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Generalized Method of Moments: 

Applications in Finance 

Ravi JAGANNATHAN, Georgios SKOULAKIS 
Kellogg School of Management, Northwestern University, Evanston, IL 60208 (rjaganna@nwu.edu) 

Zhenyu WANG 
Columbia University Business School, New York, NY 10027 

We provide a brief overview of applications of generalized method of moments in finance. The models 
examined in the empirical finance literature, especially in the asset pricing area, often imply moment 
conditions that can be used in a straight forward way to estimate the model parameters without making 
strong assumptions regarding the stochastic properties of variables observed by the econometrician. 

Typically the number of moment conditions available to the econometrician would exceed the number 
of model parameters. This gives rise to overidentifying restrictions that can be used to test the validity 
of the model specifications. These advantages have led to the widespread use of the generalized method 
of moments in the empirical finance literature. 

KEY WORDS: Asset pricing models; Bid-ask spreads; CAPM; Estimating scalar diffusions; Gen- 
eralized method of moments; Linear beta pricing models; Market microstructure; 
Mean-variance efficiency; Mean-variance spanning; Stochastic discount factor; Term 
structure of interest rates. 

1. INTRODUCTION 

The development of the generalized method of moments 

(GMM) by Hansen (1982) has had a major impact on empiri- 
cal research in finance, especially in the area of asset pricing. 
GMM has made econometric evaluation of asset-pricing mod- 
els possible under more realistic assumptions regarding the 
nature of the stochastic process governing the temporal evolu- 
tion of exogenous variables. 

A substantial amount of research in finance is directed 
toward understanding why different financial assets earn dif- 
ferent returns on average and why a given asset may be 

expected to earn different returns at different points in time. 
Various asset pricing models that explain how prices of finan- 
cial claims are determined in financial market have been pro- 
posed in the literature to address these issues. These models 
differ from one another due to the nature of the assumptions 
that they make regarding investor characteristics, that is, pref- 
erences, endowments, and information sets; the stochastic pro- 
cess governing the arrival of information in financial markets; 
and the nature of the transactions technology for exchanging 
financial and real claims among different agents in the econ- 
omy. Each asset-pricing model specifies what the expected 
return on a financial asset should be in terms of observable 
variables and model parameters at each point in time. 

Although these models have differences, they also have sim- 
ilarities. Most of the models start by studying the first-order 
conditions to the optimal consumption, investment, and port- 
folio choice problem faced by a model investor. That leads 
to the stochastic discount factor representation of these mod- 
els. The price assigned by a model to a financial asset equals 
the conditional expectation of its future payoff multiplied by 
a model-specific stochastic discount factor. In an information- 
ally efficient market where the econometrician has less infor- 
mation than the model investor, it should not be possible to 
explain the difference between the market price of a security 
and the price assigned to it by a model based on information 

available to the econometrician. GMM can be used to estimate 
the model parameters and test the set of moment conditions 
that arise in this natural way. For some models, it would not 
be convenient to work with the stochastic discount factor rep- 
resentation. We provide examples where even in those cases 
it would be natural to use the GMM. 

The first two important applications of GMM in finance 
are those of Hansen and Hodrick (1980) and Hansen and 
Singleton (1982). Subsequent developments in time series 
econometric methods, as well as refinements and extensions to 
GMM, have made it a reliable and robust econometric method- 
ology for studying dynamic asset-pricing models, allowing 
asset returns and the stochastic discount factor to be seri- 
ally correlated, leptokurtic, and conditionally heteroscedastic. 
The works by Newey and West (1987), Andrews (1991), and 
Andrews and Monahan (1992) on estimating covariance matri- 
ces in the presence of autocorrelation and heteroscedasticity 
are probably the most significant among these developments. 

Before the advent of GMM, the primary econometric tool in 
the asset-pricing area in finance was the maximum likelihood 
(ML) method, which is often implemented using linear or non- 
linear regression methods. The ML method has several limita- 
tions. First, for each asset-pricing model, researchers have to 
derive a test for examining model misspecification, which is 
not always easy or possible. Second, linear approximation is 
often necessary when studying nonlinear asset-pricing models. 
Third, researchers must make strong distributional assump- 
tions. To make the estimation problem tractable, the assumed 
distributions often must be serially uncorrelated and condition- 
ally homoscedastic. When the distributional assumptions are 
not satisfied, the estimated model parameters may be biased 
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even in large samples. These limitations severely restrict the 

scope of the empirical investigations of dynamic asset-pricing 
models. GMM enables the econometrician to overcome these 
limitations. The econometrician does not have to make strong 
distributional assumptions-the variables of interest can be 
serially correlated and conditionally heteroscedastic. Further 
nonlinear asset-pricing models can be examined without lin- 
earization. The convenience and the generality of GMM are 
the two main reasons why GMM has become so popular in 
the finance literature. 

Despite its advantages, GMM has a potential shortcom- 

ing when compared to the ML method. When the distribu- 
tional assumptions are valid, the ML method provides the most 
efficient estimates of model parameters, whereas the GMM 
method may not. To apply GMM, the econometrician typically 
uses the moment conditions generated by the stochastic dis- 
count factor (SDF) representation of an asset-pricing model. 
The moment conditions representing the implications of an 

asset-pricing model chosen by the econometrician may not 
lead to the most efficient estimation of model parameters. It 
is therefore important to understand whether GMM as com- 

monly applied in practice to examine asset-pricing models 
is less efficient than the ML method in the situations where 
the ML method can be applied. It is well known that GMM 
has the same estimation efficiency as the ML method when 

applied to the moment conditions generated by the classical 
beta representation of linear asset-pricing models. Jagannathan 
and Wang (2002) demonstrated that GMM is as efficient as 
the ML method when applied to the moment conditions gen- 
erated by the SDF representation of linear asset-pricing mod- 
els. This reinforces the importance and advantage of GMM in 

empirical asset-pricing applications. 
In what follows we review the use of GMM in finance 

with emphasis on asset-pricing applications. In Section 2 we 
discuss using GMM for empirically evaluating the standard 

consumption-based asset-pricing model and some of its exten- 
sions. In Section 3 we discuss using GMM in examining fac- 
tor models. In Section 4 we discuss the advantages of using 
alternative weighting matrices while applying GMM. We dis- 
cuss the efficiency of GMM when applied to the SDF repre- 
sentation of asset-pricing models in Section 5. We examine 
the use of GMM to estimate the stochastic process for short- 
term interest rates in Section 6, and discuss using GMM in the 
market microstructure literature in Section 7. We summarize 
in Section 8. 

