Computer Handout 9: MA, AR and ARMA Models Diego Escobari Econ 3342

This Computer Handout 9 will cover the estimation of MA, AR and ARMA models and how to select between competing models using AIC, SIC, the autocorrelation function and the partial autocorrelation function. For this exercise we will start with the same file as computer handout 8.

Artificial Data: MA(1) Process

Lets generate an artificial MA(1) process.

Generate the random variable epsilon: genr epsilon=nrnd

Now, generate the following three MA(1) processes:

genr Y1=epsilon+0.08*epsilon(-1) genr Y2=epsilon+0.98*epsilon(-1) genr Y3=epsilon-0.98*epsilon(-1)

Graph Y1 and Y2. Notice that Y2 is more volatile than Y1. Recall the formula for the variance?

Now, let's look at the autocorrelation and the partial autocorrelation functions. Notice that even though the series have undistinguishable forms based on just looking at the graph, they have very characteristic autocorrelation and partial correlation functions. For Y1, the coefficient on the lagged espilon is so small that based on the autocorrelation and the partial autocorrelation function, we conclude that is is white noise (all coefficients are within the bands). Moreover, the Ljung-Box Q-statistic reaches the same conclusion.

Correlogram of Y1									
Date: 10/22/10 Time: 01:00 Sample: 1962Q1 1993Q4 Included observations: 127									
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob				
		1 -0.059 2 -0.104 3 0.069 4 -0.014 5 -0.040 6 0.013 7 -0.087 8 -0.140 9 0.099 10 -0.132 11 -0.150	-0.059 -0.108 0.057 -0.018 -0.029 0.001 -0.093 -0.149 0.063 -0.150 -0.147	0.4460 1.8631 2.4893 2.5157 2.7299 2.7513 3.7816 6.4704 7.8320 10.261 13.451	0.504 0.394 0.477 0.642 0.742 0.839 0.805 0.595 0.551 0.418 0.265				

For Y2, theretically speaking, $\rho(\tau) = \theta/(1+\theta^2) = 0.98/(1+0.98^2) = 0.499$. The simulated series gives un 0.358. Because $\theta > 0$, the coefficients of the partial autocorrelation function alternate signs. Ljung-Box Q-statistic rejects white noise.

	Correlogram of Y2										
Date: 10/22/10 Tim Sample: 1962Q1 199 Included observation	e: 01:02)3Q4 s: 127										
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob						
		1 0.358 2 -0.150 3 0.017 4 -0.011 5 -0.050 6 -0.044 7 -0.165 8 -0.129 9 -0.004 10 -0.164 11 -0.194 12 0.045	0.358 -0.319 0.258 -0.245 0.164 -0.205 -0.056 -0.051 -0.007 -0.263 0.046 -0.021	16.710 19.648 19.684 19.701 20.034 20.298 24.010 26.301 26.304 30.092 35.408 35.698	0.000 0.000 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.000 0.000						

For Y3, we should have $\rho(\tau) = \theta/(1+\theta^2) = -0.98/(1+(-0.98)^2) = -0.499$. The simulated series gives un -0.515. Because θ <0, the coefficients of the partial autocorrelation function are all negative. Ljung-Box Q-statistic rejects white noise.

	Correlogram of Y3									
Date: 10/22/10 Time: 01:03 Sample: 1962Q1 1993Q4 Included observations: 127										
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob					
		1 -0.515 2 -0.058 3 0.114 4 -0.032 5 -0.032 6 0.072 7 -0.020 8 -0.132 9 0.219 10 -0.110 11 -0.109 12 0.134	-0.515 -0.439 -0.260 -0.190 -0.182 -0.069 -0.001 -0.192 0.025 0.017 -0.155 -0.134	34.438 34.876 36.603 36.741 36.879 37.577 37.629 40.045 46.708 48.404 50.075 52.637	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					

Artificial Data: AR(1) Process

Lets generate an artificial AR(1) process.

Generate the random variable epsilon: genr epsilon=nrnd

Now, generate the following four AR(1) processes. First you need to create the series:

 $\begin{array}{l} genr \ Z1 = 0\\ genr \ Z2 = 0\\ genr \ Z3 = 0\\ genr \ Z4 = 0 \end{array}$

Then modify the sample to exclude the first observation. (this is just a trick to make sure we eliminate the first observation)

Sample	×
Sample range pairs (or sample object to copy)	OK
IF condition (optional)	Cancel

Now, proceed to create the series:

genr Z1 = +0.90*Z1(-1) + epsilongenr Z2 = +0.20*Z2(-1) + epsilongenr Z3 = -0.90*Z3(-1) + epsilon genr Z4 = -0.20*Z4(-1) + epsilon

To see how a simple difference in the sign and the magnitude (size) of the autoregressive coefficient ϕ can have important differences in the series, let's graph Z1 and Z2:

And a graph of Z3 and Z4:

First, notice how different are the Z1 and Z2 series (positive ϕ) when compared with the Z3 and Z4 series (negative ϕ). Second, notice how a larger ϕ (either positive or negative) generates a series with higher dispersion (variance).

