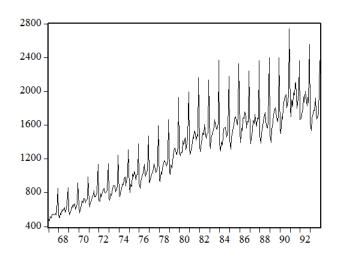
Computer Handout 11: Forecasting with Trend, Seasonal, and Cyclical Component Diego Escobari Econ 3342

This Computer Handout 11 will cover an example on how to forecast a model with trend, seasonal component, and cyclical component.

The variable we will use is monthly U.S. liquor sales from January 1968 until December 1993. For the sample:

smpl 1967m1 1993m12

The time series graph of the data is:

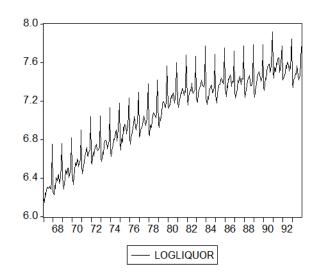


Because the variance seems to be larger for larger values of sales, we will work with the variable in logs:

smpl 1967m1 1998m12

genr logliquor = log(liquor)

The time series graph of logliquor is:



The series shows a strong seasonal component with sales being higher in December. As a first step, let's estimate the model with a quadratic trend:

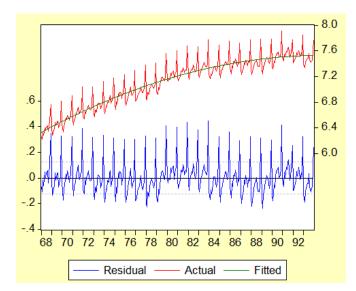
smpl 1968m1 1993m12

Is logliquor c @trend @trend^2

Dependent Variable: LOGLIQUOR Method: Least Squares Date: 11/15/10 Time: 00:16 Sample: 1968M01 1993M12 Included observations: 312

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND @TREND^2	6.237356 0.007690 -1.14E-05	0.024496 0.000336 9.74E-07	254.6267 22.91552 -11.72695	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.892394 0.891698 0.124828 4.814823 208.0146 1.752858	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	7.112383 0.379308 -1.314196 -1.278206 1281.296 0.000000

with the following in-sample forecast, forecast errors:



The seasonal component (and any potential cyclical component) is still in the error term. Let's look at the autocorrelation and the partial autocorrelation function for various values of the displacement:

=

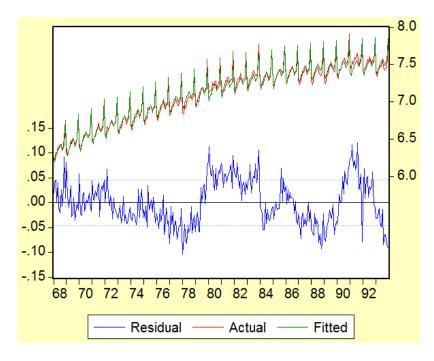
Autocorrelation	Partial Correlation	AC PAC Q-Stat Prob
· 🗖		1 0.117 0.117 4.3158 0.038
		2 -0.149 -0.165 11.365 0.003
	10	3 -0.106 -0.069 14.943 0.002
111	10	4 -0.014 -0.017 15.007 0.005
		5 0.142 0.125 21.449 0.001
ון	1	6 0.041 -0.004 21.979 0.001
		7 0.134 0.175 27.708 0.000
101	10	8 -0.029 -0.046 27.975 0.000
		9 -0.136 -0.080 33.944 0.000
		10 -0.205 -0.206 47.611 0.000
ום	I	11 0.056 0.080 48.632 0.000
		12 0.888 0.879 306.26 0.000
ום		13 0.055 -0.507 307.25 0.000
		14 -0.187 -0.159 318.79 0.000
		15 -0.159 -0.144 327.17 0.000
	1	16 -0.059 -0.002 328.32 0.000
i p i		17 0.091 -0.118 331.05 0.000
111	101	18 -0.010 -0.055 331.08 0.000
I DI	10	19 0.086 -0.032 333.57 0.000
III I		20 -0.066 0.028 335.03 0.000
	ון ו	21 -0.170 0.044 344.71 0.000
		22 -0.231 0.180 362.74 0.000
1]1	11	23 0.028 0.016 363.00 0.000
		24 0.811 -0.014 586.50 0.000
111		25 0.013 -0.128 586.56 0.000
		26 -0.221 -0.136 603.26 0.000
	10	27 -0.196 -0.017 616.51 0.000
q i		28 -0.092 -0.079 619.42 0.000
I 🛛 I	[]	29 0.045 -0.094 620.13 0.000
10		30 -0.043 0.045 620.77 0.000
ון	ון	31 0.057 0.041 621.89 0.000
q i		32 -0.095 -0.002 625.07 0.000
		33 -0.195 0.026 638.38 0.000
	ום	34 -0.240 0.088 658.74 0.000