2. NONLINEAR RATIONAL EXPECTATIONS MODELS 

In most asset-pricing models, expectations about the future 
represent an important factor in the decision making process. 
In practice, however, it is the actions of the agents, rather 
than their expectations, that we observe. Empirical work on 
asset-pricing models relies on the hypothesis of rational expec- 
tations, which in turn implies that the errors made by the 
agents-namely, the differences between observed realizations 
and expectations-are uncorrelated with information on which 
the expectations are conditioned. 

2.1 Consumption-Based Capital Asset-Pricing Model 

One of the first applications of GMM appeared in the con- 
text of estimation of a consumption-based nonlinear ratio- 
nal expectations asset-pricing model of Hansen and Singleton 
(1982). Consider an expected utility-maximizing agent with 
preferences on current and future consumption streams char- 
acterized by a time-additive utility function. Let time r refer 
to the present, let ct+ be the agent's consumption level dur- 
ing period t + r, let I, be the information set available to the 
agent at r, let 13 (0, 1) be the time-preference parameter, and 
let U be an increasing, concave utility function. The agent is 
then assumed to choose consumption streams to maximize 

CEP'tE[U(c,+T) I,]. (1) 
t=O 

The agent can invest in any of N available securities with 
gross returns (1 + the rates of return) at time t, denoted by 
Ri,,, i = 1,... , N. Solving the agent's intertemporal con- 
sumption and portfolio choice implies the following equation, 
which relates security returns to the intertemporal marginal 
rate of substitution, 8 U(c,+I). 

E[f3[U'(ct+,)/U'(ct)]Ri,t+II] = 1, i =1 .... , N. (2) 

A standard assumption frequently used in the asset- 
pricing/macroeconomics literature is that the utility function U 
belongs to the constant relative risk-aversion (CRRA) family. 
The utility functions U in the CRRA family can be described 
by a single parameter, y > 0, referred to as the coefficient of 
relative risk aversion, as 

C1-y 

U(c)= if y-1 and U(c)=log(c) ify=1. 
1-y 

(3) 

For such utility function U, (2) translates to 

E[P(c,, 1/c,)-Ri,,+I,]= 1, i = 1, . .. , N, (4) 

which, by the law of iterated expectations, implies that 

E[[1 - P(ct+, l/)-0Ri,t+l]Zt] = 0, i = 1 ... ,N (5) 

for any random vector z, measurable with respect to the infor- 
mation set I,. Assume that z, has dimension K x 1. For infer- 
ence purposes, z, is chosen to be observable by the econome- 
trician. Typically, z, would include lagged rates of return and 
lagged consumption growth rates. 

The parameter vector to be estimated is 0 = (/3, y)'. Let I, 
denote the N x 1 vector of Is, let 0, denote the M x 1 vec- 
tor of Os where M = NK, let R, denote the vector of asset 
returns at time t, and let y,, = (R', c,,l/c,, z')' denote the 
data available to the econometrician at time t + 1. The orthog- 
onality conditions in (5) can be written more compactly as 

E[h(y,t+, 0)] = 0,, where h(y,+1, ) 

= [1/ - (1 + Rtl)(c,, /C,)-Y]  zt, (6) 
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with 0 denoting the Kronecker product. The sample average 
of h(y,/+, 0) is 

g,(0) =- h(yt+1, 0), (7) 
t=1 

and the GMM estimate ,T is obtained by minimizing the 

quadratic function 

Jr(0) = gT(O)'STg(O), (8) 

where ST is a consistent estimate of the covariance matrix 

S0(0) = E[h(yt+l, 0)h(yt+, 0)']. Note that, according to (4), 
lags of the time series h(yt+1, 0) are uncorrelated, and thus 
the spectral density matrix reduces to the covariance matrix 

S0(0). A consistent estimate of SO(0) is 

S, = - 
h(yt+l, O0)h(yt+l, 0o)', (9) 

Tt= , 

where •o is an initial consistent estimate of 0. Typically, 
00 is obtained by using the identity matrix as the weight- 

ing matrix in the quadratic form, that is, by minimizing 

J(O0) 
= 

g,(0)'g,(O). 
The test of the overidentifying restric- 

tions is based on the statistic 

Tg9T(OS)'TS-lgT(OT), (10) 

which asymptotically follows a chi-squared distribution with 
M -2 degrees of freedom, because we have M orthogonality 
conditions and two parameters to be estimated. 

2.2 Assessment of Asset Pricing Models Using 
the Stochastic Discount Factor Representation 

The method given in the preceding section can be used to 
evaluate an arbitrary asset-pricing model. For this purpose, we 
rewrite the asset-pricing model given in (2) as 

E[mRi, +, II,] = 1, i = 1 ... , N, (11) 

where mt+1 = 3U'(ct+l)/U'(c,). Any random variable mt+1 
that satisfies (11) is referred to as a SDF. In general, a num- 
ber of random variables satisfying (11) exist, and hence there 
is more than one SDF. An asset-pricing model designates a 
particular random variable as a SDF. GMM can be applied 
in exactly the same way as described earlier to estimate the 
asset-pricing model parameters and test the overidentifying 
restrictions implied by the asset-pricing model using its SDF 
representation of an asset-pricing model. In what follows, we 
provide some examples of SDFs. We also give an example to 
show that the GMM is helpful in the econometric analysis of 
asset-pricing models even when the SDF representation of a 
model is not used. 

2.3 More General Utility Functions 

Several researchers have modeled consumption expendi- 
tures as generating consumption services over a period of 
time; Notable among these are Dunn and Singleton (1986) 
and Eichenbaum, Hansen, and Singleton (1988). Sundaresan 
(1989) and Constantinides (1990) made the case for the impor- 
tance of allowing for habit formation in preferences where 
habit depends on an agent's own past sequence of consump- 
tion. Abel (1990) and Campbell and Cochrane (1999) modeled 
habit in such a way that it is affected not by an agent's own 
decisions, but rather by the decisions of other agents in the 
economy. Ferson and Constantinides (1991) examined the case 
in which the utility function exhibits both habit persistence 
and durability of consumption expenditures. In these cases the 
utility function is no longer time separable, because the flow 
of consumption services in a given time period depends on 
consumption expenditures in the past. 

