Chapter 10 *Time Series*

10.1 Time Series Data

The main difference between time series data and cross-sectional data is the temporal ordering. To emphasize the proper ordering of the observations, Table 10.1 presents a partial listing of the data on U.S. inflation and unemployment rates from 1948 through 2003. Unlike cross-sectional data, in time series the temporal order in which the observations appear in the data set is very important. In terms of notation, we use the subscript *t* to denote time and we use it instead of the previous subscript *i*, i.e., X_t .

Year	Inflation	Unemployment
1948	8.1	3.8
1949	-1.2	5.9
1950	1.3	5.3
1951	7.9	3.3
:	:	:
	. 2.4	
2000	3.4	4.0
2001	2.8	4.7
2002	1.6	5.8
2003	2.3	6.0

Table 10.1 U.S. Inflation and Unemployment Rates, 1965-2011

A second key difference between time series and cross-sectional data is that in the latter we assume that the sample was randomly drawn from the population. While in time series the variables are also considered random, a variable indexed by time is called a *stochastic process* or a *time series process*. When we collect a time series data set we are one possible outcome or realization of the stochastic process. We can only see a single realization because we cannot go back in time and start the process again.

Fig. 10.1 Inflation, 1948-2003.

Graphing the data is particularly important to visualize the dynamics of the variables. Figure 10.1 presents the time series graph of inflation from 1948 through 2003. One can easily identify the periods of high inflation late in the seventies and early eighties. To obtain this graph in Gretl, go to $View \rightarrow Graph$ specified vars \rightarrow Time series plot and then select the variables you want to plot against time.

10.2 Time Series Regression Models

10.2.1 Static Models

The simplest static model has the form

$$Y_t = \beta_1 + \beta_2 X_t + u_t, \quad t = 1, 2, 3, \dots, n.$$
(10.1)

10.2 Time Series Regression Models

We call this a static model because we are only modeling a contemporaneous relationship between X_t and Y_t . That is, when a change in X at time t is believed to have an immediate effect on $Y: \Delta Y_t = \beta_2 \Delta X_t$. One example is the static Phillips curve given by:

inflation_t =
$$\beta_1 + \beta_2$$
unemployment_t + u_t . (10.2)

where inflation is the annual inflation rate, and unemployment is the unemployment rate. Estimation in Gretl via OLS is follows the same steps as in the previous chapters. The output for the estimation of Equation 10.1 is:

```
Model 1: OLS, using observations 1948-2003 (T = 56) Dependent variable: inflation
```

	coefficient	std. error	t-ratio	p-value
const unemployment	1.05357 0.502378	1.54796 0.265562	0.6806 2 1.892	0.4990 0.0639 *
Mean dependent Sum squared re R-squared F(1, 54) Log-likelihood Schwarz criter	var 3.8839 sid 476.81 0.0621 3.5787 -139.43	229 S.D. de 57 S.E. o: 54 Adjuste 26 P-value 304 Akaike 14 Hannan	ependent var f regression ed R-squared e(F) criterion -Ouinn	3.040381 2.971518 0.044786 0.063892 282.8607 284 4311
rho	0.5720	155 Durbin-	-Watson	0.801482

 $\widehat{\text{inflation}} = 1.05357 + 0.502378 \, \text{unemployment}_{(1.5480)} + 0.26556)$

$$T = 56$$
 $\bar{R}^2 = 0.0448$ $F(1,54) = 3.5787$ $\hat{\sigma} = 2.9715$

(standard errors in parentheses)

The estimation results indicate that a one point increase in the unemployment rate is linked with a 0.5 increase in the inflation rate. Of course more variables can be included in the model. Notice that we can use this model to predict inflation given that we know the values for unemployment by simply plugging values for unemployment in the estimated equation. If we do this for the actual unemployment values for 1948-2003 period and graph them, we obtain the fitted values graph. Figure 10.2 plots the actual and the fitted values for inflation.

10.2.2 Finite Distributed Lag Models

The simplest dynamic model is the *finite distributed lag* (FDL) model, where we allow one or more variables to to affect Y_t with a lag. Consider the following example:

$$Y_t = \beta_1 + \beta_2 X_t + \beta_3 X_{t-1} + \beta_4 X_{t-2} + u_t, \qquad (10.3)$$

Fig. 10.2 Inflation, 1948-2003. Actual and fitted based on an static model.

