Computer Handout 12: Vector Autoregressions Diego Escobari Econ 3342

This Computer Handout 12 will replicate the results in Chapter 11 showing the computer commands for the estimation of Vector Autoregressions (VAR), forecasting with regression models and Impulse-response functions (IRF).

The data we will use includes two variables: (1) the seasonally adjusted housing starts and (2) housing completions. These are monthly observations from January 1968 through June 1996.

A graph of both variables can be obtained by:

We will use the data from January 1968 through December 1991 for model estimation and the forecast will be done for the period from January 1992 through June 1996.

The correlograms for both variables are:

D-t 11/00/10 Time- 17-10				Correlogram of STARTS				UMP 5			
Date: 11/22/10 Time: 17:43 Sample: 1968:01 1996:06 Included observations: 342				Date: 11/22/10 Tim Sample: 1968:01 19 Included observation	e: 17:45 96:06 s: 342						
Autocorrelation Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	0.940 2 0.914 3 0.888 4 0.853 5 0.816 6 0.778 7 0.737 8 0.689 9 0.648 0 0.594 1 0.553 2 0.510 3 0.475 6 0.321 7 0.268 8 0.221 9 0.144 0 0.127 1 0.079 2 0.041 3 -0.005	0.940 0.263 0.070 -0.062 -0.086 -0.061 -0.062 -0.097 -0.004 -0.120 0.038 0.076 -0.146 -0.146 -0.146 -0.063 -0.116 -0.063 -0.013 0.017 0.022 -0.017 0.038 -0.022 -0.017	304.66 593.59 866.99 1120.5 1352.9 1564.7 1755.3 1922.6 2071.0 2196.2 2304.9 2397.6 2478.3 2642.0 2592.5 2629.8 2655.9 2673.5 2684.5 2684.5 2690.4 2692.7 2693.3 2693.3	0.000 0.000			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1	0.947 0.939 0.919 0.904 0.870 0.848 0.748 0.748 0.744 0.672 0.630 0.541 0.549 0.511 0.465 0.427 0.377 0.335 0.287 0.237 0.237	0.947 0.406 0.073 0.027 -0.196 -0.057 -0.052 -0.056 -0.090 -0.092 -0.015 -0.022 0.050 -0.056 0.010 -0.055 -0.056 -0.057 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.055 -0.052 -0.055 -0.055 -0.052 -0.055 -	309.40 614.29 907.27 1191.5 1455.6 1707.4 1939.8 2156.3 2354.1 2534.6 2694.9 2836.6 2961.3 3069.2 3163.1 3241.1 3358.6 3399.4 3429.4 3429.4 3450.1 3463.9 3471.7	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000

Both show a strong cyclical component.

The cross-correlation function shows the correlation between a variable and the lags of another variable. To obtain it open both variables as a group, then go to "view" and then "cross-correlation" to obtain:

Cross Correlogram of STARTS and COMPS Date: 11/22/10 Time: 17:47 Sample: 1968:01 1996:06 Included observations: 342 Correlations are asymptotically consistent approximations STARTS, COMPS(-i) STARTS,COMPS(+i) lag lead i. 0 0.7789 0.7789 0.7311 0.8095 1 2 0.6827 0.8417 3 0.6389 0.8676 4 0.5938 0.8918 5 0.5445 0.9025 6 0 5034 0.9105 7 0 4529 0.9039 8 0.4067 0.8967 9 0.3726 0.8828 10 0.3217 0.8679 0.2722 11 0 8455 12 0.2257 0.8195 13 0.1904 0.7946 14 0.1370 0.7585 15 0.1018 0.7293 16 0.0547 0.6977 17 0.0138 0 6665 Т $|\mathbf{I}|$ 18 -0.0272 0.6225 ١Ę 19 -0.0645 0.5886 20 -0.1096 0.5427 21 -0.1399 0.5026 22 -0.1702 0.4569 23 -0.2015 0.4126 24 -0.2269 0.3698

This cross-correlation shows a strong correlation between both variables.