Campbell, Lo, and MacKinlay (1997) considered a repre- 
sentative agent who maximizes the infinite-horizon utility 

EP'E[U(ct+j)It], where U(ct+j) = (c/x)1 1 
j=0 1 - y 

(12) 

c, denotes consumption, and xt is the variable summarizing 
the current state of habit in period t. When habit is external 
and equals the aggregate consumption c, during the previous 
period, the SDF is given by 

m,,+ = (- C, -- C) '). (13) 

When habit is internal, the SDF representation is not conve- 
nient for empirically examining the model. Instead, it is more 
convenient to apply GMM to the following relation between 
the expected return on any asset and fundamentals that must 
be satisfied when the model holds: 

E, [c-l' c,•- - Oc-c' c-+ (Ct+l/Ct)] 
= Et[Rt+,(c t-'c-+ - ct+,'1 c+ 2(ct+2/Ct+1))]. (14) 

Campbell and Cochrane (1999) developed a model in 
which the habit variable xt enters the infinite-horizon utility 

Z=go PiE[U(ct1)jI1] additively in the following way: 

U(c,) = c 
(15) 

i-Y 

They assumed that the habit variable, x,, is external; that is, 
it is determined by the consumption paths of all other agents 
in the economy. In particular, x, is a weighted average of past 
aggregate per capita consumptions. Campbell and Cochrane 
showed that under some additional assumptions, the SDF is 
given by mc,+ = P(3 L)Y, where s, C-xt is the surplus 
consumption ratio. These examples illustrate the versatility of 
GMM in examining a variety of asset-pricing models. 

Epstein and Zin (1991) and Weil (1989) developed a utility 
function that breaks the tight link between the coefficient of 
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relative risk aversion y and the elasticity of intertemporal sub- 
stitution 0 in the time-separable CRRA case. For this class of 
preferences, the SDF is given by 

t+1 C,+1 1 , where - 
cmt+l Rm,t+1 -1-1/ 

(16) 

When the period utility function is logarithmic, the foregoing 
SDF reduces to the one identified by Rubinstein (1976). (For 
more examples, see Campbell et al. 1997 and Cochrane 2001.) 

3. FACTOR MODELS 

3.1 Stochastic Discount Factor Representation 
Linear and nonlinear factor pricing models are popular in 

finance. In this section we discuss the estimation of such mod- 
els by applying GMM to their SDF representation. We first 
consider the standard capital asset-pricing model (CAPM), 
which can be thought of as a linear single-factor pricing 
model, for econometric evaluation. 

3.1.1. Standard Capital Asset-Pricing Model. Consider 
the standard CAPM, the most standard and widely used equi- 
librium model. Consider an economy with N risky assets and 
let Rit denote the gross return on the ith asset during period 
t. Further, let Rmt denote the gross return for the market port- 
folio of all assets in the economy over the same period t. 
Then the CAPM states that in equilibrium, the expected gross 
returns are given by 

cov[Ri, Rm] E[R/] = y + A i, where - 
cv[R , (17) 

var[Rm] 

A is the market risk premium, and y, assumed to be nonzero, 
is the return of the zero-beta asset. This is equivalent to 

E[mRi] = 1, where m = 00+ 01Rm, (18) 

for some 00 and 01. It follows that m is the SDF corre- 

sponding to the CAPM. The foregoing equivalence between 
the beta and SDF representations of the CAPM was first 

pointed out by Dybvig and Ingersoll (1982) and Hansen and 
Richard (1987). Once again, we can apply GMM to estimate 
the CAPM parameters and test the overidentifying restrictions 
as discussed earlier. 

3.1.2. Linear Factor Models. Ross (1976) and Connor 

(1984) showed that when there are only K economy-wide per- 
vasive factors, denoted by f, .... , f,, the expected return on 
any financial asset will be a linear function of the K-factor 
betas, 

K 

E[Ri] = y h Akfik, (19) 
k=l 

where (fig . ti . iK) f3i = (var[f])-lE[(Ri - E[R/])(f - 
E[f])] and f= (f ...., fK)'. Using algebraic manipulations 
similar to those in the CAPM, it can be shown that the fore- 
going linear K-factor beta pricing model can be represented 
as E[mRi] = 1, where the SDF m is given by 

K 

m = O0 + Y Okfk (20) 
k=l1 

for some parameters 00,..... K. GMM can be used to esti- 
mate these parameters and to test the model. 

3.1.3. Nonlinear Factor Models. Bansal and Viswanathan 
(1993) derived a nonlinear factor pricing model by assum- 
ing that the intertemporal marginal rate of substitution of the 
marginal investor is a constant function of a finite number of 
economy-wide pervasive factors. They suggested approximat- 
ing the function using polynomials. In the single-factor case, 
this gives rise to the SDF 

m =/ o0+Pirf + yj +jmri, (21) 
j=1,2,..K 

where K is the order of the polynomial used and rf and rm 
denote the risk-free rate and the excess return on the mar- 
ket index portfolio. Bansal, Hsieh, and Viswanathan (1993) 
suggested approximating the function using neural nets. This 
gives rise to the following SDF when the excess return on the 
market index portfolio is the single pervasive factor: 

m= 0o+Prf+ YL Pi3g(Yoj+Yijrm), (22) 
j=1,2,..K 

where g(.) is the logistic function given by g(.) exp(. Il+exp(.)" 
Again, the GMM is a natural way to estimate the model 
parameters and test the overidentifying restrictions. 

3.1.4. Mean-Variance Spanning. Whether the returns on 
a subset of a given collection of financial assets are sufficient 
to span the unconditional mean-variance frontier of returns 
has received wide attention in the literature. For example, an 
investor may be interested in examining whether it would be 
possible to construct a fixed-weight portfolio of some bench- 
mark assets that dominate a given managed portfolio in the 
mean-variance space. If the answer is affirmative, then the 
investor may not have to include the managed portfolio in 
the menu of opportunities. This can be examined by checking 
whether the set of benchmark assets spans the mean-variance 
frontier of returns generated by the primitive assets and the 
managed portfolios taken together. 

Suppose that we are interested in examining whether a set 
of K benchmark assets spans the mean-variance efficient fron- 
tier generated by N primitive assets plus the K benchmark 
assets for some value for the risk-free return. Huberman and 
Kandel (1987) showed how to construct the statistical tests for 
this purpose when asset returns have an iid joint normal distri- 
bution. Note that when the mean-variance frontier of returns is 
spanned by K benchmark returns for some value of the risk- 
free return, the SDF will be an affine function only of those 
K benchmark returns. Bekaert and Urias (1996) showed how 
this property can be used to test for mean-variance spanning 
using GMM. The advantage to using GMM is that it allows for 
conditional heteroscedasticity exhibited by returns on financial 
assets. 

