
Chapter 10

Time Series

10.1 Time Series Data

The main difference between time series data and cross-sectional data is the tem-

poral ordering. To emphasize the proper ordering of the observations, Table 10.1

presents a partial listing of the data on U.S. inflation and unemployment rates from

1948 through 2003. Unlike cross-sectional data, in time series the temporal order in

which the observations appear in the data set is very important. In terms of notation,

we use the subscript t to denote time and we use it instead of the previous subscript

i, i.e., Xt .

Table 10.1 U.S. Inflation and Unemployment Rates, 1965-2011

Year Inflation Unemployment

1948 8.1 3.8

1949 -1.2 5.9

1950 1.3 5.3

1951 7.9 3.3

.

.

.
.
.
.

.

.

.

2000 3.4 4.0

2001 2.8 4.7

2002 1.6 5.8

2003 2.3 6.0

A second key difference between time series and cross-sectional data is that in the

latter we assume that the sample was randomly drawn from the population. While

in time series the variables are also considered random, a variable indexed by time

is called a stochastic process or a time series process. When we collect a time series

data set we are one possible outcome or realization of the stochastic process. We

can only see a single realization because we cannot go back in time and start the

process again.
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Fig. 10.1 Inflation, 1948-2003.

Graphing the data is particularly important to visualize the dynamics of the vari-

ables. Figure 10.1 presents the time series graph of inflation from 1948 through

2003. One can easily identify the periods of high inflation late in the seventies and

early eighties. To obtain this graph in Gretl, go to View→ Graph specified

vars → Time series plot and then select the variables you want to plot

against time.

10.2 Time Series Regression Models

10.2.1 Static Models

The simplest static model has the form

Yt = β1 +β2Xt +ut , t = 1,2,3, . . . ,n. (10.1)
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We call this a static model because we are only modeling a contemporaneous rela-

tionship between Xt and Yt . That is, when a change in X at time t is believed to have

an immediate effect on Y : ∆Yt = β2∆Xt . One example is the static Phillips curve

given by:

inflationt = β1 +β2unemploymentt +ut . (10.2)

where inflation is the annual inflation rate, and unemployment is the un-
employment rate. Estimation in Gretl via OLS is follows the same steps as in the
previous chapters. The output for the estimation of Equation 10.1 is:

Model 1: OLS, using observations 1948-2003 (T = 56)

Dependent variable: inflation

coefficient std. error t-ratio p-value

----------------------------------------------------------

const 1.05357 1.54796 0.6806 0.4990

unemployment 0.502378 0.265562 1.892 0.0639 *

Mean dependent var 3.883929 S.D. dependent var 3.040381

Sum squared resid 476.8157 S.E. of regression 2.971518

R-squared 0.062154 Adjusted R-squared 0.044786

F(1, 54) 3.578726 P-value(F) 0.063892

Log-likelihood -139.4304 Akaike criterion 282.8607

Schwarz criterion 286.9114 Hannan-Quinn 284.4311

rho 0.572055 Durbin-Watson 0.801482

̂inflation= 1.05357
(1.5480)

+0.502378
(0.26556)

unemployment

T = 56 R̄2 = 0.0448 F(1,54) = 3.5787 σ̂ = 2.9715

(standard errors in parentheses)

The estimation results indicate that a one point increase in the unemployment rate

is linked with a 0.5 increase in the inflation rate. Of course more variables can be

included in the model. Notice that we can use this model to predict inflation

given that we know the values for unemployment by simply plugging values for

unemployment in the estimated equation. If we do this for the actual unemployment

values for 1948-2003 period and graph them, we obtain the fitted values graph.

Figure 10.2 plots the actual and the fitted values for inflation.

10.2.2 Finite Distributed Lag Models

The simplest dynamic model is the finite distributed lag (FDL) model, where we al-

low one or more variables to to affect Yt with a lag. Consider the following example:

Yt = β1 +β2Xt +β3Xt−1 +β4Xt−2 +ut , (10.3)
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Fig. 10.2 Inflation, 1948-2003. Actual and fitted based on an static model.

where the FDL is of order two. Let’s say that we are interested in the effect on Y

of a permanent increase in X . Before time t, X equals to a constant c. At time t, X

increases permanently to c+ 1. That is, Xs = c for s < t and Xs = c+ 1 for s ≥ t.