Correlogram of Z1							Correloo	ram of Z3			
Date: 10/25/10 Tim Sample: 1962Q2 199 Included observation	e: 02:09 93Q4 s: 127					Date: 10/25/10 T Sample: 1962Q2 1 Included observati	ime: 02:12 993Q4 ons: 127				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		$ \begin{array}{cccccc} 1 & 0.885 \\ 2 & 0.779 \\ 3 & 0.668 \\ 4 & 0.589 \\ 5 & 0.504 \\ 6 & 0.412 \\ 7 & 0.385 \\ 8 & 0.326 \\ 9 & 0.273 \\ 10 & 0.188 \\ 11 & 0.126 \\ 12 & 0.095 \\ 13 & 0.035 \\ 14 & -0.011 \\ 15 & -0.079 \\ 16 & -0.131 \\ 17 & -0.183 \\ 18 & -0.226 \\ 19 & -0.265 \\ 20 & -0.299 \\ 21 & -0.324 \\ 22 & -0.336 \\ 23 & -0.360 \\ 24 & -0.382 \\ 25 & -0.412 \\ 26 & -0.431 \\ 27 & -0.432 \\ 28 & -0.427 \\ 29 & -0.410 \\ 30 & -0.387 \\ 31 & -0.362 \\ 32 & -0.335 \\ 33 & -0.305 \\ 34 & -0.252 \\ 35 & -0.204 \\ 36 & -0.146 \\ \end{array} $	0.885 -0.020 -0.081 0.058 -0.071 -0.095 0.258 -0.184 -0.044 -0.105 -0.015 -0.015 -0.015 -0.015 -0.049 -0.040 0.040 0.009 -0.137 0.021 -0.075 -0.075 -0.075 -0.075 -0.075 -0.075 -0.075 -0.075 -0.073 0.058 0.037 -0.070 0.031 -0.080 0.031 -0.080 0.021 -0.070 0.031 -0.070 0.031 -0.075 -0.010 -0.000 -0.010 -0.007 -0.075 -0.075 -0.070 -0.070 -0.0000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.00000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.00000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.00000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.00000 -0.0000 -0.0000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.0000000 -0.00000000	101.89 181.47 240.47 286.71 320.79 343.79 363.99 388.93 393.86 397.36 397.55 397.56 398.49 401.02 406.00 413.67 424.34 438.03 471.91 492.34 515.57 542.79 542.79 542.79 542.79 542.86 728.69 744.87 756.07 763.47 767.29	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000			1 -0.868 2 0.753 3 -0.635 4 0.493 5 -0.350 6 0.225 7 -0.168 10 0.192 11 -0.239 12 0.246 13 -0.218 14 0.179 15 -0.151 16 0.119 17 -0.123 18 0.130 19 -0.140 20 0.090	-0.868 0.001 0.079 0.110 -0.169 0.110 -0.245 -0.022 -0.110 -0.020 -0.176 0.176 0.176 0.176 0.133 -0.2145 -0.276 0.2147 -0.399 0.310 -0.295	97.936 172.32 225.51 257.83 274.28 281.13 292.04 292.04 292.04 292.04 305.29 305.29 305.29 305.29 302.74 322.38 320.74 325.38 320.74 332.51 333.03 335.56 338.51 334.32 344.32	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	Correlogram	n of 72					Correlogram	of 74			
Date: 10/25/10 Tim Sample: 1962Q2 199 Included observation	e: 02:13 93Q4 1s: 127	10122				Date: 10/25/10 Tin Sample: 1962Q2 19 Included observation	93Q4 ns: 127				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.227 2 0.073 3 -0.080 4 0.020 5 0.043 6 -0.175 7 0.144 8 0.020 9 0.077 10 -0.061 11 -0.105	0.227 0.023 -0.107 0.063 0.039 -0.223 0.265 -0.054 0.002 -0.017 -0.101	6.6903 7.3855 8.2371 8.2921 8.5369 12.678 15.499 15.557 16.378 16.901 18.450	0.010 0.025 0.041 0.081 0.129 0.048 0.030 0.049 0.059 0.077 0.072			1 -0.187 - 2 0.104 3 -0.127 - 4 0.028 - 5 0.129 6 -0.289 - 7 0.250 8 -0.087 9 0.107 - 10 -0.050 11 -0.127 -	0.187 0.071 0.099 0.018 0.156 0.275 0.175 0.043 0.043 0.015 0.033 0.117	4.5359 5.9438 8.0651 8.1679 10.403 21.704 30.246 31.284 32.860 33.207 35.500	0.033 0.051 0.045 0.086 0.065 0.001 0.000 0.000 0.000 0.000 0.000
		11 -0.105 12 0.091	-0.101 -0.101 0.114	18.450 19.633	0.077 0.072 0.074			11 -0.127 - 12 0.160	0.033 0.117 0.046	35.500 39.153	0.0 0.0

Now, let's see what the autocorrelation functions and the partial autocorrelation functions have to say:

Now, once you see the autocorrelation function and the partial autocorrelation function, can you guess whether the series is MA or AR?