3.2 Beta Representation 

Applications of GMM in finance are not restricted to exam- 
ining asset-pricing models using the SDF framework. In this 
section we present an application of GMM to empirical eval- 
uation of linear beta pricing models using the beta represen- 
tation instead of the implied SDF representation. 
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3.2.1. Unconditional Linear Beta Pricing Models. For 
notational simplicity, we assume here that there is only one 

economy-wide pervasive factor. The results generalize in a 

straightforward manner to the case of multiple factors. For 

expositional convenience, we assume that the single factor is 
the return on the market portfolio and consider the standard 
CAPM. Following MacKinlay and Richardson (1991), assume 
an economy with a risk-free asset and N risky assets with 
excess returns over period t, denoted by Ri,, for i = 1 . ..., N. 
Further, let R,, denote the excess return on a portfolio p over 

period t. Mean-variance efficiency of the portfolio p implies 
that 

E[Ri,] = 
PIE[Rp,j, 

cov[Rit, Rpt] where vi[R-,] i=1,.... ,N. (23) 
var[R,,p] 

Using vector notation will ease the exposition. Let Rt = 

(R1,,...., RNt)' denote the column vector of excess returns 
over period t, let P = (I1, ... ,13N)' denote the column vector 
of betas, and define u, = R, - E[R,] - (Rpt - E[Rp,])O. This 
leads to the regression representation 

R = a + Rpt,, + u,, with E[u,] = 0, 

E[Rptut] = 0, and a = E[Rt] - E[Rpt,], (24) 

as a consequence of the definition of P3. Mean-variance effi- 
ciency of p implies a = 0, which imposes testable restrictions 
on the data. 

The traditional approach to testing mean-variance efficiency 
relies on the assumption that excess returns are temporally iid 
and multivariate normal. This assumption allows use of the 
Wald statistic for testing the null hypothesis a = 0. As Gib- 
bons, Ross, and Shanken (1989) showed, the Wald statistic 
follows an F(N, N - T - 1) distribution in finite samples and 
an asymptotic chi-squared distribution with N degrees of free- 
dom under the null hypothesis. 

As MacKinlay and Richardson (1991) pointed out, it is 

important to relax the iid normal assumption. This is because 
there is overwhelming empirical evidence suggesting that 
returns are heteroscedastic and have fatter tails than those 

implied by the normal distribution. In contrast with the tra- 
ditional approach, GMM provides an econometric framework 
that allows for testing mean-variance efficiency without the 
need to make strong distributional assumptions. It is only 
assumed that a riskless rate of return exists and that the excess 
asset returns are stationary and ergodic time series with finite 
fourth moments. Let {(R,, ..., RNt, R,,) : t = 1 ..., T} be 
a sample of T time series observations. Using (24), define 

Uit(ai, 3i) = Rit - ai - IiR,, for all i = 1 ... N and t = 
1,...,T. Let 8 = (a1, 1.... eaN, IN)' denote the 2Nx 1 
parameter vector, and define the following 2N x 1 vectors: 

h,() = [ul,(al, 1) ) 

X ult(al, 1)R>pt... UN2(aN, )N) 

x 
ut,(aO, PN)Rpt]t (25) 

and g(8) = 1 EI,=l h,(8). Note that (24) implies the moment 
condition E[h,(8)] = 0, which we exploit for estimation and 

testing using the GMM methodology. One approach is to esti- 
mate the unrestricted system and then test the hypothesis a = 0 

using the unrestricted estimates. The alternative approach is 
to impose the restriction a = 0, estimate the restricted system, 
and then test for overidentifying restrictions. Next we briefly 
describe these two approaches. 

Unrestricted Case. The sample analog of E[h,(8)] = 0 is 
the system of equations 

T T -T Eut(?i, 3i) 
= 

-TE uit(ai, /3i)Rt -- 0, i-= 1 ....N. 
t=1 t=l 

(26) 

Hence there are 2N equations and 2N unknown parameters, 
and the system is identified. The foregoing equations coincide 
with the normal equations from ordinary least squares (OLS), 
and thus this version of GMM is equivalent to OLS regres- 
sion for each i. It follows from the general theory of GMM 
as developed by Hansen (1982) that the GMM estimator 8 
is asymptotically normal with mean 8 and covariance matrix 

(D'So'Do)-', where 

[ht +00 
Do= E[ E 8 

(8)] and So = 
E[ht(8)(htr())']. r=-oo 

(27) 

In practice, consistent estimates D, and S, are used instead of 
the unknown population quantities Do and So. Let 4, denote 
the test statistic for the hypothesis a = 0. Then, under the null 
hypothesis, 

ST&'[P[D'TS'1DT]-P']-' (28) 

has an asymptotic chi-squared distribution with N degrees of 
freedom, where P = 'N 0 [1 0] and & = PS. 

Restricted Case. Imposing the restriction a = 0 yields 

1 T 
gT(0, ) = T hi(0,P ). (29) 

t=l 

Hence there are 2N restrictions but only N unknown param- 
eters, the system is overidentified, and not all of the sam- 
ple moments can be set equal to 0. The GMM estimate 
of /, say /3, is obtained by minimizing the quadratic form 
gT(0, 3)'SlgT-(0, /3), where S, is a consistent estimator of 
S( •r) = Z -0 E[h,(0,3) )(h,_r(0, P3))']. It follows then from 
the general GMM theory that p/3 has an asymptotically normal 
distribution with mean /3 and covariance matrix 

(Do0(/)(So(/))-lo0(/))-, 
where Do() =E E 

al-•(0, ) 
. 

(30) 

Finally, a test of the N overidentifying restrictions can be 
based on the test statistic 

2- TgT([3)'STgT(/), (31) 
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which, under the null hypothesis, asymptotically follows a chi- 
squared distribution with 2N - N = N degrees of freedom. 

MacKinlay and Richardson (1991) demonstrated the dan- 
ger of incorrect inference under the iid multivariate normal 
assumption when the true return distribution is multivariate 
t that exhibits contemporaneous conditional heteroscedastic- 
ity given the market return. The remedy to the misspecifica- 
tion problem is provided by the robust GMM procedure under 
which the test statistic has an asymptotic chi-squared distribu- 
tion regardless of the true underlying data-generating process. 