The VAR(4) as presented in the textbook (chapter 11) can be estimated using EViews in two different ways: (1) Equation by equation and (2) jointly. Equation by equation we simply

```
smpl 1968m01 1991m12
```

Is starts c starts(-1) starts(-2) starts(-3) starts(-4) comps(-1) comps(-2) comps(-3) comps(-4)

```
Is comps c starts(-1) starts(-2) starts(-3) starts(-4) comps(-1) comps(-2) comps(-3) comps(-4)
```

that yield the following output:

Dependent Variable: STARTS
Method: Least Squares
Date: 11/22/10 Time: 21:21
Sample (adjusted): 1968M05 1991M12
Included observations: 284 after adjustments

Dependent Variable: COMPS Method: Least Squares Date: 11/22/10 Time: 21:22 Sample (adjusted): 1968M05 1991M12 Included observations: 284 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.146871	0.044235	3.320264	0.0010	С	0.045347	0.025794	1.758045	0.0799
STARTS(-1)	0.659939	0.061242	10.77587	0.0000	STARTS(-1)	0.074724	0.035711	2.092461	0.0373
STARTS(-2)	0.229632	0.072724	3.157587	0.0018	STARTS(-2)	0.040047	0.042406	0.944377	0.3458
STARTS(-3)	0.142859	0.072655	1.966281	0.0503	STARTS(-3)	0.047145	0.042366	1.112805	0.2668
STARTS(-4)	0.007806	0.066032	0.118217	0.9060	STARTS(-4)	0.082331	0.038504	2.138238	0.0334
COMPS(-1)	0.031611	0.102712	0.307759	0.7585	COMPS(-1)	0.236774	0.059893	3.953313	0.0001
COMPS(-2)	-0.120781	0.103847	-1.163069	0.2458	COMPS(-2)	0.206172	0.060554	3.404742	0.0008
COMPS(-3)	-0.020601	0.100946	-0.204078	0.8384	COMPS(-3)	0.120998	0.058863	2.055593	0.0408
COMPS(-4)	-0.027404	0.094569	-0.289779	0.7722	COMPS(-4)	0.156729	0.055144	2.842160	0.0048
R-squared	0.895566	Mean deper	ident var	1.574771	R-squared	0.936835	Mean depen	dent var	1.547958
Adjusted R-squared	0.892528	S.D. depend	dent var	0.382362	Adjusted R-squared	0.934998	S.D. depend	ent var	0.286689
S.E. of regression	0.125350	Akaike info	criterion	-1.284241	S.E. of regression	0.073093	Akaike info o	riterion	-2.362995
Sum squared resid	4.320952	Schwarz cri	terion	-1.168605	Sum squared resid	1.469205	Schwarz crit	erion	-2.247359
Log likelihood	191.3622	F-statistic		294.7796	Log likelihood	344.5453	F-statistic		509.8375
Durbin-Watson stat	1.991908	Prob(F-stati	stic)	0.000000	Durbin-Watson stat	2.013370	Prob(F-statis	stic)	0.000000

These are tables 11.4 and 11.6 in your textbook.

For the correlogram of the residuals (see previous handouts) we have:

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	AC 1 -0.009 2 -0.035 3 -0.037 4 -0.088 5 -0.105 6 0.012 7 -0.024 8 0.041 9 0.048 10 0.045 11 -0.009 12 -0.050 13 -0.038 14 -0.055 15 0.027	PAC -0.009 -0.035 -0.037 -0.090 -0.111 -0.000 0.024 0.029 0.037 -0.005 -0.046 -0.024 -0.024 0.024 0.024	Q-Stat 0.0238 0.3744 0.7640 3.0059 6.1873 6.2291 6.4047 8.9026 7.5927 8.1918 8.2160 8.9767 9.4057 10.318 10.545	Prob 0.877 0.829 0.858 0.557 0.288 0.398 0.493 0.547 0.576 0.610 0.694 0.705 0.742 0.739 0.784	Autocorrelation	Partial Correlation	AC 1 0.001 2 0.003 3 0.006 4 0.023 5 -0.013 6 0.022 7 0.038 8 -0.048 9 0.056 10 -0.114 11 -0.038 12 -0.030 13 0.192 14 0.014 15 0.063	PAC 0.001 0.003 0.006 0.023 -0.013 0.021 0.038 -0.048 0.056 -0.116 -0.038 0.028 0.193 0.021 0.021	Q-Stat 0.0004 0.0029 0.0119 0.1650 0.2108 0.3463 0.7646 1.4362 2.3528 6.1868 6.6096 6.6096 6.8763 17.947 18.010 19 199	Prob 0.985 0.999 1.000 0.997 0.999 0.998 0.998 0.994 0.985 0.799 0.830 0.866 0.160 0.206 0.205
		16 -0.005 17 0.096 18 0.011 19 0.041 20 0.046 21 -0.096 22 0.039 23 -0.113 24 -0.136	-0.020 0.082 -0.002 0.040 0.061 -0.079 0.077 -0.114 -0.125	10.553 13.369 13.405 13.929 14.569 17.402 17.875 21.824 27.622	0.836 0.711 0.767 0.788 0.801 0.686 0.713 0.531 0.276			16 -0.006 17 -0.039 18 -0.029 19 -0.010 20 0.010 21 -0.057 22 0.045 23 -0.038 24 -0.149	-0.015 -0.035 -0.043 -0.009 -0.014 -0.047 0.018 0.011 -0.141	19.208 19.664 19.927 19.959 19.993 21.003 21.644 22.088 29.064	0.258 0.292 0.337 0.397 0.458 0.459 0.481 0.515 0.218

These last ones correspond to Figures 11.7 and 11.9 and to Tables 11.5 and 11.7.

Figures 11.6 and 11.8 are:

To estimate both equations of the VAR(4) at the same time we need to type the following command:

var bookfigure.ls 1 4 starts comps

This estimates both equations and stores the VAR(4) in the workfile under the name "bookfigure." The output is the following:

Vector Autoregression Estimates Date: 11/22/10 Time: 21:54 Sample (adjusted): 1968M05 1991M12 Included observations: 284 after adjustments Standard errors in () & t-statistics in []

	STARTS	COMPS
STARTS(-1)	0.659939	0.074724
	(0.06124)	(0.03571)
	[10.7759]	[2.09246]
STARTS(-2)	0.229632	0.040047
	(0.07272)	(0.04241)
	[3.15759]	[0.94438]
STARTS(-3)	0.142859	0.047145
	(0.07265)	(0.04237)
	[1.96628]	[1.11280]
STARTS(-4)	0.007806	0.082331
	(0.06603)	(0.03850)
	[0.11822]	[2.13824]
COMPS(-1)	0.031611	0.236774
	(0.10271)	(0.05989)
	[0.30776]	[3.93331]
COMPS(-2)	-0.120781	0.206172
	(0.10385)	(0.06055)
	[-1.16307]	[3.40474]
COMPS(-3)	-0.020601	0.120998
	(0.10095)	(0.05886)
	[-0.20408]	[2.05559]
COMPS(-4)	-0.027404	0.156729
	(0.09457)	(0.05514)
	[-0.28978]	[2.84216]
С	0.146871	0.045347
	(0.04423)	(0.02579)
	[3.32026]	[1.75804]
R-squared	0.895566	0.936835
Adj. R-squared	0.892528	0.934998
Sum sq. resids	4.320952	1.469205
S.E. equation	0.120300	0.073093
Log likelihood	294.7790	344 5453
Akaike AIC	-1 284241	-2 362995
Schwarz SC	-1.168605	-2.247359
Mean dependent	1.574771	1.547958
S.D. dependent	0.382362	0.286689
Determinant resid covaria	ance (dof adj.)	8.11E-05
Determinant resid covaria	ance	7.61E-05
Log likelihood		540.7183
Akaike information criteri	on	-3.681115
Schwarz criterion		-3.449842