Notice the seasonal displacements at 12 and 24 and some evidence of cyclical dynamics. If we estimate the model with the monthly dummies we have:

Dependent Variable: LOGLIQUOR Method: Least Squares Date: 11/15/10 Time: 01:48 Sample: 1968M01 1993M12 Included observations: 312

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.007656	0.000123	62.35882	0.0000
@TREND^2	-1.14E-05	3.56E-07	-32.06823	0.0000
D1	6.147456	0.012340	498.1699	0.0000
D2	6.088653	0.012353	492.8890	0.0000
D3	6.174127	0.012366	499.3008	0.0000
D4	6.175220	0.012378	498.8970	0.0000
D5	6.246086	0.012390	504.1398	0.0000
D6	6.250387	0.012401	504.0194	0.0000
D7	6.295979	0.012412	507.2402	0.0000
D8	6.268043	0.012423	504.5509	0.0000
D9	6.203832	0.012433	498.9630	0.0000
D10	6.229197	0.012444	500.5968	0.0000
D11	6.259770	0.012453	502.6602	0.0000
D12	6.580068	0.012463	527.9819	0.0000
R-squared	0.986111	Mean depen	dent var	7.112383
Adjusted R-squared	0.985505	S.D. depend	lent var	0.379308
S.E. of regression	0.045666	Akaike info	criterion	-3.291086
Sum squared resid	0.621448	Schwarz crit	terion	-3.123131
Log likelihood	527.4094	Durbin-Wate	son stat	0.586187

The graph with the in-sample forecasting errors is:



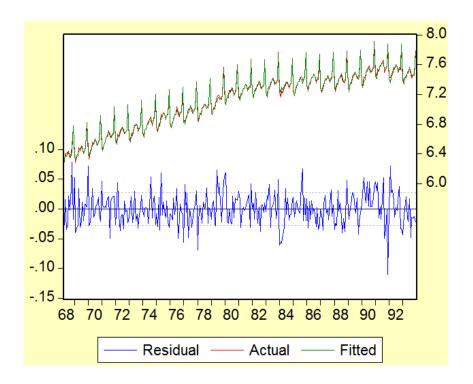
and the correlogram:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.700	0.700	154.34	0.000
		2	0.686	0.383	302.86	0.000
		3	0.725	0.369	469.36	0.000
		4	0.569	-0.141	572.36	0.000
1	1	5	0.569	0.017	675.58	0.000
1	1	6	0.577	0.093	782.19	0.000
ı 📩		7	0.460	-0.078	850.06	0.000
ı 🗖	I <u> </u>	8	0.480	0.043	924.38	0.000
I 📃	וויין	9	0.466	0.030	994.46	0.000
I 📩		10	0.327	-0.188	1029.1	0.000
I 🗖	ן וויין	11	0.364	0.019	1072.1	0.000
· 🗖	ום	12	0.355	0.089	1113.3	0.000
· 🗖 ·		13	0.225	-0.119	1129.9	0.000
· 🗖	ון	14	0.291	0.065	1157.8	0.000
· 🗖 ·		15	0.211	-0.119	1172.4	0.000
· 🗖 ·	10	16	0.138	-0.031	1178.7	0.000
· 🗖 ·	ון ו	17	0.195	0.053	1191.4	0.000
	101	18	0.114	-0.027	1195.7	0.000
i Di	וםי	19	0.055	-0.063	1196.7	0.000
· 🗖 ·	ום	20	0.134	0.089	1202.7	0.000
i Di	וויין	21	0.062	0.018	1204.0	0.000
1 1		22	-0.006	-0.115	1204.0	0.000
i pi	ום	23	0.084	0.086	1206.4	0.000
IQ I			-0.039		1206.9	0.000
I L I	101		-0.063		1208.3	0.000
111	101		-0.016		1208.4	0.000
	I I I		-0.143		1215.4	0.000
	ומי		-0.135		1221.7	0.000
 	101		-0.124		1227.0	0.000
	וםי		-0.189	0.086	1239.5	0.000
	101		-0.178		1250.5	0.000
Щ I	וקי	32	-0.139	0.073	1257.3	0.000