3.2.2. Conditional Linear Beta Pricing Models. The lack 
of empirical support for linear factor models in general and 
the CAPM in particular, coupled with mounting evidence of 

predictable time variations in the joint distribution of secu- 

rity returns, led to the empirical evaluation of conditional lin- 
ear factor pricing models. Early work examining conditional 

asset-pricing models includes that of Hansen and Hodrick 

(1983), Gibbons and Ferson (1985), and Campbell (1987). 
More recently, Harvey (1989), Ferson and Harvey (1993), Fer- 
son and Korajczyk (1995), and Ghysels (1998), among oth- 
ers, have examined variations of the conditional version of the 
linear beta pricing model given in (19), allowing E[Ri], 'y, 
Ak's, and Pik's to vary over time. For example, Harvey (1989) 
examined the following conditional version of the CAPM: 

E[ri,t+ It] =JfitE(rm,t+l it), 9(32) 

where ri,t+1 and rm,t+ denote the date t+ 1 excess returns 
on security i and the market; it 

= 
cov(r,t+IrmIt). 

and E(I,) 

cov(. II), and var(. I,) denote conditional expectation, con- 
ditional covariance, and conditional variance operators based 
on the information set It. Harvey assumed that E(rmt+lllt) var (rm, t+ Ill ) 
With this assumption and the definitions of i,, and conditional 
covariance, cov(.llt), (32) becomes 

E(ri,t+lIt)-= yE[ri,t+1 (rm,t+1 -E(rm,t+l lIt)It]. (33) 

Suppose that E(rm,t+1 I t) = 
8mZm,t, where zm,t denotes a Lm- 

dimensional vector of variables in the information set It at 
date t. Substituting this expression into (33) yields 

E[ri,t+l 4I] = 
yE[ri,t+l (rm,t+1 - mZm,t)I]. (34) 

Define 

Ui,t+1 
= 

ri,t+1 - Y 
[ri,t+1 (rm,t+1 - SmZm, t)]. (35) 

Let zi,t denote the Li-dimensional vector of variables in the 
information set, I,, at date t. This gives the following moment 
conditions for each security, i: 

E[ui,t+lZi,,] =0. (36) 

GMM can be applied to these moment conditions to estimate 
and test the conditional CAPM. Harvey (1991) empirically 
examined the cross-section of stock index returns across sev- 
eral countries using the world CAPM and taking a related 
approach. Ferson and Harvey (1993) empirically examined a 
multifactor extension of (32) using GMM. They generated 
the moment conditions by assuming that conditional betas 

are fixed affine functions of variables in the date t informa- 
tion set I,. Ghysels and Hall (1990) showed that the standard 
GMM tests for overidentifying restrictions tend to not reject 
the model specifications even when the assumptions regarding 
beta dynamics are wrong. Ghysels (1998) tested for parameter 
stability in conditional factor models using the sup-LM test 

proposed by Andrews (1993) and found evidence in favor of 

misspecified beta dynamics. 

4. ALTERNATIVE WEIGHTING MATRICES 

An asset-pricing model typically implies a number of 
moment conditions. The number of model parameters in gen- 
eral will be much less than the number of moment conditions. 
GMM chooses a subset of the possible linear combinations 
of the moment conditions and picks the parameter values that 
make them hold exactly in the sample. The moment condi- 
tions are chosen so as to maximize asymptotic estimation effi- 

ciency. However, in some cases the econometrician may have 
some a priori information on which moment conditions con- 
tain relatively more information than others. In those cases 
it may be advisable to bring in the prior information avail- 
able to the econometrician through an appropriate choice of 
the weighting matrix. For example, Eichenbaum et al. (1988) 
suggested prespecifying the subset of moment conditions to 
be used for estimation and testing the model using the addi- 
tional moment conditions. This would correspond to choosing 
the weighting matrix with Os and is as entries to pick out 
the moment conditions that should be used in the estimation 

process. 
There is another reason for prespecifying the weighting 

matrix used. When making comparisons across models, it is 
often tempting to compare the minimized value of the criterion 
function, TgT(OT)'S, gT,(OT), across the models. One model 

may do better than another not because the vector of average 
pricing errors, gT, associated with it are smaller, but rather 
because the inverse of the optimal weighting matrix, ST, asso- 
ciated with it is larger. To overcome this difficulty, Hansen and 

Jagannathan (1997) suggested examining the pricing error of 
the most mispriced portfolio after normalizing for the "size" 
of the portfolio. This corresponds to using the inverse of the 
second moment matrix of returns, A = (E[RR/])-' G-', as 
the weighting matrix under the assumption that G is pos- 
itive definite. Cochrane (1996) suggested using the identity 
matrix as the weighting matrix. Hansen and Jagannathan 
(1997) showed that dist(O)= VE[w,(O)']G-'E[w,(6)] equals 
the least-squares distance between the candidate SDF and the 
set of all valid discount factors. Further, they showed that 

dist(0) is equal to the maximum pricing error per unit norm 
on any portfolio of the N assets. 

We now illustrate use of the nonoptimal matrix G-1 in the 
context of SDFs that are linear in a number of factors follow- 

ing Jagannathan and Wang (1996). Suppose that the candidate 
SDF is of the form mt(O)=FtO, where 8=(80,... K-_)' 
and F,=(1, F,,,...,FKI,t)' is the time t factor realization 
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vector. Let 

1 T 
G, = `RtFt --> E[RtR] G. (37) 

t=1 

Then wt()=m-(0)Rt-1=(RtFt)6-1, and so •,(0)= 

DO -1. The GMM estimate O, of 0 is the solution to 

minomW ()'G,' w,(O). The corresponding first-order con- 
dition is D'TG- Iw,(O)=O, from which we obtain 80= 
(D' G ID)-'D'G -11. Because the weighting matrix G-1 dif- 
fers from the optimal choice in the sense of Hansen (1982), 
the asymptotic distribution of TwT,(OT)'G•'(wT(0) will not 
be a chi-squared distribution. Suppose that for some 00, we 

have /TT,(0o) --+ N(0, S0), where So is a positive definite 
matrix, and also that the N x K matrix D= E[RtF] has rank 
K and the matrix G =E[RtR] is positive definite. Let 

A= S1/2G-1/2[I N (G-1/2)D(D'G-'D)-'D'G-1/2] 
x (G-1/2)'(S1/2)', (38) 

where S1/2 and G1/2 are the upper triangular matrices from 
the Cholesky decomposition of S and G, and IN is the N x N 
identity matrix. Jagannathan and Wang (1996) showed that A 
has exactly N - K nonzero eigenvalues that are positive and 
denoted by A1,... ,ANK, and the asymptotic distribution of 

dist(0) is given by 

DN-K 

T*,TT(OT)'GT,*TT(0T) -+ Ajvj as T - oo, (39) 
j=1 

where v1,... u,_, are independent chi-squared random vari- 
ables with one degree of freedom. 

Using GMM with the weighting matrix suggested by 
Hansen and Jagannathan (1997) and the sampling theory 
derived by Jagannathan and Wang (1996), Hodrick and Zhang 
(2001) evaluated the specification errors of several empirical 
asset-pricing models that have been developed as potential 
improvements on the CAPM. On a common set of assets, they 
showed that all the recently proposed multifactor models can 
be statistically rejected. 