Notice that this is exactly the same result we obtained before. The benefit from this second approach is that the impulse-response functions can then be easily estimated by going to "View" and then "Impulse Response" to obtain:

Impulse Responses		X
Display Impulse Definition		
Display Format	Display Information	
Table	Impulses:	
Multiple Graphs	starts comps	^
C Combined Graphs		-
Response Standard Errors	Responses:	
O None	starts comps	A
 Analytic (asymptotic) 		-
Monte Carlo	Periods: 35	
Repetitions: 100	Accumulated Responses	
	ОК	Cancel

The corresponding impulse-response are:

For forecasting using the estimated VAR(4) and replicate the results in Figure 11.12 we use the following:

bookfigure.makemodel(varmod) @prefix s_

smpl 1992m01 1996m06

varmod.solveopt(s=d, d=d)

solve varmod

smpl 1968m01 1996m06

varmod.makegraph(g=v) finalfigure starts

To obtain:

Alternatively, one can use the VAR(4) and obtain forecasts equation by equation using the same tools described in previous handouts. Just go to "Forecast" right after the estimation of each of the VAR equations.

gretl

To estimate the VAR(4) using gretl, first open the file from the class website. Then, make sure you select the correct sample for the estimation of the VAR. That is, go to 'Sample' and select 'Set range' to type:

🔣 gretl: set sa	amp X					
Set sample range						
Start:	End:					
1968:01	1991:12 🌻					
Observations: 288						
<u>C</u> ancel	<u>O</u> K					

For the lag selection gretl has an automatic procedure that estimates the VAR(p) for various values of p. To do this just go to 'Model' then 'Time series' and then select 'VAR lag selection.' You will then have to choose the following options:

gretl: VAR lag selection	on 📃 🗖 🗾						
VAR lag selection							
COMPS	maximum lag: 8						
STARTS	Endogenous variables						
	COMPS STARTS						
	\						
	Exogenous variables						
	>						
	(
	lags						
Include a constant							
Include a trend							
Include seasonal dur	nmies						
Help Clear	<u>Cancel</u> <u>O</u> K						

To obtain:

VAR system, maximum lag order 8								
The asterisks below indicate the best (that is, minimized) values of the respective information criteria, AIC = Akaike criterion, BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.								
lags	loglik	p(LR)	AIC	BIC	HQC			
1	469.76173		-3.312584	-3.234695	-3.281343			
2	514.50003	0.00000	-3.603572	-3.473758	-3.551503			
3	526.47574	0.00008	-3.660541	-3.478802*	-3.587645			
4	533.68942	0.00605	-3.683496*	-3.449831	-3.589772*			
5	534.51241	0.80051	-3.660803	-3.375212	-3.546252			
6	537.26899	0.23857	-3.651921	-3.314405	-3.516543			
7	538.60850	0.61289	-3.632918	-3.243476	-3.476712			
8	540.62332	0.40201	-3.618738	-3.177371	-3.441705			

Notice that gretl already shows with a * the minimum AIC and BIC. To be consistent with the results obtained with EViews and the textbook we follow the AIC and estimate the VAR(4) by going to 'Model' then 'Time series' and finally selecting 'Vector Autoregression' to select the following options:

🛃 gretl: VAR	
	VAR
COMPS STARTS	lag order: 4 Endogenous variables Image: COMPS STARTS Iags
 Robust standard error Include a constant Include a trend Include seasonal dur 	ors Configure
<u>H</u> elp <u>C</u> lear	<u>Cancel</u> <u>O</u> K

and obtain the following VAR:

UAR system, lag order 4 OLS estimates, observations 1968:05-1991:12 (T = 284) Log-likelihood = 540.71827 Determinant of covariance matrix = 7.6087294e-005 AIC = -3.6811 BIC = -3.4498 HOC = -3.5884 Portmanteau test: LB(48) = 204.246, df = 176 [0.0712]