where the FDL is of order two. Let's say that we are interested in the effect on *Y* of a permanent increase in *X*. Before time t, *X* equals to a constant *c*. At time *t*, *X* increases permanently to c + 1. That is, $X_s = c$ for s < t and $X_s = c + 1$ for $s \ge t$. Setting the errors to be equal to zero we have:

$$Y_{t-1} = \beta_1 + \beta_2 c + \beta_3 c + \beta_4 c$$

$$Y_t = \beta_1 + \beta_2 (c+1) + \beta_3 c + \beta_4 c$$

$$Y_{t+1} = \beta_1 + \beta_2 (c+1) + \beta_3 (c+1) + \beta_4 c$$

$$Y_{t+2} = \beta_1 + \beta_2 (c+1) + \beta_3 (c+1) + \beta_4 (c+1)$$
(10.4)

and so on. The contemporaneous effect of *X* on *Y* is called the *impact multiplier* and in this case this one is given by β_2 . However, over time the marginal effect of *X* on *Y* is larger. We say that the *long-run multiplier* is the long-run change *Y* given a permanent increase in *X*. This one is given by $\beta_2 + \beta_3 + \beta_4$.

Consider the following example in Gretl:

$$\inf_t = \beta_1 + \beta_2 \operatorname{unem}_t + \beta_3 \operatorname{unem}_{t-1} + \beta_4 \operatorname{unem}_{t-2} + u_t, \quad (10.5)$$

10.2 Time Series Regression Models

To estimate this model in Gretl we first need to create the lagged values of unem. To do this we have to go to select unem and then go to Add \rightarrow Lags of selected variables and select the number of lags. An alternative approach is to just include the lags when estimating the model via OLS. That is, when specifying the model in Gretl (Model \rightarrow Ordinary Least Squares) there is an icon that allows you to select the lags. Just select two lags for unem to obtain:

Model 2: OLS, using observations 1950-2003 (T = 54) Dependent variable: inf

	coeffic	cient	std.	error	t-ratio	p-value	
const	-0.12	4609	1.6	8922	-0.07377	0.9415	
unem	0.903	3211	0.4	02071	2.246	0.0291	* *
unem_1	-0.85	5337	0.5	25700	-1.629	0.1096	
unem_2	0.668	3123	0.3	86722	1.728	0.0902	*
Mean depende	nt var	3.900	0000	S.D.	dependent var	2.961	323
Sum squared	resid	395.2	2340	S.E.	of regression	2.811	526
R-squared		0.149	9632	Adjust	ted R-squared	0.098	610
F(3, 50)		2.932	2693	P-val	ue(F)	0.042	366
Log-likeliho	od	-130.3	3660	Akaik	e criterion	268.7	320
Schwarz crit	erion	276.0	5880	Hannai	n-Quinn	271.8	003
rho		0.661	L217	Durbi	n-Watson	0.676	987

$$\widehat{\inf} = -0.124609 + 0.903211 \text{ unem} - 0.856337 \text{ unem_l} + 0.668123 \text{ unem_l} 2$$

$$(0.38672)$$

$$T = 54 \quad \overline{R}^2 = 0.0986 \quad F(3,50) = 2.9327 \quad \widehat{\sigma} = 2.8115$$
(standard errors in parentheses)

A permanent increase in unemployment leads to a contemporaneous increase in inflation of 0.903 (impact multiplier). However, in the long-run the same increase in unemployment leads to a permanent effect on inflation of 0.903 - 0.856 + 0.668 = 0.715 (long-run multiplier).

10.2.3 Autoregressive Model

An *autoregresive model* is a simple model where the current values of a variable are related to its past values. The first-order autoregressive model is given by:

$$Y_t = \phi Y_{t-1} + u_t. \tag{10.6}$$

This one is usually denoted by AR(1). A more general model is the *p*th autoregressive model or AR(p) given by:

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \phi_3 Y_{t-3} + \dots + \phi_p Y_{t-p} + u_t$$
(10.7)

where there are *p* lags of the variable *Y* explaining its current value. The estimation of an AR(p) model in Gretl is simple; go to Model \rightarrow Time series \rightarrow ARIMA and then select the dependent variable and the *AR* order. Make sure that the *MA* order is zero. For the example above, consider estimating the following model:

$$\inf_{t} = \phi_1 \inf_{t-1} + \phi_2 \inf_{t-2} + u_t \tag{10.8}$$

The output in Gretl is:

const	4.025	026 0	./91433	5.086	3.0	66e-0/	***
phi_1	0.815	5712 0	.148739	5.484	4.1	15e-08	***
phi_2	-0.175	5228 0	.152459	-1.149	0.2	2504	
Mean depe	ndent var	3.883929	S.D.	dependent	var	3.040)381
Mean of i	nnovations	-0.054104	S.D.	of innova	tions	2.171	1763
Log-likel	ihood	-123.2506	Akail	ke criteri	on	254.5	5012
Schwarz c	riterion	262.6026	Hanna	an-Quinn		257.6	5421
		Real	Imagina	ary Mod	ulus	Freque	ency
AR Root Root	1 2	2.3276 2.3276	-0.5	378 2. 378 2.	3889 3889	-0.0 0.0)361)361

That yields the following estimated equation:

$$\inf_{t} = 4.025 + 0.8157 \inf_{t-1} - 0.1752 \inf_{t-2}.$$
 (10.9)

where we can see that higher inflation last period has a positive effect on inflation this period. We can use this model to predict the path of inf based on its previous values. It Gretl the command to obtain this Graphs \rightarrow Fitted, actual plot \rightarrow Against time. The resulting graph is shown in Figure 10.3.