5. EFFICIENCY OF GENERALIZED METHOD 
OF MOMENTS FOR STOCHASTIC DISCOUNT 

FACTOR MODELS 

As discussed in the preceding sections, GMM is useful 
because it can be applied to the Euler equations of dynamic 
asset-pricing models, which are SDF representations. A SDF 
has the property that the value of a financial asset equals the 
expected value of the product of the payoff on the asset and the 
SDF. An asset-pricing model identifies a particular SDF that is 
a function of observable variables and model parameters. For 
example, a linear factor pricing model identifies a specific lin- 
ear function of the factors as a SDF. The GMM-SDF method 
involves using the GMM to estimate the SDF representations 
of asset-pricing models. The GMM-SDF method has become 

common in the recent empirical finance literature. It is suffi- 
ciently general so it can be used for analysis of both linear 
and nonlinear asset-pricing models, including pricing models 
for derivative securities. 

Despite its wide use, there have been concerns that, com- 
pared to the classical ML-beta, the generality of the GMM- 
SDF method comes at the cost of efficiency in parameter 
estimation and power in specification tests. For this reason, 
researchers compare the GMM-SDF method with the GMM- 
beta method for linear factor pricing models. For such models, 
the GMM-beta method is equivalent to the ML-beta method 
under suitable assumptions about the statistical properties of 
returns and factors. On the one hand, if the GMM-SDF 
method turns out to be inefficient relative to the GMM-beta 
method for linear models, then some variation of the ML-beta 
method may well dominate the GMM-SDF method for non- 
linear models as well, in terms of estimation efficiency. On 
the other hand, if the GMM-SDF method is as efficient as the 
beta method, then it is the preferred method because of its 
generality. 

Kan and Zhou (1999) made the first attempt to compare 
the GMM-SDF and GMM-beta methods for estimating the 
parameters related to the factor risk premium. Unfortunately, 
their comparison is inappropriate. They ignored the fact that 
the risk premium parameters in the SDF and beta representa- 
tions are not identical and directly compared the asymptotic 
variances of the two estimators by assuming that the risk pre- 
mium parameters in the two methods take special and equal 
values. For that purpose, they made the simplifying assump- 
tion that the economy-wide pervasive factor can be standard- 
ized to have zero mean and unit variance. Based on their spe- 
cial assumption, they argued that the GMM-SDF method is far 
less efficient than the GMM-beta method. The sampling error 
in the GMM-SDF method is about 40 times as large as that in 
the GMM-beta method. They also concluded that the GMM- 
SDF method is less powerful than the GMM-beta method in 
specification tests. 

Kan and Zhou's (1999) comparison, as well as their con- 
clusion about the relative inefficiency of the SDF method, is 
inappropriate for two reasons. First, it is incorrect to ignore 
the fact that the risk premium measures in the two methods 
are not identical, even though they are equal at certain param- 
eter values. Second, the assumption that the factor can be 
standardized to have zero mean and unit variance is equiva- 
lent to the assumption that the factor mean and variance are 
known or predetermined by the econometricians. By making 
that assumption, Kan and Zhou give an informational advan- 
tage to the GMM-beta method but not to the GMM-SDF 
method. 

For a proper comparison of the two methods, it is necessary 
to incorporate explicitly the transformation between the risk 
premium parameters in the two methods and the information 
about the mean and variance of the factor while estimating 
the risk premium. When this is done, the GMM-SDF method 
is asymptotically as efficient as the GMM-beta method, as 
established by Jagannathan and Wang (2002). These authors 
found that asymptotically, the GMM-SDF method provides as 
precise an estimate of the risk premium as the GMM-beta 
method. Using Monte Carlo simulations, they demonstrated 
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that the two methods provide equally precise estimates in 
finite samples as well. The sampling errors in the two meth- 
ods are similar even under nonnormal distribution assump- 
tions, which allow conditional heteroscedasticity. Therefore, 
linearizing nonlinear asset-pricing models and estimating risk 
premiums using the GMM-beta or ML-beta method will not 
lead to increased estimation efficiency. 

Jagannathan and Wang (2002) also examined the specifica- 
tion tests associated with the two methods. An intuitive test 
for model misspecification is to examine whether the model 
assigns the correct expected return to every asset; that is, 
whether the vector of pricing errors for the model is 0. They 
show that the sampling analog of pricing errors has smaller 
asymptotic variance in the GMM-beta method. However, this 
advantage of the beta method does not appear in the specifica- 
tion tests based on Hansen's (1982) J statistics. Jagannathan 
and Wang demonstrate that the GMM-SDF method has the 
same power as the GMM-beta method. 

6. STOCHASTIC PROCESS FOR SHORT-TERM 
INTEREST RATES 

Continuous-time models are widely used in finance, espe- 
cially for valuing contingent claims. In such models, the con- 

tingent claim function that gives the value of the claim as 
a function of its characteristics depends on the parameters 
describing the stochastic process driving the prices of under- 

lying securities. In view of this, a vast literature on estimating 
continuous-time models has evolved; refer to, for example, the 
work by Aft-Sahalia, Hansen, and Scheinkman (2001) for a 
discussion of traditional methods; Gallant and Tauchen (2001) 
for a discussion of the efficient method of moments; and Gar- 
cia, Ghysels, and Renault (2001) for a discussion of the liter- 
ature in the context of contingent claim valuation. Although 
GMM may not be the preferred method for estimating model 

parameters, it is easy to implement and provides estimates that 
can be used as starting values in other methods. In what fol- 
lows we provide a brief introduction to estimating continuous- 
time model parameters using GMM. 

6.1 Discrete Time Approximations of 
Continuous-Time Models 

Here we present an application of GMM to testing and com- 

paring alternative continuous-time models for the short-rate 
interest rate as given by Chan, Karolyi, Longstaff, and Sanders 
(1992). Other authors who have used GMM in empirical 
tests of interest rate models include Gibbons and Ramaswamy 
(1993), who tested the Cox-Ingersoll-Ross (CIR) model; Har- 
vey (1988); and Longstaff (1989). 

The dynamics for the short-term riskless rate, denoted by 
rt, as implied by a number of continuous-time term structure 
models, can be described by the stochastic differential equa- 
tion 

dr, = (ar +pr,)dt + r dW,, (40) 

where Wt is standard Brownian motion process. The forego- 
ing specification nests some of the most widely used mod- 
els of the short-term rate. The case where /3=y=0 (i.e., 

Brownian motion with drift) is the model used by Merton 
(1973) to derive discount bond prices. The case where y = 0 
(the so-called Ornstein-Uhlenbeck process) corresponds to the 
model used by Vasicek (1977) to derive an equilibrium model 
of discount bond prices. The case where y = 1/2 (the so-called 
Feller or square-root process) is the specification that Cox, 
Ingersoll, and Ross (1985) used to build a single-factor gen- 
eral equilibrium term structure model. Other special cases of 
(40) as short-term rate specifications have been given by, for 
instance, Dothan (1978), Brennan and Schwartz (1980), Cox 
et al. (1980), Courtadon (1982), and Marsh and Rosenfeld 
(1983). 