The seasonality disappeared, but there is still a strong cyclical component. With an AR(3) model for the cycle we have:

Dependent Variable: LOGLIQUOR Method: Least Squares Date: 11/16/10 Time: 18:01 Sample: 1968M01 1993M12 Included observations: 312 Convergence achieved after 5 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.008606	0.000981	8.769192	0.0000
@TREND^2	-1.41E-05	2.53E-06	-5.556632	0.0000
D1	6.073054	0.083910	72.37571	0.0000
D2	6.013822	0.083931	71.65232	0.0000
D3	6.099208	0.083936	72.66516	0.0000
D4	6.101522	0.083923	72.70386	0.0000
D5	6.172528	0.083935	73.53965	0.0000
D6	6.177129	0.083936	73.59368	0.0000
D7	6.223323	0.083928	74.15083	0.0000
D8	6.195681	0.083931	73.81864	0.0000
D9	6.131818	0.083929	73.05989	0.0000
D10	6.157592	0.083923	73.37197	0.0000
D11	6.188480	0.083921	73.74181	0.0000
D12	6.509106	0.083916	77.56681	0.0000
AR(1)	0.268805	0.052909	5.080488	0.0000
AR(2)	0.239688	0.053697	4.463723	0.0000
AR(3)	0.395880	0.053109	7.454150	0.0000
R-squared	0.995069	Mean depen	ident var	7.112383
Adjusted R-squared	0.994802	S.D. depend	lent var	0.379308
S.E. of regression	0.027347	Akaike info	criterion	-4.307442
Sum squared resid	0.220625	Schwarz crit	terion	-4.103496
Log likelihood	688.9610	Durbin-Wats	son stat	1.886119
Inverted AR Roots	.95	34+.55i	3455i	

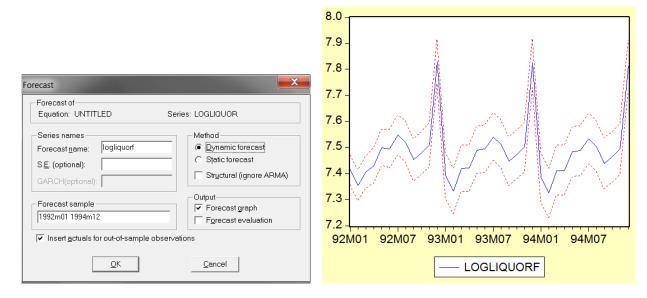


Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı þi	ıþı	1	0.056	0.056	0.9779	0.323
1 11	1 1	2	0.037	0.034	1.4194	0.492
ı j ı		3	0.024	0.020	1.6032	0.659
		4	-0.084	-0.088	3.8256	0.430
1	1	5	-0.007	0.001	3.8415	0.572
ı <u>D</u> i	l 1 🛛	6	0.065	0.072	5.1985	0.519
101	101	7	-0.041	-0.044	5.7288	0.572
1 🛛	ום	8	0.069	0.063	7.2828	0.506
ı 🗊	ון ו	9	0.080	0.074	9.3527	0.405
		10	-0.163	-0.169	18.019	0.055
11	1	11	-0.009	-0.005	18.045	0.081
ı 🗖		12	0.145	0.175	24.938	0.015
I <mark>I</mark> I	l (d)	13	-0.074	-0.078	26.750	0.013
ı 🗖 i		14	0.149	0.113	34.034	0.002
10	10	15	-0.039	-0.060	34.532	0.003
I <mark>I</mark> I	10	16	-0.089	-0.058	37.126	0.002
1 🛛	1 1	17	0.058	0.048	38.262	0.002
IC I	101	18	-0.062	-0.050	39.556	0.002
		19	-0.110	-0.074	43.604	0.001
I 🗖	1 1	20	0.100	0.056	46.935	0.001
ı <u>p</u> i	iĝi	21	0.039	0.042	47.440	0.001
		22	-0.122	-0.114	52.501	0.000
ı 🗖		23	0.146	0.130	59.729	0.000
IE I	ומי	24	-0.072	-0.040	61.487	0.000

