Chapter 8 *Heteroscedasticity*

The fourth assumption in the estimation of the coefficients via ordinary least squares is the one of homoscedasticity. This means that the error terms u_i in the linear regression model have a constant variance across all observations *i*,

$$\sigma_{u_i}^2 = \sigma_u^2 \quad \text{for all } i. \tag{8.1}$$

When this assumption does not hold, and $\sigma_{u_i}^2$ changes across *i* we say we have an heteroscedasticity problem. This chapter discusses the problems associated with heteroscedastic errors, presents some tests for heteroscedasticity and points out some possible solutions.

8.1 Heteroscedasticity and its implications

What happens if the errors are heteroscedasticity? The good news is that under heteroscedastic errors, OLS is still unbiased. The bad news is that we will obtain the incorrect standard errors of the coefficients. This means that the *t* and the *F* tests that we discussed in earlier chapters are no longer valid. Figure 8.1 shows the regression equation wage = $\beta_0 + \beta_1$ educ + *u* with heteroscedastic errors. The variance of u_i increases with higher values of educ.

8.2 Testing for heteroscedasticity

8.2.1 Breusch-Pagan test

Given the linear regression model

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_K + u$$
(8.2)

8 Heteroscedasticity

Fig. 8.1 wage = $\beta_0 + \beta_1$ educ + *u* with heteroscedastic errors.

we know that OLS is unbiased and consistent if we assume $E[u|X_2, X_3, ..., X_K] = 0$. Let the null hypothesis that we have homoscedastic errors be

$$H_0: Var[u|X_2, X_3, \dots, X_K] = \sigma^2.$$
(8.3)

Because we are assuming that *u* has zero conditional expectation, $Var[u|X_2, X_3, ..., X_K] = E[u^2|X_2, X_3, ..., X_K]$, and so the null hypothesis of homoscedasticity is equivalent to

$$H_0: E[u^2|X_2, X_3, \dots, X_K] = \sigma^2.$$
(8.4)

This shows that if we want to test for violation of the homoscedasticity assumption, we want to test whether $E[u^2|X_2, X_3, ..., X_K]$ is related to one or more of the independent variables. If H_0 is false, $E[u|X_2, X_3, ..., X_K]$ can be any function of the independent variables. A simple approach is to assume a linear function

$$u^2 = \delta_1 + \delta_2 X_1 + \delta_3 X_3 + \dots + \delta_K X_K + \varepsilon, \qquad (8.5)$$

where ε is an error term with mean zero given X_2, X_3, \ldots, X_K . The null hypothesis for homoscedasticity is:

$$H_0: \delta_1 = \delta_2 = \delta_3 = \dots = \delta_K = 0. \tag{8.6}$$

Under the null, it is reasonable to assume that ε is independent of X_2, X_3, \ldots, X_K . To be able to implement this test, we follow a two step procedure. In the first step we estimate Equation 5.14 via OLS. We estimate the residuals, square them and then

8.2 Testing for heteroscedasticity

estimate the following equation:

$$\hat{u}^2 = \delta_1 + \delta_2 X_1 + \delta_3 X_3 + \dots + \delta_K X_K + error. \tag{8.7}$$

We can then easily compute the *F* statistic for the joint significance of all variables X_2, X_3, \ldots, X_K . Using OLS residuals in place of the errors does not affect the large sample distribution of the *F* statistic. An additional *LM* statistic to test for heteroscedasticity can be constructed based on the $R_{a^2}^2$ obtained from Equation 8.7:

$$LM = n \cdot R_{\mu^2}^2. \tag{8.8}$$

Under the null hypothesis, *LM* is distributed asymptotically as χ^2_{K-1} . This *LM* version of the test is called the Breusch-Pagan test for heteroscedasticity.

8.2.2 Breusch-Pagan test in Gretl

As an example, consider once again our wage equation

wage =
$$\beta_1 + \beta_2$$
educ + u (8.9)

Once we estimated the model in Gretl

T W

$$\widehat{wage} = \underbrace{146.952}_{(77.715)} + \underbrace{60.2143}_{(5.6950)} \text{ educ}$$

$$N = 935 \quad \overline{R}^2 = 0.1060 \quad F(1,933) = 111.79 \quad \widehat{\sigma} = 382.32$$
(standard errors in parentheses)

In the regression output window, go to <code>Tests</code> \rightarrow <code>Heteroskedasticity</code> \rightarrow <code>Breusch-Pagan</code> to obtain

```
Breusch-Pagan test for heteroskedasticity
OLS, using observations 1-935
Dependent variable: scaled uhat<sup>2</sup>
```

	coefficient	std. error	t-ratio	p-value			
const	-0.885844	0.450097	-1.968	0.0494	**		
eauc	0.140019	0.0329833	4.245	2.40e-05	***		
Explained sum of squares = 88.3581							
est statist ith p-value	ic: $LM = 44.17$ = P(Chi-squar	9066, e(1) > 44.179	9066) = 0.0	00000			

Notice how Gretl reports the auxiliary regression presented in Equation 8.7 and the *LM* statistic from Equation 8.8. The large *LM* statistic associated with a small p-value (below 0.05 or 5%) indicates that we reject the null hypothesis of homoscedasticity. Hence, we have heteroscedaticity in the model of Equation 8.9.