Following Brennan and Schwartz (1982) and Sanders and 
Unal (1988), Chan et al. (1992) used the following discrete- 
time approximation of (40) to facilitate the estimation of the 
parameters of the continuous-time model: 

rt+4 - rt = a+pr, +st+, with Et[Et+l]= 0 

and E,[2+j1]= -2ot2yr, (41) 

where E[.-] denotes the conditional expectation given the 
information set at time t. It should be emphasized that GMM 
naturally provides a suitable econometric framework for test- 
ing the validity of the model (41). Application of ML tech- 
niques in this setting would be problematic, because the dis- 
tribution of the increments critically depends on the value of 
y. For example, if y =0, then the changes are normally dis- 
tributed, whereas if y = 1/2, then they follow a gamma distri- 
bution. A brief description of the GMM test follows. 

Let 0 denote the parameter vector comprising a, P/3, 2, and 

y. The structure of the approximating discrete-time model 
in (41) implies that under the null hypothesis, the moment 
restrictions E[ft(0)]=0 hold, where 

et+1 1 

f(= 2 2 2y (42) 

s+ -2Y)rt, 
Given a dataset {rt: t=..... ,T+1} of T+1 observa- 
tions, following the standard GMM methodology, let g,(0)= 
ST= f,(0). The GMM estimate 0 is then obtained by min- 
imizing the quadratic form J,(6)=g,(O)'WgT(O), where W 
is a positive definite symmetric weighting matrix, or, equiva- 
lently, by solving the system of equations D0(0)'WgT(0) =0, 
where Do(0) = g (0). The optimal choice of the weight- 
ing matrix in terms of minimizing the asymptotic covari- 
ance matrix of the estimator is W= (S0(0))-', where S0(0)= 

+=_E[ft(O)(ft,r(O))']. The asymptotic distribution of the 
GMM estimator 6 is then normal with mean 0 and covariance 
matrix consistently estimated by (D0(6)'SI'D0(0))-1, where 
S, is a consistent estimator of S0(0). In the case of the unre- 
stricted model, we test for the significance of the individ- 
ual parameters using the foregoing asymptotic distribution. If 
we restrict any of the four parameters, then we can test the 
validity of the model using the test statistic Tg,(6)'S-IgT(6), 
which is asymptotically distributed as a chi-squared random 
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variable with 4- k degrees of freedom, where k is the num- 
ber of parameters to be estimated. Alternatively, we can test 
the restrictions imposed on the model by using the hypothesis 
tests developed by Newey and West (1987). Suppose that the 
null hypothesis representing the restrictions that we wish to 
test is of the form Ho: a() = 0, where a(-) is a vector func- 
tion of dimension k. Let JT(O) and JT(0) denote the restricted 
and unrestricted objective functions for the optimal GMM 
estimator. The test statistic R = T[Jr(0) - JTr()] then follows 
asymptotically a chi-squared distribution with k degrees of 
freedom. This test provides a convenient tool for making pair- 
wise comparisons among the several model candidates. 

6.2 The Hansen-Scheinkman Test Function Method 

Hansen and Scheinkman (1995) showed how to derive 
moment conditions for estimating continuous-time diffu- 
sion processes without using discrete-time approximations. 
Whereas other methods, such as the efficient method of 
moments, may be more efficient and may be preferred to 
GMM, they are computationally much more demanding than 
GMM. In view of this, it may be advisable to obtain initial 
estimates using GMM and use them as starting values in other 
more efficient methods to save computational effort. 

In what follows, based on work of Sun (1997), we illus- 
trate the Hansen-Scheinkman method for estimating the model 
parameters when the short rate evolves according to 

drt =p/t(r,)dt+- au(rt)dW,, (43) 

where W, is the standard Brownian motion and /(.) and o-(.) 
are the drift and diffusion of the process assumed to satisfy 
the necessary regularity conditions to guarantee the existence 
and uniqueness of a solution process. Assume that the short 
rate process described by (43) has a stationary marginal dis- 
tribution. The stationarity of the short rate rt implies that for 
any time t, E[4(rt)]=c, where ( is a smooth function and 
c is a constant. Taking differences of the foregoing equation 
between two arbitrary points t and T > t, and applying Ito's 
lemma, we obtain 

0= Ej LP(rs)(r,)+ + -(rs)0"(rs)]ds] 

+ E [ o(rs)'(r)ddW . (44) 

By the martingale property of the Ito integral, the sec- 
ond expectation vanishes at 0 as long as f(t)= o(r,)4'(r,) 
is square integrable. Applying Fubini's theorem to the first 
expectation in (44) and then using the stationarity property 
yields 

Ep t(rt) p'(rt) + - o(rt) p(rt) =0. (45) 

This is the first class of Hansen-Scheinkman moment con- 
ditions. The space of test functions 4 for which (45) is 
well defined can be given a precise description (see Hansen, 

Scheinkman, and Touzi (1996)). To illustrate the use of (45), 
consider the CIR square root process 

dr, = a(b - r,)dt + ao/ dW,, a > 0, b > 0. (46) 

Letting the test function 0b equal xk, k= 1,2, 3, we obtain from 
(45) that 

E[a(b- r)] = E[2a(b- rt)rt,+ 2rt] 

= E[2a(b - rt)r,2 +U2rt2] =0, 

implying that the first three moments of rt are given by b, 
2 , and b3+ 3b2 + 4b ---a')and-b--T2a+2a2 
The first class of moments conditions in (45) uses only 

information contained in the stationary marginal distribution. 
Because the evolution of the short rate process is governed by 
the conditional distribution, (45) alone would not be expected 
to produce efficient estimates in finite samples, especially if 
there is strong persistence in the data. We now consider the 
second class of moment conditions, which uses the informa- 
tion contained in both the conditional and the marginal distri- 
butions. 

Kent (1978) showed that a stationary scalar diffusion pro- 
cess is characterized by reversibility. This says that if the 
short rate process {rt} is modeled as a scalar stationary 
diffusion process, then the conditional density of rt given 
r0 is the same as that of r-_ given ro. The reversibility 
of rt implies that for any two points in time t and s, 
E[fr(rt, rs)] =E[ir(rs, rt)], where i• : 2 -+ R is a smooth func- 
tion in both arguments. Using this equality twice and sub- 
tracting yields E[i(rt+at, rs)]- E[i(rt, rs)]= E[i(rs, rt+at) - 

E[f(rs,rt)]. Now applying Ito's lemma to both sides of the 
last equation, using the martingale property of the Ito integral 
and applying Fubini's theorem, we have 

E[,(rt)(01 (rt, rs) - 02(rs, rt)) 

1 1 
+ -o(rt)(1(r rs)-22 t)) =0 (47) 2 

This is the second class of moment conditions, with 4 as 
the test function. As an illustration, we note that for the 
case of the CIR square-root process and for O(x, y) being 
equal to (x-y)3, (47) translates to E[a(b-rt)(rt-rs)2+ 
o2 rt t rs)] =0. 

