
Chapter 8

Heteroscedasticity

The fourth assumption in the estimation of the coefficients via ordinary least squares

is the one of homoscedasticity. This means that the error terms ui in the linear re-

gression model have a constant variance across all observations i,

σ2
ui
= σ2

u for all i. (8.1)

When this assumption does not hold, and σ2
ui

changes across i we say we have an

heteroscedasticity problem. This chapter discusses the problems associated with het-

eroscedastic errors, presents some tests for heteroscedasticity and points out some

possible solutions.

8.1 Heteroscedasticity and its implications

What happens if the errors are heteroscedasticity? The good news is that under het-

eroscedastic errors, OLS is still unbiased. The bad news is that we will obtain the

incorrect standard errors of the coefficients. This means that the t and the F tests that

we discussed in earlier chapters are no longer valid. Figure 8.1 shows the regression

equation wage = β0 + β1educ + u with heteroscedastic errors. The variance of ui

increases with higher values of educ.

8.2 Testing for heteroscedasticity

8.2.1 Breusch-Pagan test

Given the linear regression model

Y = β1 +β2X2 +β3X3 + · · ·+βK +u (8.2)
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Fig. 8.1 wage = β0 + β1educ + u with heteroscedastic errors.

we know that OLS is unbiased and consistent if we assume E[u|X2,X3, . . . ,XK ] = 0.

Let the null hypothesis that we have homoscedastic errors be

H0 : Var[u|X2,X3, . . . ,XK ] = σ2. (8.3)

Because we are assuming that u has zero conditional expectation, Var[u|X2,X3, . . . ,XK ] =
E[u2|X2,X3, . . . ,XK ], and so the null hypothesis of homoscedasticity is equivalent to

H0 : E[u2|X2,X3, . . . ,XK ] = σ2. (8.4)

This shows that if we want to test for violation of the homoscedasticity assump-

tion, we want to test whether E[u2|X2,X3, . . . ,XK ] is related to one or more of the

independent variables. If H0 is false, E[u|X2,X3, . . . ,XK ] can be any function of the

independent variables. A simple approach is to assume a linear function

u2 = δ1 +δ2X1 +δ3X3 + · · ·+δKXK + ε, (8.5)

where ε is an error term with mean zero given X2, X3, . . . , XK . The null hypothesis

for homoscedasticity is:

H0 : δ1 = δ2 = δ3 = · · ·= δK = 0. (8.6)

Under the null, it is reasonable to assume that ε is independent of X2, X3, . . . , XK . To

be able to implement this test, we follow a two step procedure. In the first step we

estimate Equation 5.14 via OLS. We estimate the residuals, square them and then
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estimate the following equation:

û2 = δ1 +δ2X1 +δ3X3 + · · ·+δKXK + error. (8.7)

We can then easily compute the F statistic for the joint significance of all vari-

ables X2, X3, . . . , XK . Using OLS residuals in place of the errors does not affect

the large sample distribution of the F statistic. An additional LM statistic to test for

heteroscedasticity can be constructed based on the R2
û2 obtained from Equation 8.7:

LM = n ·R2
u2 . (8.8)

Under the null hypothesis, LM is distributed asymptotically as χ2
K−1. This LM ver-

sion of the test is called the Breusch-Pagan test for heteroscedasticity.

8.2.2 Breusch-Pagan test in Gretl

As an example, consider once again our wage equation

wage= β1 +β2educ+u (8.9)

Once we estimated the model in Gretl

ŵage = 146.952
(77.715)

+60.2143
(5.6950)

educ

N = 935 R̄2 = 0.1060 F(1,933) = 111.79 σ̂ = 382.32

(standard errors in parentheses)

In the regression output window, go to Tests → Heteroskedasticity →
Breusch-Pagan to obtain

Breusch-Pagan test for heteroskedasticity

OLS, using observations 1-935

Dependent variable: scaled uhatˆ2

coefficient std. error t-ratio p-value

--------------------------------------------------------

const -0.885844 0.450097 -1.968 0.0494 **
educ 0.140019 0.0329833 4.245 2.40e-05 ***

Explained sum of squares = 88.3581

Test statistic: LM = 44.179066,

with p-value = P(Chi-square(1) > 44.179066) = 0.000000

Notice how Gretl reports the auxiliary regression presented in Equation 8.7 and

the LM statistic from Equation 8.8. The large LM statistic associated with a small p-

value (below 0.05 or 5%) indicates that we reject the null hypothesis of homoscedas-

ticity. Hence, we have heteroscedaticity in the model of Equation 8.9.
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8.2.3 White test

White (1980) proposed a test for heteroscedasticity that that adds the squares and

cross products of all the independent variables to Equation 8.2. In a model with only

three independent variables, the White test is based on the estimation of:

û2 = δ1 +δ2X2 +δ3X3 +δ4X4 +δ5X2
2 +δ6X2

3 +δ7X2
4 (8.10)

δ8X2 ·X3 +δ9X2 ·X4 +δ10X3 ·X4 + error.

Compared with the Breusch-Pagan test (see Equation 8.7), Equation 8.10 has more

regressors. The White test for heteroscedasticity is based on the LM statistic for

testing that all the δ j in Equation 8.10 are zero, except for the intercept.

8.2.4 White test in Gretl

We not use Gretl to test for heteroscedasticity in Equation 8.9 using the White test.
In the regression output window, go to Tests → Heteroskedasticity →
White’s test to obtain

White’s test for heteroskedasticity

OLS, using observations 1-935

Dependent variable: uhatˆ2

coefficient std. error t-ratio p-value

----------------------------------------------------------

const -126650 435765 -0.2906 0.7714

educ 20049.7 63065.6 0.3179 0.7506

sq_educ 13.2563 2234.63 0.005932 0.9953

Unadjusted R-squared = 0.018950

Test statistic: TRˆ2 = 17.717812,

with p-value = P(Chi-square(2) > 17.717812) = 0.000142

Consistent with the Breusch-Pagan test, here the White test has a large LM statistic

(labeled TRˆ2 following LM = n ·R2
u2 as in Equation 8.8) associated with a small p-

value (smaller than 5%). Hence, we reject the null of homoscedasticity and conclude

that our model is heteroscedastic.

8.3 What to do with heteroscedasticity?

There is a number of possible solutions when heteroscedastic errors are found. This

section proposes three ways to solve the heteroscedasticity problem. First, a simple

transformation of the variables; second, the use of weighted least squares; and third,

the use of heteroscedasticity-robust standard errors.
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8.3.1 Simple transformation of the variables

An easy way to obtain homoscedastic errors is to come up with a simple transfor-

mation of the variables. Let’s revisit the estimation of Equation 8.9, but this time

with a simple logarithm transformation of wages,

logwage= β1 +β2educ+u (8.11)

The Gretl regression output is

̂logwage= 5.97306
(0.081374)

+0.0598392
(0.0059631)

educ

N = 935 R̄2 = 0.0964 F(1,933) = 100.70 σ̂ = 0.40032

(standard errors in parentheses)

Now, if we want to test for the existence of heteroscedasticity we go to Tests→
Heteroskedasticity→ Breusch-Pagan to obtain

Breusch-Pagan test for heteroskedasticity

OLS, using observations 1-935

Dependent variable: scaled uhatˆ2

coefficient std. error t-ratio p-value

-------------------------------------------------------

const 0.689778 0.329663 2.092 0.0367 **
educ 0.0230332 0.0241578 0.9534 0.3406

Explained sum of squares = 2.391

Test statistic: LM = 1.195499,

with p-value = P(Chi-square(1) > 1.195499) = 0.274223

Notice that the p-value associated with this test is above 0.05. Hence, we fail to

reject the null of homoscedasticity. Compare this homoscedasticity results with the

heteroscedastic errors found earlier when the variable wage was not in logs.

8.3.2 Weighted Least Squares

We want to estimate the following regression model

Y = β1 +β2X2 +β3X3 + · · ·+βKXK +u, (8.12)

but the errors u are heteroscedastic. When one is willing to assume that the het-

eroscedasticity appears as some function of X2, X3, . . . , XK , one can use Weighted

Least Squares (WLS) to obtain homoscedastic errors. Let’s say that the variance of

u can be approximated using
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u2 = σ2 exp(δ1 +δ2X2 +δ3X3 + · · ·+δKXK)η , (8.13)

where η is a random variable with mean equal to unity. If we assume that η is

independent from X2, X3, . . . , XK we have

log(u2) = α1 +δ2X2 +δ3X3 + · · ·+δKXK + ε. (8.14)

To be able to implement this procedure, we replace the unobserved u with the OLS

estimated residuals û to estimate:

log(û2) = α1 +δ2X2 +δ3X3 + · · ·+δKXK + ε. (8.15)

Finally, once Equation 8.15 is estimated, we obtain the fitted values and calculate

the exponent to obtain

ĥi = exp( ̂log(û2)). (8.16)

We can use this ĥi as a weight in a Weighted Least Squares regression to solve the

heteroscedasticity problem. That is, we estimate the following weighted equation

Y

ĥ
= β1

1

ĥ
+β2

X2

ĥ
+β3

X3

ĥ
+ · · ·+βK

XK

ĥ
+

u

ĥ
. (8.17)

Notice that Equation 8.17 is just Equation 8.12 divided by the weight ĥi. The new

error term u/ĥ should be homoscedastic.

8.3.3 Weighted Least Squares in Gretl

Consider the following model

sav= β1 +β2inc+u (8.18)

where sav is savings and inc is income. The Gretl output is

Model 1: OLS, using observations 1-100

Dependent variable: sav

coefficient std. error t-ratio p-value

--------------------------------------------------------

const 124.842 655.393 0.1905 0.8493

inc 0.146628 0.0575488 2.548 0.0124 **

Mean dependent var 1582.510 S.D. dependent var 3284.902

Sum squared resid 1.00e+09 S.E. of regression 3197.415

R-squared 0.062127 Adjusted R-squared 0.052557

F(1, 98) 6.491778 P-value(F) 0.012391

Log-likelihood -947.8935 Akaike criterion 1899.787

Schwarz criterion 1904.997 Hannan-Quinn 1901.896

and the Breusch-Pagan test for heteroscedasticity yields
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Breusch-Pagan test for heteroskedasticity

OLS, using observations 1-100

Dependent variable: scaled uhatˆ2

coefficient std. error t-ratio p-value

--------------------------------------------------------

const 0.0457266 1.14381 0.03998 0.9682

inc 9.59914e-05 0.000100436 0.9557 0.3416

Explained sum of squares = 28.444

Test statistic: LM = 14.221987,

with p-value = P(Chi-square(1) > 14.221987) = 0.000162

That is, we have heteroscedastic errors.

To estimate the WLS regression

sav

ĥ
= β1

1

ĥ
+β2

inc

ĥ
+

u

ĥ
, (8.19)

in the Gretl main window we have to go to Model→ Other linear models
→ Heteroskedasticity corrected to get the following computer output

Model 2: Heteroskedasticity-corrected, using observations 1-100

Dependent variable: sav

coefficient std. error t-ratio p-value

--------------------------------------------------------

const -233.130 460.844 -0.5059 0.6141

inc 0.185993 0.0616965 3.015 0.0033 ***

Statistics based on the weighted data:

Sum squared resid 1043.864 S.E. of regression 3.263689

R-squared 0.084866 Adjusted R-squared 0.075527

F(1, 98) 9.088089 P-value(F) 0.003276

Log-likelihood -259.1695 Akaike criterion 522.3391

Schwarz criterion 527.5494 Hannan-Quinn 524.4478

Statistics based on the original data:

Mean dependent var 1582.510 S.D. dependent var 3284.902

Sum squared resid 1.01e+09 S.E. of regression 3205.216

ŝav=−233.130
(460.84)

+0.185993
(0.061697)

inc

N = 100 R̄2 = 0.0755 F(1,98) = 9.0881 σ̂ = 3.2637

(standard errors in parentheses)

The estimates of the standard errors can now be used for inferences. The statistically

significant coefficient on inc indicates that the marginal propensity to save out of
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your income is 0.18. Of every additional dollar that you make, you will save 18

cents.

8.3.4 White’s heteroscedasticity-consistent standard errors

Even under the presence of heteroscedastic errors, at least in large samples a con-
sistent estimator of the variances of the coefficients can be obtained via White’s
heteroscedasticity-consistent standard errors. This procedure leaves the OLS coef-
ficients unaffected. For the estimation of Equation 8.18 you just have to make sure
to select the option Robust standard errors in the Gretl “specify model”
window when you estimate the model via OLS

Model 3: OLS, using observations 1-100

Dependent variable: sav

Heteroskedasticity-robust standard errors, variant HC1

coefficient std. error t-ratio p-value

--------------------------------------------------------

const 124.842 528.219 0.2363 0.8137

inc 0.146628 0.0613441 2.390 0.0187 **

Mean dependent var 1582.510 S.D. dependent var 3284.902

Sum squared resid 1.00e+09 S.E. of regression 3197.415

R-squared 0.062127 Adjusted R-squared 0.052557

F(1, 98) 5.713342 P-value(F) 0.018748

Log-likelihood -947.8935 Akaike criterion 1899.787

Schwarz criterion 1904.997 Hannan-Quinn 1901.896

Notice that the constant and slope coefficients are the same as before. However, the

estimated standard errors are different.