Example: Canadian Employment

Consider the Canadian Employment series from the previous computer handout:

Let's estimate an MA(1) model: ls caemp c ma(1)

Dependent Variable: CAEMP Method: Least Squares Date: 10/29/10 Time: 09:12 Sample: 1962:1 1993:4 Included observations: 128 Convergence achieved after 11 iterations Backcast: 1961:4								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
С	100.9893	0.710258	142.1867	0.0000				
MA(1)	0.937751	0.030321	30.92718	0.0000				
R-squared	0.696454	Mean depen	dent var	101.0176				
Adjusted R-squared	0.694045	S.D. depend	ent var	7.499163				
S.E. of regression	4.148027	Akaike info	criterion	5.698644				
Sum squared resid	2167.972	Schwarz crit	erion	5.743207				
Log likelihood	-362.7132	F-statistic		289.0938				
Durbin-Watson stat	0.439477	Prob(F-stati	stic)	0.000000				
Inverted MA Roots	94							

As soon as you estimated this model, you have to open the series: resid, to test if the regression residuals are White Noise.

	Correlogram of RESID										
Date: 10/29/10 Time: 09:15 Sample: 1962:1 1993:4 Included observations: 128											
Autocorrelation		AC	PAC	Q-Stat	Prob						
		1 2 3 4 5 6 7 8 9 10 11 12	0.741 0.865 0.624 0.697 0.485 0.520 0.343 0.353 0.210 0.173 0.056 0.011	0.741 0.702 -0.379 -0.032 -0.068 -0.073 -0.019 -0.052 -0.016 -0.199 -0.063 0.015	71.908 170.80 222.68 287.79 319.66 356.54 372.76 390.02 396.21 400.43 400.87 400.89	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					

Based on these results you reject the null hypothesis of White Noise error terms. This is because the autocorrelation and the partial autocorrelation for various values of the displacement fall outside the two-standard deviation bands. Moreover, the Q-statistic (Ljung-Box Q-statistic) which is the weighted sum of squared autocorrelations has large values when compared to the χ^2 distribution with the corresponding degrees of freedom (the p-values are below 0.05). Hence, you may want to try other specifications and also keep track of the AIC and SIC.

You should consider MA(q) of different order q.

For an AR(1) we have to type: Is caemp c ar(1)

Dependent Variable: CAEMP Method: Least Squares Date: 10/29/10 Time: 09:26 Sample: 1962:1 1993:4 Included observations: 128 Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1)	101.7767 0.970201	4.898049 0.019320	20.77903 50.21620	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.952411 0.952033 1.642415 339.8886 -244.1257 1.061546	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statist	dent var lent var criterion cerion stic)	101.0176 7.499163 3.845715 3.890278 2521.666 0.000000
Inverted AR Roots	.97			

With the corresponding correlogram:

Correlogram of RESID

Date: 10/29/10 Time: 09:29 Sample: 1962:1 1993:4 Included observations: 128

_							
	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-			1 2 3 4 5 6 7 8 9	0.469 0.253 0.127 0.083 0.031 0.023 0.021 0.087 0.089	0.469 0.043 -0.009 0.023 -0.023 0.013 0.010 0.092 0.019	28.794 37.269 39.415 40.336 40.467 40.538 40.598 41.648 42.743	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
			10 11 12	0.028 -0.087 -0.193	-0.054 -0.125 -0.148	42.850 43.928 49.286	0.000 0.000 0.000

We still reject the null of White Noise errors.

For an AR(2): Is caemp c ar(1) ar(2)

Dependent Variable: CAEMP Method: Least Squares Date: 10/29/10 Time: 09:31 Sample: 1962:1 1993:4 Included observations: 128 Convergence achieved after 3 iterations				Date: 10/29/10 Tin Sample: 1962:1 199 Included observation	Correlogram ne: 09:31 13:4 ns: 128	of RESID				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
C AR(1) AR(2)	101.2413 1.438810 -0.476451	3.399620 0.078487 0.077902	29.78017 18.33188 -6.116042	0.0000 0.0000 0.0000			1 -0.035 2 0.044 3 0.011	-0.035 0.042 0.014	0.1606 0.4115 0.4291	0.689 0.814 0.934
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.963372 0.962786 1.446663 261.6041 -227.3715 2.067024	Mean depen S.D. depend Akaike info o Schwarz crit F-statistic Prob(F-statis	dent var lent var criterion erion stic)	101.0176 7.499163 3.599554 3.666399 1643.837 0.000000			4 0.051 5 0.002 6 0.019 7 -0.024 8 0.078 9 0.080 10 0.050	0.050 0.004 0.015 -0.024 0.072 0.087 0.050	0.7786 0.7790 0.8272 0.9036 1.7382 2.6236 2.9727 2.0504	0.941 0.978 0.991 0.996 0.988 0.977 0.982
Inverted AR Roots	.92	.52					12 -0.129	-0.027	5.4385	0.990

We finally have White Noise errors.