10.2.4 Moving-Average Models

The *moving-average* models express an observed series as a function of the current and lagged unobserved shocks. The simplest moving-average model is the moving-average of order one, or MA(1):

Fig. 10.3 Inflation, 1948-2003. Actual and fitted based on an AR(2) model.

$$Y_t = \theta u_{t-1} + u_t \tag{10.10}$$

A more general moving-average of order q is be written as:

$$Y_t = \theta_1 u_{t-1} + \theta_2 u_{t-2} + \theta_3 u_{t-3} + \dots + \theta_q u_{t-q} + u_t$$
(10.11)

For the example above:

$$\inf_{t} = \theta_1 u_{t-1} + \theta_2 u_{t-2} + u_t \tag{10.12}$$

the output in Gretl is:

```
Function evaluations: 51
Evaluations of gradient: 19
Model 6: ARMA, using observations 1948-2003 (T = 56)
Estimated using Kelmer filter (suget ML)
```

```
Estimated using Kalman filter (exact ML)
Dependent variable: inf
Standard errors based on Hessian
```

coefficient std. error z p-value

Fig. 10.4 Inflation, 1948-2003. Actual and fitted based on an MA(2) model.

const	3.9820	67 0	.615240	6.473	9.58	8e-011	***
theta_1	1.1854	49 0	.130300	9.098	9.19	9e-020	* * *
theta_2	0.2679	922 0	.127516	2.101	0.03	356	* *
Mean depe	ndent var	3.883929	S.D.	dependent	var	3.040)381
Mean of i	nnovations	-0.041523	S.D.	of innovat	ions	1.899	9580
Log-likel	ihood	-116.5030	Akaił	ke criterio	n	241.0	061
Schwarz c	riterion	249.1075	Hanna	an-Quinn		244.1	L470
		Real	Imagina	ary Modu	ılus	Freque	ency
MA							
Root	1	-1.1343	0.00	000 1.1	343	0.5	5000
Root	2	-3.2904	0.00	3.2	2904	0.5	5000

and the actual and fitted values are presented in Figure 10.4.

10.2 Time Series Regression Models

10.2.5 Autoregressive Moving Average Models

One can easily combine an AR(1) model and an MA(1) models to obtain an autoregressive moving-average model ARMA(1,1):

$$Y_t = \phi Y_{t-1} + \theta u_{t-1} + u_t \tag{10.13}$$

or a more general ARMA(p,q) model:

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \theta_1 u_{t-1} + \theta_2 u_{t-2} + \dots + \theta_q u_{t-q} + u_t \quad (10.14)$$

The output in Gretl for a ARMA(2,2) for inflation is:

```
Function evaluations: 61
Evaluations of gradient: 20
Model 5: ARMA, using observations 1948-2003 (T = 56)
Estimated using Kalman filter (exact ML)
Dependent variable: inf
Standard errors based on Hessian
```

	coeffici	.ent s	std.	erroi	<u>_</u>	Z	p-value	ġ
const phi_1 phi_2 theta_1 theta_2	3.94843 0.82880 0.02268 0.27410 -0.58791)6 338 98 .9	1.05 0.23 0.17 0.19 0.19	5291 36639 73277 97397 59467	3 3 0 1 -3	.750 .502 .1309 .389 .469	0.0002 0.0005 0.8958 0.1650 0.0005	- *** ***
Mean depende Mean of inno Log-likeliho Schwarz crit	nt var vations - od - erion	3.88392 0.05352 114.482 253.116	29 24 24 59	S.D. S.D. Akaił Hanna	depen of in ke cri an-Qui	dent van novatior terion nn	a 3.04 ns 1.83 240. 245.	0381 1760 9648 6761
		Real	L In	nagina	ary	Modulus	s Frequ	lency
AR								
Root 1		1.1691	L	0.00	000	1.1691	L 0.	0000
Root 2	-	37.7065	5	0.00	000	37.7065	50.	5000
MA								
Root 1		-1.0917	7	0.00	000	1.0917	70.	5000
Root 2		1.5580)	0.00	000	1.5580	0.	0000