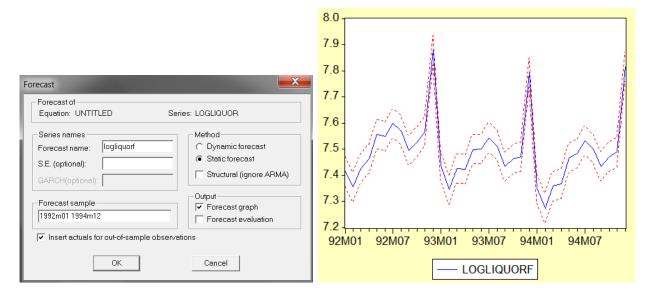
To obtain the forecast we need first to modify the sample, this is to be able to include the forecasted values:

smpl 1968m1 1994m12

1) The dynamic forecast:



2) The static forecast:



The difference between the dynamic and the static forecast is that the *dynamic forecast* uses previously forecasted values of the lagged dependent variables in forming forecasts of the current value. The *static forecast* calculates the sequence of one-step ahead forecasts, using actual, rather than forecasted values for lagged dependent variables.

A step-by-step approach to obtain the static forecast is:

smpl 1966:1 1993:12 genr lhistory=logliquor smpl 1994:1 1998:12 forecast yhat se

genr lfcst=yhat

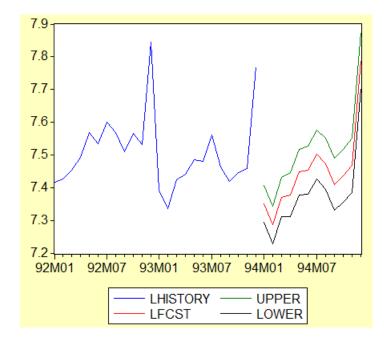
genr fcst=@exp(yhat)

genr upper = yhat + 1.96*se

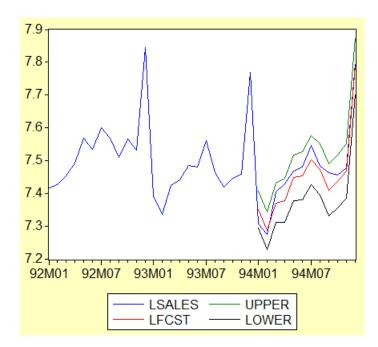
genr lower = yhat - 1.96*se

smpl 1992:1 1994:12

group group01 lhistory lfcst upper lower



group group02 logliquor lfcst upper lower



For the details in some of the steps, please refer to the previous Computer Handout.

Recursive Estimation Procedures

Recursive estimation procedures can only be estimated when the model was estimated by ordinary least squares. Usual estimation of ARMA models use nonlinear least squares procedures that are not compatible with recursive estimation procedures.

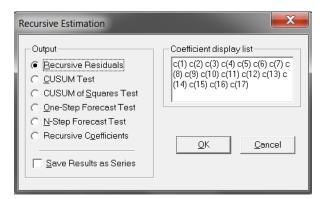
To be able to work with our model, estimate it again, but use the lag operators rather than the AR(1) notation, that is:

ls logliquor @trend @trend^2 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 logliquor(-1) logliquor(-2) logliquor(-3)

Go to "View," then "Stability Tests," and finally "Recursive Estimates."

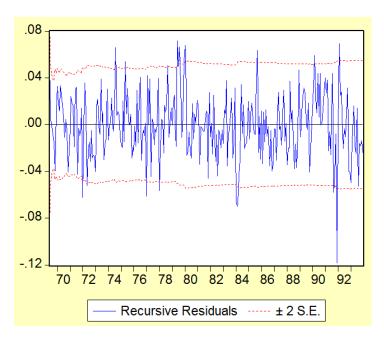
View Proc Object Print Name	Freeze Estir	mate Forecast Sta	ats Resids			
Representations Estimation Output						
Actual,Fitted,Residual ARMA Structure	+					
Gradients and Derivation Covariance Matrix	ves 🕨	Std. Error	t-Statistic	Prob.		
Coefficient Tests Residual Tests) 	0.000307	2.502059	0.0129		
Stability Tests	+	Chow Break	point Test			
Label	0.400921	Chow Forecast Test Ramsey RESET Test				
D4	0.633110		stimates (OLS o	nly)		

You will obtain the following menu:

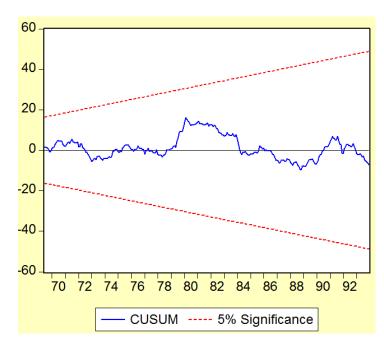


The options we discussed in class are (1) Recursive residuals, (2) CUSUM test, and (3) Recursive coefficients.