Appropriate choices of test functions (45) and (47) gener- 
ate moment restrictions directly implied from a scalar station- 
ary diffusion. The first class, (45), is a restriction on uncon- 
ditional moments, whereas the second class, (47), is a joint 
restriction on conditional and unconditional moments. The 
two classes of moment conditions were derived by using only 
stationarity, reversibility, and Ito's lemma, without knowing 
any explicit forms of the conditional and unconditional dis- 
tributions. Because times t and s in (45) and (47) are arbi- 
trary, the two classes of moment conditions take into explicit 
account that we observe the short rate only at discrete inter- 
vals. This makes the Hansen-Scheinkman moment conditions 
natural choices in GMM estimation of the continuous-time 
short rate process using the discretely sampled data. GMM 
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estimation requires that the underlying short rate process be 
ergodic to approximate the time expectations with their sam- 
ple counterparts. The central limit theorem is also required to 
assess the magnitude of these approximation errors. Hansen 
and Scheinkman (1995) proved that under appropriate regular- 
ity conditions, these GMM assumptions are indeed satisfied. 

Although (45) and (47) provide moment conditions once 
test functions b and 0f have been specified, the choice of 

appropriate test functions remains a critical issue. To illustrate 
the point, we consider the linear drift and constant volatil- 
ity elasticity model of Chan et al. (1992), dr, =a(b-r,)dt+ 
arr'dWt, where a,b, o, and y are the speed of adjustment, 
the long-run mean, the volatility coefficient, and the volatil- 

ity elasticity. It is apparent that (45) and (47) can identify 
a and 02 only up to a common scale factor. This prob- 
lem may be eliminated by making test functions depend 
on model parameters. When estimating the model of Chan 
et al. (1992), consider the test functions J (y)=fYx-adx 
and 42(y)= fx-'dx for the class (45). It can be shown 
that these are indeed valid test functions in the appropri- 
ate domain. In a related work, Conley, Hansen, Luttmer, 
and Scheinkman (1997) found that the score functions for 
the implied stationary density-that is, 3 (y) = fY-2ydx 
and 04(y) = fyx-2y+ldx-are efficient test functions for (45). 
They also used the cumulative function of the standard normal 
distribution 

fx2 \ 
(rs, rt)=- exp- 252) dx (48) 

as the test function in (47), where 8 is a scaling constant. 
The combination of 4)1, 2, 3, 4, and q yields the moment 
conditions E[fHs(t, 0)]=0, where 

- a(b-rt+,)rt+- YO rrt+, 

a(b- rt+)r,-27+1 - (y - )o-2 

- 1 .2)27-a-1I fHS(t, O)=(b- rt+I)rt_- -I( 2y-a- 

a(b- rt,)rt+- i 3?2t+1 

[a(b- rt+,) 
- 

2+vr2 t2y]exp[- (-r)2 

Then GMM estimation of the model of Chan et al. (1992) 
proceeds in the standard way using these moment conditions. 

7. MARKET MICROSTRUCTURE 

A substantial portion of the literature in this area focuses 
on understanding why security prices change and why trans- 
actions prices depend on the quantity traded. Huang and Stoll 
(1994) developed a two-equation time series model of quote 
revision and transactions returns and evaluated the relative 

importance of different theoretical microstructure models pro- 
posed in the literature using GMM. Madhavan, Richardson, 
and Roomans (1997) used GMM to estimate and test a struc- 
tural model of intraday price formation that allows for pub- 
lic information shocks and microstructure effect to under- 
stand why a U-shaped pattern is observed in intraday bid-ask 
spreads and volatility. Huang and Stoll (1997) estimated the 
different components of the bid-ask spread for 20 stocks in 

the major market index using transactions data by applying 
GMM to a time series microstructure model. 

There are several other market microstructure applications 
of GMM-too many to discuss in a short article of this nature. 
For example, Foster and Viswanathan (1993) conjectured that 
adverse selection would be relatively more severe on Mondays 
than on other days of the week. This implies that volume 
would be relatively low on Mondays. Because of the presence 
of conditional heteroscedasticity and serial correlation in the 
data, these authors used GMM to examine this hypothesis. The 
interested reader is referred to the surveys of this literature by 
Biais, Glosten, and Spatt (2002) and Madhavan (2000). 

8. SUMMARY 

GMM is one of the most widely used tools in financial 
applications, especially in the asset-pricing area. In this arti- 
cle we have provided several examples illustrating the use of 
GMM in the empirical asset-pricing literature in finance. 

In most asset-pricing models, the value of a financial claim 
equals the expected discounted present value of its future pay- 
offs. The models differ from one another in the stand that 
they take regarding which discount factor to use. An econo- 
metrician typically has a strictly smaller information set than 
investors who actively participate in financial markets. Hence 
the value computed using a given asset-pricing model based 
on the information available to the econometrician in general 
would not equal the market price of a financial claim. How- 
ever, the difference between the observed market price and the 
value computed by the econometrician using an asset-pricing 
model should be uncorrelated with information available to 
the econometrician when investors have rational expectations. 

By a judicious choice of instruments available in the econo- 
metrician's information set, we obtain a set of moment condi- 
tions that can be used to estimate the model parameters using 
GMM. The number of moment conditions in general would be 
greater than the number of model parameters. The overidenti- 
fying restrictions provide a natural test for model misspecifi- 
cation using the GMM J statistic. 

Continuous-time models are used extensively in finance, 
especially for valuing contingent claims. These models value 
a contingent claim using arbitrage arguments, taking the 
stochastic process for the prices of the primitive assets as 
exogenous. This gives the value of a contingent claim as a 
function of the prices of underlying assets and the parameters 
of the stochastic process determining their evolution over time. 
Hence estimating the parameters of continuous-time stochas- 
tic processes describing the dynamics of primitive asset prices 
has received wide attention in the literature. We discussed an 
example showing how GMM can be used for that purpose. 
The GMM estimates thus obtained can be used as starting val- 
ues in more efficient estimation methods. 

The economic models often examined in empirical studies 
in finance imply moment conditions that can be used in a nat- 
ural way for estimation and testing the models using GMM. 
This, combined with the fact that GMM does not require 
strong distributional assumptions, has led to its widespread 
use in other areas of finance as well. We cannot possibly dis- 
cuss all of the numerous interesting applications of GMM in 
finance, here, and new applications continue to appear. 
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