with probability
approaching one it is possible to obtain a mean value expansion of S around 6*.
Let i, = h;(9) and h,, = h,¢(6), where 8 is the mean value from this expansion. Then with
probability approaching one, the first term after the inequality in equation (9) can be

written as
[ t /

T m T .
2[ L m(z)+ X G, m)] 3 12m<z,)m(z,_,)] -|§-e*/T
t= j= t=j+

2

m T o~ - - N
1h16+ ‘Zl W(j, m) Z (h,h,_j3+h,_jh,9)](0—0*)
j=

t=j+1

Il D14
=

I

T m T N
<2[ Y m(z)’+ L |w(,m)| X l{M(Z,)2+m(z,_j)2}] |0-0%/T
=1 j=1 t=j+

=2[2Cm+1)/VT]- [ i m(z,)?/ T] -JT|6-6*|.

Note that v/ T| § — 6*| is bounded in probability by assumption (iv) and that ¥.7_, m(z,)}/ T
is bounded in probability by Markov’s inequality and assumption (ii)(a). Then the first
term in equation (9) converges in probability to zero, since the fact that m grows more
slowly than T'/* implies that (2Cm+1)/v/T converges to zero.

The conclusion now follows from equation (9), since we have shown that each of the
terms on the right-hand side of the second inequality converges in probability to zero.

Department of Economics, Princeton University, Princeton, NJ 08544, U.S.A.
and
Woodrow Wilson School, Princeton University, Princeton, NJ 08544, U.S.A.

Manuscript received May, 1985; final revision received March, 1986.
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