8.2.3 White test

White (1980) proposed a test for heteroscedasticity that that adds the squares and cross products of all the independent variables to Equation 8.2. In a model with only three independent variables, the White test is based on the estimation of:

$$\hat{u}^{2} = \delta_{1} + \delta_{2}X_{2} + \delta_{3}X_{3} + \delta_{4}X_{4} + \delta_{5}X_{2}^{2} + \delta_{6}X_{3}^{2} + \delta_{7}X_{4}^{2}$$

$$\delta_{8}X_{2} \cdot X_{3} + \delta_{9}X_{2} \cdot X_{4} + \delta_{10}X_{3} \cdot X_{4} + error.$$
(8.10)

Compared with the Breusch-Pagan test (see Equation 8.7), Equation 8.10 has more regressors. The White test for heteroscedasticity is based on the *LM* statistic for testing that all the δ_i in Equation 8.10 are zero, except for the intercept.

8.2.4 White test in Gretl

We not use Gretl to test for heteroscedasticity in Equation 8.9 using the White test. In the regression output window, go to Tests \rightarrow Heteroskedasticity \rightarrow White's test to obtain

```
White's test for heteroskedasticity
OLS, using observations 1-935
Dependent variable: uhat<sup>2</sup>
coefficient std. error t-ratio p-value
```

const	-126650	435765	-0.2906	0.7714
educ	20049.7	63065.6	0.3179	0.7506
sq_educ	13.2563	2234.63	0.005932	0.9953

Unadjusted R-squared = 0.018950

Test statistic: $TR^2 = 17.717812$, with p-value = P(Chi-square(2) > 17.717812) = 0.000142

Consistent with the Breusch-Pagan test, here the White test has a large *LM* statistic (labeled TR² following $LM = n \cdot R_{u^2}^2$ as in Equation 8.8) associated with a small p-value (smaller than 5%). Hence, we reject the null of homoscedasticity and conclude that our model is heteroscedastic.

8.3 What to do with heteroscedasticity?

There is a number of possible solutions when heteroscedastic errors are found. This section proposes three ways to solve the heteroscedasticity problem. First, a simple transformation of the variables; second, the use of weighted least squares; and third, the use of heteroscedasticity-robust standard errors.

8.3 What to do with heteroscedasticity?

8.3.1 Simple transformation of the variables

An easy way to obtain homoscedastic errors is to come up with a simple transformation of the variables. Let's revisit the estimation of Equation 8.9, but this time with a simple logarithm transformation of wages,

$$\log wage = \beta_1 + \beta_2 educ + u \tag{8.11}$$

The Gretl regression output is

$$logwage = 5.97306 + 0.0598392 \text{ educ}$$

$$(0.081374) = (0.0059631)$$

$$N = 935 \quad \bar{R}^2 = 0.0964 \quad F(1,933) = 100.70 \quad \hat{\sigma} = 0.40032$$
(standard errors in parentheses)

Now, if we want to test for the existence of heteroscedasticity we go to $\texttt{Tests} \rightarrow \texttt{Heteroskedasticity} \rightarrow \texttt{Breusch-Pagan}$ to obtain

Notice that the p-value associated with this test is above 0.05. Hence, we fail to reject the null of homoscedasticity. Compare this homoscedasticity results with the heteroscedastic errors found earlier when the variable wage was not in logs.

8.3.2 Weighted Least Squares

We want to estimate the following regression model

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_K X_K + u, \tag{8.12}$$

but the errors u are heteroscedastic. When one is willing to assume that the heteroscedasticity appears as some function of X_2, X_3, \ldots, X_K , one can use Weighted Least Squares (WLS) to obtain homoscedastic errors. Let's say that the variance of u can be approximated using

8 Heteroscedasticity

$$u^{2} = \sigma^{2} \exp(\delta_{1} + \delta_{2}X_{2} + \delta_{3}X_{3} + \dots + \delta_{K}X_{K})\eta, \qquad (8.13)$$

where η is a random variable with mean equal to unity. If we assume that η is independent from X_2, X_3, \ldots, X_K we have

$$\log(u^2) = \alpha_1 + \delta_2 X_2 + \delta_3 X_3 + \dots + \delta_K X_K + \varepsilon.$$
(8.14)

To be able to implement this procedure, we replace the unobserved u with the OLS estimated residuals \hat{u} to estimate:

$$\log(\hat{u}^2) = \alpha_1 + \delta_2 X_2 + \delta_3 X_3 + \dots + \delta_K X_K + \varepsilon.$$
(8.15)

