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This Computer Handout 9 will cover the estimation of MA, AR and ARMA models and how to select 

between competing models using AIC, SIC, the autocorrelation function and the partial autocorrelation 

function. For this exercise we will start with the same file as computer handout 8.  

Artificial Data: MA(1) Process 

Lets generate an artificial MA(1) process. 

Generate the random variable epsilon: genr epsilon=nrnd 

Now, generate the following three MA(1) processes:  

genr Y1=epsilon+0.08*epsilon(-1) 
genr Y2=epsilon+0.98*epsilon(-1) 
genr Y3=epsilon-0.98*epsilon(-1) 
 

Graph Y1 and Y2. Notice that Y2 is more volatile than Y1. Recall the formula for the variance? 

 

Now, let's look at the autocorrelation and the partial autocorrelation functions. Notice that even though 

the series have undistinguishable forms based on just looking at the graph, they have very characteristic 

autocorrelation and partial correlation functions. 



For Y1, the coefficient on the lagged espilon is so small that based on the autocorrelation and the partial 

autocorrelation function, we conclude that is is white noise (all coefficients are within the bands). 

Moreover, the Ljung-Box Q-statistic reaches the same conclusion. 

 

For Y2, theretically speaking, ρ(τ) = θ/(1+θ
2
) = 0.98/(1+0.98

2
) = 0.499. The simulated series gives un 

0.358. Because θ>0, the coefficients of the partial autocorrelation function alternate signs. Ljung-Box Q-

statistic rejects white noise. 

 

For Y3, we should have ρ(τ) = θ/(1+θ
2
) = -0.98/(1+(-0.98)

2
) = -0.499. The simulated series gives un -0.515. 

Because θ<0, the coefficients of the partial autocorrelation function are all negative. Ljung-Box Q-

statistic rejects white noise. 



 

 

Artificial Data: AR(1) Process 

Lets generate an artificial AR(1) process. 

Generate the random variable epsilon: genr epsilon=nrnd 

Now, generate the following four AR(1) processes. First you need to create the series: 

genr Z1 = 0 
genr Z2 = 0 
genr Z3 = 0 
genr Z4 = 0 
 

Then modify the sample to exclude the first observation. (this is just a trick to make sure we eliminate 

the first observation) 

 

Now, proceed to create the series: 

genr Z1 = +0.90*Z1(-1) + epsilon 
genr Z2 = +0.20*Z2(-1) + epsilon 
genr Z3 = -0.90*Z3(-1) + epsilon 



genr Z4 = -0.20*Z4(-1) + epsilon 
 

To see how a simple difference in the sign and the magnitude (size) of the autoregressive coefficient φ 

can have important differences in the series, let's graph Z1 and Z2: 

 

And a graph of Z3 and Z4: 

 

First, notice how different are the Z1 and Z2 series (positive φ) when compared with the Z3 and Z4 series 

(negative φ). Second, notice how a larger φ (either positive or negative) generates a series with higher 

dispersion (variance). 



Now, let's see what the autocorrelation functions and the partial autocorrelation functions have to say: 

 

  

Now, once you see the autocorrelation function and the partial autocorrelation function, can you guess 

whether the series is MA or AR? 

 



Example: Canadian Employment 

Consider the Canadian Employment series from the previous computer handout: 

 

Let’s estimate an MA(1) model: ls caemp c ma(1) 

 

As soon as you estimated this model, you have to open the series: resid, to test if the regression 

residuals are White Noise. 



 

Based on these results you reject the null hypothesis of White Noise error terms. This is because the 

autocorrelation and the partial autocorrelation for various values of the displacement fall outside the 

two-standard deviation bands. Moreover, the Q-statistic (Ljung-Box Q-statistic) which is the weighted 

sum of squared autocorrelations has large values when compared to the χ
2
 distribution with the 

corresponding degrees of freedom (the p-values are below 0.05). Hence, you may want to try other 

specifications and also keep track of the AIC and SIC. 

You should consider MA(q) of different order q.  

For an AR(1) we have to type: ls caemp c ar(1) 

 

With the corresponding correlogram: 



 

We still reject the null of White Noise errors. 

For an AR(2): ls caemp c ar(1) ar(2) 

  

We finally have White Noise errors.  

Now, you have to pick the most appropriate ARMA(p,q) for different orders of p and q based on the AIC 

and SIC. The result (not shown for all models) show that the ARMA(3,1) is the most appropriate: 



 

And we have White Noise errors. 

The actual, fitted (in-sample forecast), and residual (in-sample forecast errors) graph is: 

 

 

In gretl 

The command for the ARMA model is:  arma 3 1 ; CAEMP 0 

Go to “Tools” and then “gretl console” 



 

To obtain: 

 

 

For the correlogram just go to “variable” and then “correlogram”: 



 