Setting the errors to be equal to zero we have:

Yt−1 = β1 +β2c+β3c+β4c (10.4)

Yt = β1 +β2(c+1)+β3c+β4c

Yt+1 = β1 +β2(c+1)+β3(c+1)+β4c

Yt+2 = β1 +β2(c+1)+β3(c+1)+β4(c+1)

and so on. The contemporaneous effect of X on Y is called the impact multiplier

and in this case this one is given by β2. However, over time the marginal effect of X

on Y is larger. We say that the long-run multiplier is the long-run change Y given a

permanent increase in X . This one is given by β2 +β3 +β4.

Consider the following example in Gretl:

inft = β1 +β2unemt +β3unemt−1 +β4unemt−2 +ut , (10.5)
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To estimate this model in Gretl we first need to create the lagged values of unem. To
do this we have to go to select unem and then go to Add→ Lags of selected
variables and select the number of lags. An alternative approach is to just in-
clude the lags when estimating the model via OLS. That is, when specifying the
model in Gretl (Model → Ordinary Least Squares) there is an icon that
allows you to select the lags. Just select two lags for unem to obtain:

Model 2: OLS, using observations 1950-2003 (T = 54)

Dependent variable: inf

coefficient std. error t-ratio p-value

--------------------------------------------------------

const -0.124609 1.68922 -0.07377 0.9415

unem 0.903211 0.402071 2.246 0.0291 **
unem_1 -0.856337 0.525700 -1.629 0.1096

unem_2 0.668123 0.386722 1.728 0.0902 *

Mean dependent var 3.900000 S.D. dependent var 2.961323

Sum squared resid 395.2340 S.E. of regression 2.811526

R-squared 0.149632 Adjusted R-squared 0.098610

F(3, 50) 2.932693 P-value(F) 0.042366

Log-likelihood -130.3660 Akaike criterion 268.7320

Schwarz criterion 276.6880 Hannan-Quinn 271.8003

rho 0.661217 Durbin-Watson 0.676987

înf=−0.124609
(1.6892)

+0.903211
(0.40207)

unem−0.856337
(0.52570)

unem 1+0.668123
(0.38672)

unem 2

T = 54 R̄2 = 0.0986 F(3,50) = 2.9327 σ̂ = 2.8115

(standard errors in parentheses)

A permanent increase in unemployment leads to a contemporaneous increase in

inflation of 0.903 (impact multiplier). However, in the long-run the same increase

in unemployment leads to a permanent effect on inflation of 0.903 -0.856 + 0.668 =

0.715 (long-run multiplier).

10.2.3 Autoregressive Model

An autoregresive model is a simple model where the current values of a variable are

related to its past values. The first-order autoregressive model is given by:

Yt = φYt−1 +ut . (10.6)

This one is usually denoted by AR(1). A more general model is the pth autoregres-

sive model or AR(p) given by:

Yt = φ1Yt−1 +φ2Yt−2 +φ3Yt−3 + · · ·+φpYt−p +ut (10.7)
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where there are p lags of the variable Y explaining its current value. The estimation

of an AR(p) model in Gretl is simple; go to Model→ Time series→ ARIMA

and then select the dependent variable and the AR order. Make sure that the MA

order is zero. For the example above, consider estimating the following model:

inft = φ1inft−1 +φ2inft−2 +ut (10.8)

The output in Gretl is:

Function evaluations: 17

Evaluations of gradient: 8

Model 4: ARMA, using observations 1948-2003 (T = 56)

Estimated using Kalman filter (exact ML)

Dependent variable: inf

Standard errors based on Hessian

coefficient std. error z p-value

-------------------------------------------------------

const 4.02526 0.791433 5.086 3.66e-07 ***
phi_1 0.815712 0.148739 5.484 4.15e-08 ***
phi_2 -0.175228 0.152459 -1.149 0.2504