Now, you have to pick the most appropriate ARMA(p,q) for different orders of p and q based on the AIC and SIC. The result (not shown for all models) show that the ARMA(3,1) is the most appropriate:

Dependent Variable: CAEMP Method: Least Squares Date: 10/29/10 Time: 09:35 Sample: 1962:1 1993:4 Included observations: 128 Convergence achieved after 73 iterations Backcast: 1961:4

Dackeast. 1901.4					D-1 40/00/40 T	00.05				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Sample: 1962:1 199	16: 09:35 3:4 0: 128				
С	101.1376	3.539424	28.57458	0.0000		15. 120				
AR(1)	0.500389	0.087408	5.724751	0.0000	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
AR(2)	0.872158	0.066839	13.04857	0.0000						
AR(3)	-0.443209	0.080958	-5.474587	0.0000	10	1 1	1 -0.032	-0.032	0.1384	0.710
MA(1)	0.971171	0.034669	28.01281	0.0000	i 🛛 i	1 1	2 0.042	0.041	0.3683	0.832
					1 1 1	1 1	3 0.014	0.016	0.3937	0.942
R-squared	0.964535	Mean depen	dent var	101.0176	i 🛛 i	1 1	4 0.048	0.047	0.7030	0.951
Adjusted R-squared	0.963381	S.D. depend	ent var	7.499163	1 1	1 1	5 0.005	0.007	0.7070	0.983
S.E. of regression	1.435042	Akaike info o	criterion	3.598545	1 1 1	111	6 0.013	0.010	0.7311	0.994
Sum squared resid	253.2996	Schwarz crit	erion	3.709952	111	1 1	7 -0.017	-0.019	0.7723	0.998
Log likelihood	-225.3069	F-statistic		836.2915	1 1 1	1 1	8 0.064	0.060	1.3485	0.995
Durbin-Watson stat	2.057495	Prob(F-statis	stic)	0.000000	r <mark>1</mark> 1	1 1	9 0.092	0.097	2.5236	0.980
					. (])	1 1	10 0.039	0.041	2.7345	0.987
Inverted AR Roots	.93	.51	94		1 🚺 1	111	11 -0.017	-0.022	2.7736	0.993
Inverted MA Roots	97				·]⊐	🗖 -	12 -0.136	-0.153	5.4430	0.942

Correlogram of RESID

And we have White Noise errors.

The actual, fitted (in-sample forecast), and residual (in-sample forecast errors) graph is:

In gretl

The command for the ARMA model is: arma 3 1 ; CAEMP 0

Go to "Tools" and then "gretl console"

To obtain:

```
gretl console: type 'help' for a list of commands
? arma 3 1 ; CAEMP 0
Function evaluations: 96
Evaluations of gradient: 32
Model 1: ARMA, using observations 1961:1-1994:4 (T = 136)
Estimated using Kalman filter (exact ML)
Dependent variable: CAEMP
Standard errors based on Hessian
            coefficient std. error z
                                                  p-value
  _____

        99.0506
        3.22221
        30.74
        1.66e-207
        ***

        2.19046
        0.224518
        9.756
        1.73e-022
        ***

 const
 phi 1
            -1.49762 0.360611 -4.153 3.28e-05 ***
0.298463 0.145749 2.048 0.0406 **
-0.781041 0.199694 -3.911 9.18e-05 ***
 phi_2
  phi 3
  pn1_3 0.298463
theta 1 -0.781041
Mean dependent var 100.2198 S.D. dependent var 7.997169
Mean of innovations -0.034017 S.D. of innovations 1.413822
Log-likelihood -242.0093 Akaike criterion 496.0187
Schwarz criterion 513.4946 Hannan-Quinn
                                                      503.1205
                        Real Imaginary
                                           Modulus Frequency
  _____
 AR
                                                      -0.0145
                1.0773 -0.0984 1.0817
1.0773 0.0984 1.0817
2.8633 0.0000 2.8633
   Root 1
                                                         0.0145
    Root
          2
   Root 3
                                                         0.0000
 MA
                    1.2803 0.0000 1.2803 0.0000
   Root 1
```

For the correlogram just go to "variable" and then "correlogram":