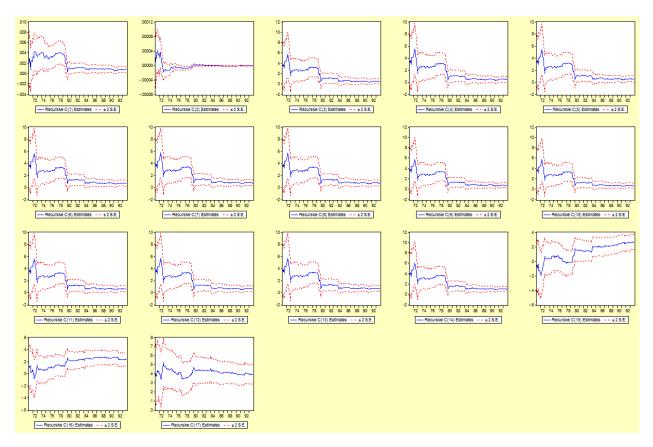
(1) Recursive residuals: (Figure 10.17)



(2) CUSUM test: (Figure 10.19)



(3) Recursive coefficients: (Figure 10.18)



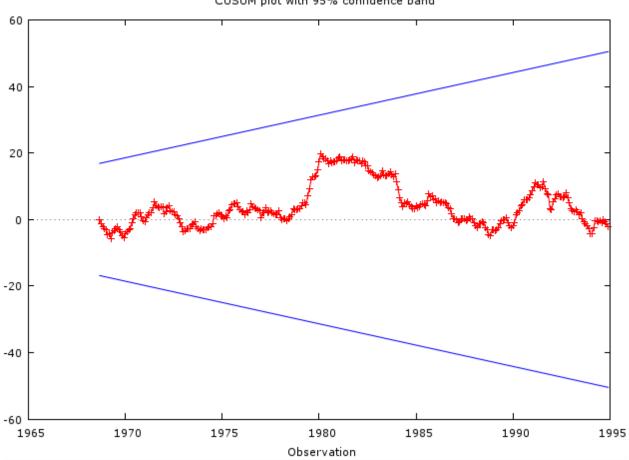
Gretl

Using the drop-down menus go to "add" and create a "Time trend" and a squared time trend. To estimate the model via OLS, just go to "Model" then "Ordinary Least Squared." To create the AR(3) part go to the end of the window and click on the "lags" icon. A new window will open and at the bottom part you will be asked if you want to include lags of the dependent variable. Accept and select 3 lags.

You will be getting the following model:

	coefficient	std. error	t-ratio	p-value	
D1	0.501434	0.240507	2.085	0.0379	**
D10	0.667905	0.235938	2.831	0.0049	**
D11	0.717712	0.235114	3.053	0.0025	**
D2	0.485542	0.239436	2.028	0.0434	**
D3	0.562791	0.237776	2.367	0.0185	**
D4	0.721367	0.231471	3.116	0.0020	**
D5	0.792641	0.231825	3.419	0.0007	**
D6	0.744328	0.233823	3.183	0.0016	**
D7	0.771219	0.234742	3.285	0.0011	**
D8	0.702785	0.236234	2.975	0.0032	**
D9	0.639344	0.236466	2.704	0.0072	**
	0.000862912				**
sq_time	-1.45633e-06	4.79531e-07	-3.037	0.0026	*
D12	1.04880				
	0.285118				
	0.221151				**
1_LIQUOR_3	0.383793	0.0519233	7.392	1.31e-012	**
-	t var 7.10437	_			
-	esid 0.24494		-		
-squared	0.99528	0 Adjusted R	-squared	0.995041	
	4164.40				
-	1 728.771				
chwarz crite:	rion -1358.80	4 Hannan-Qui	nn	-1397.727	
ho	0.06263	9 Durbin's h	L	3.523214	
og-likelihoo	d for LIQUOR = ·	-1636.99			
Null hypothe	r parameter stal esis: no change tic: Harvey-Coli	in parameters			

I was not able to find the recursive residuals and the parameter stability graphs, but I did find the CUSUM test. From the model you just estimated, go to "Tests" and then "CUSUM test" to obtain:



CUSUM plot with 95% confidence band