Mean dependent var 3.883929 S.D. dependent var 3.040381

Mean of innovations -0.054104 S.D. of innovations 2.171763

Log-likelihood -123.2506 Akaike criterion 254.5012

Schwarz criterion 262.6026 Hannan-Quinn 257.6421

Real Imaginary Modulus Frequency

-----------------------------------------------------------

AR

Root 1 2.3276 -0.5378 2.3889 -0.0361

Root 2 2.3276 0.5378 2.3889 0.0361

-----------------------------------------------------------

That yields the following estimated equation:

înft = 4.025+0.8157inft−1−0.1752inft−2. (10.9)

where we can see that higher inflation last period has a positive effect on inflation

this period. We can use this model to predict the path of inf based on its previous

values. It Gretl the command to obtain this Graphs→ Fitted, actual plot

→ Against time. The resulting graph is shown in Figure 10.3.

10.2.4 Moving-Average Models

The moving-average models express an observed series as a function of the current

and lagged unobserved shocks. The simplest moving-average model is the moving-

average of order one, or MA(1):
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Fig. 10.3 Inflation, 1948-2003. Actual and fitted based on an AR(2) model.

Yt = θut−1 +ut (10.10)

A more general moving-average of order q is be written as:

Yt = θ1ut−1 +θ2ut−2 +θ3ut−3 + · · ·+θqut−q +ut (10.11)

For the example above:

inft = θ1ut−1 +θ2ut−2 +ut (10.12)

the output in Gretl is:

Function evaluations: 51

Evaluations of gradient: 19

Model 6: ARMA, using observations 1948-2003 (T = 56)

Estimated using Kalman filter (exact ML)

Dependent variable: inf

Standard errors based on Hessian

coefficient std. error z p-value
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Fig. 10.4 Inflation, 1948-2003. Actual and fitted based on an MA(2) model.

-------------------------------------------------------

const 3.98267 0.615240 6.473 9.58e-011 ***
theta_1 1.18549 0.130300 9.098 9.19e-020 ***
theta_2 0.267922 0.127516 2.101 0.0356 **

Mean dependent var 3.883929 S.D. dependent var 3.040381

Mean of innovations -0.041523 S.D. of innovations 1.899580

Log-likelihood -116.5030 Akaike criterion 241.0061

Schwarz criterion 249.1075 Hannan-Quinn 244.1470

Real Imaginary Modulus Frequency

-----------------------------------------------------------

MA

Root 1 -1.1343 0.0000 1.1343 0.5000

Root 2 -3.2904 0.0000 3.2904 0.5000

-----------------------------------------------------------

and the actual and fitted values are presented in Figure 10.4.
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10.2.5 Autoregressive Moving Average Models

One can easily combine an AR(1) model and an MA(1) models to obtain an autore-

gressive moving-average model ARMA(1,1):

Yt = φYt−1 +θut−1 +ut (10.13)

or a more general ARMA(p,q) model:

Yt = φ1Yt−1 +φ2Yt−2 + · · ·+φpYt−p +θ1ut−1 +θ2ut−2 + · · ·+θqut−q +ut (10.14)

The output in Gretl for a ARMA(2,2) for inflation is:

Function evaluations: 61

Evaluations of gradient: 20

Model 5: ARMA, using observations 1948-2003 (T = 56)

Estimated using Kalman filter (exact ML)

Dependent variable: inf

Standard errors based on Hessian

coefficient std. error z p-value

-------------------------------------------------------

const 3.94843 1.05291 3.750 0.0002 ***
phi_1 0.828806 0.236639 3.502 0.0005 ***
phi_2 0.0226838 0.173277 0.1309 0.8958

theta_1 0.274108 0.197397 1.389 0.1650

theta_2 -0.587919 0.169467 -3.469 0.0005 ***

Mean dependent var 3.883929 S.D. dependent var 3.040381

Mean of innovations -0.053524 S.D. of innovations 1.831760

Log-likelihood -114.4824 Akaike criterion 240.9648

Schwarz criterion 253.1169 Hannan-Quinn 245.6761

Real Imaginary Modulus Frequency

-----------------------------------------------------------

AR

Root 1 1.1691 0.0000 1.1691 0.0000

Root 2 -37.7065 0.0000 37.7065 0.5000

MA

Root 1 -1.0917 0.0000 1.0917 0.5000

Root 2 1.5580 0.0000 1.5580 0.0000

-----------------------------------------------------------