Equation 1: COMPS

coefficient std.error t-ratio p-value

const	0.0453465	0.0257937	1.758	0.0799	×
COMPS_1	0.236774	0.0598926	3.953	9.81e-05	×××
COMPS_2	0.206172	0.0605545	3.405	0.0008	жжэ
COMPS_3	0.120998	0.0588627	2.056	0.0408	××
COMPS_4	0.156729	0.0551442	2.842	0.0048	жжж
STARTS_1	0.0747240	0.0357111	2.092	0.0373	××
STARTS_2	0.0400474	0.0424062	0.9444	0.3458	
STARTS_3	0.0471448	0.0423657	1.113	0.2668	
STARTS 4	0.0823313	0.0385043	2.138	0.0334	××

mean dependent var	1.341330	s.b. dependent var	0.200003
Sum squared resid	1.469205	S.E. of regression	0.073093
R-squared	0.936835	Adjusted R-squared	0.934998
F(8, 275)	509.8375	P-value(F)	4.3e-160
rho	-0.009141	Durbin-Watson	2.013370

F-tests of zero restrictions:

A11	lags of	COMPS	F(4,	275)	=	149.10	[0.0000]
A11	lags of	STARTS	F(4,	275)	=	26.266	[0.0000]
A11	vars, la	ag 4	F(2,	275)	=	6.9352	[0.0012]

Equation 2: STARTS

	coefficient	std. error	t-ratio	p-value	
const	0.146871	0.0442346	3.320	0.0010	жжж
COMPS_1	0.0316106	0.102712	0.3078	0.7585	
COMPS_2	-0.120781	0.103847	-1.163	0.2458	
COMPS_3	-0.0206008	0.100946	-0.2041	0.8384	
COMPS_4	-0.0274041	0.0945689	-0.2898	0.7722	
STARTS_1	0.659939	0.0612423	10.78	8.08e-023	×××
STARTS_2	0.229632	0.0727240	3.158	0.0018	×××
STARTS_3	0.142859	0.0726546	1.966	0.0503	×
STARTS_4	0.00780619	0.0660325	0.1182	0.9060	

Mean dependent var	1.574771	S.D. dependent var	0.382362
Sum squared resid	4.320952	S.E. of regression	0.125350
R-squared	0.895566	Adjusted R-squared	0.892528
F(8, 275)	294.7796	P-value(F)	4.0e-130
rho	0.001120	Durbin-Watson	1.991908

F-tests of zero restrictions:

A11	lags of	COMPS	F(4,	275)	=	2.2388	[0.0651]
A11	lags of	STARTS	F(4,	275)	=	203.90	[0.0000]
A11	vars, la	ag 4	F(2,	275)	=	0.046240	[0.9548]

For the system as a whole:

Null hypothesis: the longest lag is 3 Alternative hypothesis: the longest lag is 4 Likelihood ratio test: Chi-square(4) = 14.7643 [0.0052]

Comparison of information criteria: Lag order 4: AIC = -3.68111, BIC = -3.44984, HQC = -3.58839 Lag order 3: AIC = -3.65730, BIC = -3.47742, HQC = -3.58518

which yields the same results as EViews.

To obtain the Impulse-response functions, in the Vector Autoregression window select 'Graphs' and then 'Impulse responses (combined)' to get to the following menu:

gretl: impulse responses				
forecast horizon (periods): 35				
✓ include bootstrap confidence interval				
$1 - \alpha = 0.95$				
shaded area				
© error bars				
Cholesky ordering:				
STARTS				
COMPS				
<u>H</u> elp <u>C</u> ancel <u>O</u> K				

Just make sure you select the correct ordering: STARTS causes COMPS, so STARTS appears first. Once you click OK you will obtain:

which is the same as the one obtained with EViews.

For the forecasts with the VAR just o to 'Analysis' then 'Forecasts' then select 'STARTS' and the default options in the following menu to obtain:

