
Chapter 7

Specification of Regression Variables

So far we assumed we know what are the variables that needed to be in our regres-

sion model. However, what happens if we include in the regression model a variable

that should not be there? What if we leave out a variable that should be included?

Can we a proxy for a variable that we do not observe? These are the main question

this chapter will address.

7.1 Model specification

What happens in practice is that it is difficult to be sure about the correct specifica-

tion of the regression model. While theory may help, it usually depends on simpli-

fying assumptions that may not necessarily hold. The properties of the regression

estimates depend crucially on the validity of the specification of the model. The

following is a quick summary of the consequences of misspecifying the regression

model:

1. If you leave out a variable that should be included. The regression estimates are

potentially biased. The standard errors of the coefficients and the corresponding

t and F tests are in general invalid.

2. If you include a variable that should not be in the model. The coefficients will

not be biased, but they are potentially inefficient.

7.2 Omitting a variable

7.2.1 The bias problem

Suppose that the true regression model that we should be estimated is given by
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58 7 Specification of Regression Variables

Y = β1 +β2X2 +β3X3 +u. (7.1)

However, we do not have the variable X3 or maybe we have it but we do not include

it in the model. Hence, we estimate the following model

Y = β1 +β2X2 +u. (7.2)

Then the predicted or fitted values are

Ŷ = b1 +b2X2 (7.3)

Recall from previous chapters that the formula to estimate b2 is given by

b2 =
∑

n
i=1(X2i− X̄2)(Yi− Ȳ )

∑
n
i=1(X2i− X̄2)2

(7.4)

We say that b2 is unbiased if its expected value is equal to the true population pa-

rameter β2. If we plug Equation 7.1 into Equation 7.4 and take expectations we

obtain

E[b2] = E
[

∑
n
i=1(X2i− X̄2)(Yi− Ȳ )

∑
n
i=1(X2i− X̄2)2

]
(7.5)

= β2 +β3
∑

n
i=1(X2i− X̄2)(X3i− X̄3)

∑
n
i=1(X2i− X̄2)2

.

For b2 to be unbiased we need that the second term on the right-hand side be equal

to zero. This term is known as the omitted variable bias and it will be zero if β3 = 0

or if ∑
n
i=1(X2i− X̄2)(X3i− X̄3)/∑

n
i=1(X2i− X̄2)

2 is equal to zero. Then the conditions

for b2 to be unbiased in the estimation of Equation 7.2 are:

1. That X3 does not affect Y . That is, β3 = 0.

2. That X2 and X3 are linearly uncorrelated. That is, the slope coefficient when we

regress X3 on X2 os zero, ∑
n
i=1(X2i− X̄2)(X3i− X̄3)]/[∑

n
i=1(X2i− X̄2)

2 = 0.

7.2.2 Invalid statistical tests

When a variable is omitted from the model, the standard errors of the coefficients

and the texts statistics are generally invalid. This means that the t and F tests cannot

be used.

7.2.3 Example

Consider the case where the true model to explain wages is given by
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wage= β1 +β2educ+β3ability+u. (7.6)

That is, your wage is determined by your number of years of formal education

(educ) and your ability. The problem in this equation is that actually it is very

difficult to measure ability. Hence, we decide omit it and estimate the following

model

wage= β1 +β2educ+u. (7.7)

What is the problem with the estimate of β2 if we use Equation 7.7? Is is biased! To

get an idea of the size of the bias we will proxy ability with another variable,

IQ. Equation 7.5 becomes

E[b2] = β2 +β3
∑

n
i=1(educi−educ)(IQi−IQ)

∑
n
i=1(educi−educ)2

. (7.8)

Notice that we can actually analyze if the bias is positive or negative based on the

signs of the second part on the right-hand size. It seems that β3 should be positive

because higher ability (or IQ) should be correlated positively with wages. Moreover,

the part that multiplies β3 should also be positive because education and ability (or

IQ) seem to be positively correlated. Hence, the whole second part on the right-hand

side is positive, implying that β2 is biased upwards. This means that on average

we will be getting a larger coefficient (by estimating Equation 7.7) than the true

coefficient (if we were estimating the true Equation 7.6).
Let’s look at this empirically by estimating Equations 7.6 and 7.7 with real data

(where we use IQ in place of ability):

Model 1: OLS, using observations 1-935

Dependent variable: wage

coefficient std. error t-ratio p-value

---------------------------------------------------------

const 146.952 77.7150 1.891 0.0589 *
educ 60.2143 5.69498 10.57 9.35e-025 ***

Mean dependent var 957.9455 S.D. dependent var 404.3608

Sum squared resid 1.36e+08 S.E. of regression 382.3203

R-squared 0.107000 Adjusted R-squared 0.106043

F(1, 933) 111.7929 P-value(F) 9.35e-25

Log-likelihood -6885.458 Akaike criterion 13774.92

Schwarz criterion 13784.60 Hannan-Quinn 13778.61

ŵage= 146.952
(77.715)

+60.2143
(5.6950)

educ

N = 935 R̄2 = 0.1060 F(1,933) = 111.79 σ̂ = 382.32

(standard errors in parentheses)

Model 2: OLS, using observations 1-935

Dependent variable: wage

coefficient std. error t-ratio p-value
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---------------------------------------------------------

const -128.890 92.1823 -1.398 0.1624

educ 42.0576 6.54984 6.421 2.15e-010 ***
IQ 5.13796 0.955827 5.375 9.66e-08 ***

Mean dependent var 957.9455 S.D. dependent var 404.3608

Sum squared resid 1.32e+08 S.E. of regression 376.7300

R-squared 0.133853 Adjusted R-squared 0.131995

F(2, 932) 72.01515 P-value(F) 8.27e-30

Log-likelihood -6871.185 Akaike criterion 13748.37

Schwarz criterion 13762.89 Hannan-Quinn 13753.91

ŵage=−128.890
(92.182)

+42.0576
(6.5498)

educ+5.13796
(0.95583)

IQ

N = 935 R̄2 = 0.1320 F(2,932) = 72.015 σ̂ = 376.73

(standard errors in parentheses)

The empirical results are consistent with our theoretical analysis. The estimate of β2

in Equation 7.7 is too large (upward biased). The bias can be obtained separately by
estimating a regression of IQ on educ and then plugging the results in Equation 7.8

Model 3: OLS, using observations 1-935

Dependent variable: IQ

coefficient std. error t-ratio p-value

---------------------------------------------------------

const 53.6872 2.62293 20.47 3.36e-077 ***
educ 3.53383 0.192210 18.39 1.16e-064 ***

Mean dependent var 101.2824 S.D. dependent var 15.05264

Sum squared resid 155346.5 S.E. of regression 12.90357

R-squared 0.265943 Adjusted R-squared 0.265157

F(1, 933) 338.0192 P-value(F) 1.16e-64

Log-likelihood -3716.973 Akaike criterion 7437.946

Schwarz criterion 7447.627 Hannan-Quinn 7441.637

ÎQ= 53.6872
(2.6229)

+3.53383
(0.19221)

educ

N = 935 R̄2 = 0.2652 F(1,933) = 338.02 σ̂ = 12.904

(standard errors in parentheses)

Replacing the valued in Equation 7.8

E[b2] = β2 +β3
∑

n
i=1(educi−educ)(IQi−IQ)

∑
n
i=1(educi−educ)2

. (7.9)

= β2 +5.13796×3.53383

= β2 +18.15667
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That is exactly the difference between the coefficients in Equations 7.6 and 7.7,

60.2143 - 42.0576 = 18.15667.

7.3 Including a variable that should not be included

Suppose that the true population model is given by

Y = β1 +β2X2 +u. (7.10)

However, for some season you include X3 and end up estimating the following

model

Y = β1 +β2X2 +β3X3 +u. (7.11)

In a regression model like Equation 7.11 with two variables (X2 and X3) the OLS

estimator for b2 is given by

b2 =
∑

n
i=1(X2i− X̄2)(Yi− Ȳ )∑

n
i=1(X3i− X̄3)

2

∑
n
i=1(X2i− X̄2)2 ∑

n
i=1(X3i− X̄3)2−

(
∑

n
i=1(X2i− X̄2)(X3i− X̄3)

)2

−
∑

n
i=1(X3i− X̄3)(Yi− Ȳ )∑

n
i=1(X2i− X̄2)(X3i− X̄3)

∑
n
i=1(X2i− X̄2)2 ∑

n
i=1(X3i− X̄3)2−

(
∑

n
i=1(X2i− X̄2)(X3i− X̄3)

)2
(7.12)

Which is certainly different from the OLS estimator for b2 in Equation 7.10,

b2 =
∑

n
i=1(X2i− X̄2)(Yi− Ȳ )

∑
n
i=1(X2i− X̄2)2

(7.13)

Interestingly, b2 in both Equations (7.12 and 7.13) is unbiased, E(b2) = β2. Hence,

estimating the effect of X2 on Y will yield unbiased estimates even if we include

irrelevant variables. Then, what is the problem? Including irrelevant variables will

inflate the standard errors of the coefficients. This means that the estimate b2 from