Finally, once Equation 8.15 is estimated, we obtain the fitted values and calculate the exponent to obtain

$$\hat{h}_i = \exp(\log(\hat{u}^2)). \tag{8.16}$$

We can use this \hat{h}_i as a weight in a Weighted Least Squares regression to solve the heteroscedasticity problem. That is, we estimate the following weighted equation

$$\frac{Y}{\hat{h}} = \beta_1 \frac{1}{\hat{h}} + \beta_2 \frac{X_2}{\hat{h}} + \beta_3 \frac{X_3}{\hat{h}} + \dots + \beta_K \frac{X_K}{\hat{h}} + \frac{u}{\hat{h}}.$$
(8.17)

Notice that Equation 8.17 is just Equation 8.12 divided by the weight \hat{h}_i . The new error term u/\hat{h} should be homoscedastic.

8.3.3 Weighted Least Squares in Gretl

Consider the following model

$$sav = \beta_1 + \beta_2 inc + u \tag{8.18}$$

where sav is savings and inc is income. The Gretl output is

Model 1: OLS, Dependent var	using iable:	observa sav	ations	s 1-10	00			
	coeffic	ient	std.	error	-	t-ratio	p-value	e
const inc	124.842 0.146	628	655.3 0.0	393)57548	8	0.1905 2.548	0.8493 0.0124	**
Mean dependen	t var	1582.5	510	S.D.	depe	endent var	3284.	.902
Sum squared r	resid	1.00e+	-09	S.E.	of r	egression	3197.	415
R-squared		0.0621	27	Adjus	sted	R-squared	0.052	2557
F(1, 98)		6.4917	78	P-val	ue (F	`)	0.012	2391
Log-likelihoc	d	-947.89	935	Akaik	ae cr	iterion	1899.	.787
Schwarz crite	rion	1904.9	97	Hanna	an-Qu	iinn	1901.	896

and the Breusch-Pagan test for heteroscedasticity yields

8.3 What to do with heteroscedasticity?

```
Breusch-Pagan test for heteroskedasticity
OLS, using observations 1-100
Dependent variable: scaled uhat<sup>2</sup>
```

	coefficient	std. error	t-ratio	p-value
const	0.0457266	1.14381	0.03998	0.9682
inc	9.59914e-05	0.000100436	0.9557	0.3416

Explained sum of squares = 28.444

Test statistic: LM = 14.221987, with p-value = P(Chi-square(1) > 14.221987) = 0.000162

That is, we have heteroscedastic errors.

To estimate the WLS regression

$$\frac{\text{sav}}{\hat{h}} = \beta_1 \frac{1}{\hat{h}} + \beta_2 \frac{\text{inc}}{\hat{h}} + \frac{u}{\hat{h}}, \qquad (8.19)$$

in the Gretl main window we have to go to Model \rightarrow Other linear models \rightarrow Heteroskedasticity corrected to get the following computer output

Model 2: Heteroskedasticity-corrected, using observations 1-100 Dependent variable: sav

	coefficient	std. error	t-ratio	p-value	
const	-233.130	460.844	-0.5059	0.6141	
inc	0.185993	0.0616965	3.015	0.0033 **	*

Statistics based on the weighted data:

Sum squared resid	1043.864	S.E. of regression	3.263689
R-squared	0.084866	Adjusted R-squared	0.075527
F(1, 98)	9.088089	P-value(F)	0.003276
Log-likelihood	-259.1695	Akaike criterion	522.3391
Schwarz criterion	527.5494	Hannan-Quinn	524.4478

Statistics based on the original data:

Mean dependent var	1582.510	S.D. dependent var	3284.902
Sum squared resid	1.01e+09	S.E. of regression	3205.216

```
\widehat{\text{sav}} = -233.130 + 0.185993 \text{ inc} \\ (460.84) + (0.061697) \\ N = 100 \quad \overline{R}^2 = 0.0755 \quad F(1,98) = 9.0881 \quad \widehat{\sigma} = 3.2637 \\ (\text{standard errors in parentheses})
```

The estimates of the standard errors can now be used for inferences. The statistically significant coefficient on inc indicates that the marginal propensity to save out of

your income is 0.18. Of every additional dollar that you make, you will save 18 cents.

8.3.4 White's heteroscedasticity-consistent standard errors

Even under the presence of heteroscedastic errors, at least in large samples a consistent estimator of the variances of the coefficients can be obtained via White's heteroscedasticity-consistent standard errors. This procedure leaves the OLS coefficients unaffected. For the estimation of Equation 8.18 you just have to make sure to select the option Robust standard errors in the Gretl "specify model" window when you estimate the model via OLS

Notice that the constant and slope coefficients are the same as before. However, the estimated standard errors are different.