Equation 7.11 will be inefficient. The implied population variance of b2 in Equa-

tion 7.11 is

σ2
b2
=

σ2
u

∑
n
i=1(X2i− X̄2)2

·
1

(1− r2
X2X3

)
(7.14)

where r2
X2X3

is the correlation coefficient between X2 and X3, while the population

variance of b2 in Equation 7.10 is

σ2
b2
=

σ2
u

∑
n
i=1(X2i− X̄2)2

. (7.15)

Notice that because 0≤ r2
X2X3

≤ 1, the population variance in Equation 7.15 is larger

than the implied population variance in Equation 7.14. Actually, they will be equal if

r2
X2X3

= 0, that is, if X2 and X3 are linearly uncorrelated. Moreover, when linearly un-
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correlated ∑
n
i=1(X2i− X̄2)(X3i− X̄3) = 0, then Equation 7.12 reduces to 7.13, mean-

ing that including X3 in the equation will not affect the estimation of β2. While the

population variances are the same, the estimated (sample) variances will still differ

due to a reduction in the degrees of freedom.

7.3.1 Example

Consider the following model where we want to see how age affects the likelihood

of being married. Are older people more likely to be married? Well, let’s estimate

the exact response of married to age,1

married= β1 +β2age+ ε (7.16)

The estimation results from Gretl are

Model 1: OLS, using observations 1-935

Dependent variable: married

coefficient std. error t-ratio p-value

--------------------------------------------------------

const 0.540935 0.107608 5.027 5.98e-07 ***
age 0.0106442 0.00323870 3.287 0.0011 ***

Mean dependent var 0.893048 S.D. dependent var 0.309217

Sum squared resid 88.28274 S.E. of regression 0.307608

R-squared 0.011445 Adjusted R-squared 0.010385

F(1, 933) 10.80160 P-value(F) 0.001052

Log-likelihood -223.4066 Akaike criterion 450.8133

Schwarz criterion 460.4944 Hannan-Quinn 454.5047

̂married= 0.540935
(0.10761)

+0.0106442
(0.0032387)

age

N = 935 R̄2 = 0.0104 F(1,933) = 10.802 σ̂ = 0.30761

(standard errors in parentheses)

If the average age in the sample is 33 years of age, the predicted value for

married is 89.2 ( ̂married = 0.5409 + 0.0106× 33). This means that if you

are 33 years old, the probability that you are married is 89.2%. In addition, every

year you get older, the probability that you are married increases by 0.011 or about

1.%. For some reason you think that only fools get married and then you decide to

wrongly estimate the model

married= β1 +β2age+β3IQ+ ε (7.17)

1 Because married is actually a dummy variable this is a linear probability model, a type of

model that we will see in detail in Chapter 9.
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where the variable IQ is X3 in Equation 7.11 and should not be in the model. The
estimation results from Gretl are

Model 2: OLS, using observations 1-935

Dependent variable: married

coefficient std. error t-ratio p-value

----------------------------------------------------------

const 0.563197 0.129804 4.339 1.59e-05 ***
age 0.0106007 0.00324337 3.268 0.0011 ***
IQ -0.000205573 0.000669635 -0.3070 0.7589

Mean dependent var 0.893048 S.D. dependent var 0.309217

Sum squared resid 88.27381 S.E. of regression 0.307757

R-squared 0.011545 Adjusted R-squared 0.009424

F(2, 932) 5.442677 P-value(F) 0.004467

Log-likelihood -223.3594 Akaike criterion 452.7187

Schwarz criterion 467.2404 Hannan-Quinn 458.2559

̂married= 0.563197
(0.12980)

+0.0106007
(0.0032434)

age−0.000205573
(0.00066963)

IQ

N = 935 R̄2 = 0.0094 F(2,932) = 5.4427 σ̂ = 0.30776

(standard errors in parentheses)

Not surprisingly, the effect of IQ on married is not significant. This means that

fools are not more likely to be married. However, the results do not necessarily

support the conjecture that higher IQ is associated with married people either. Nev-

ertheless, including IQ does not seems to help in the estimation of β2. As we have

seen theoretically, the estimate of the second equation is less efficient as can be

appreciated from its larger standard error (0.003243 > 0.003239).

7.4 Testing a linear restriction

Testing linear restriction on the regression coefficients is sometimes very useful.

Consider the following regression model,

logwage= β1 +β2exper+β3educ+ ε (7.18)

The regression output in Gretl is

Model 1: OLS, using observations 1-935

Dependent variable: logwage

coefficient std. error t-ratio p-value

---------------------------------------------------------

const 5.50271 0.112037 49.12 8.13e-261 ***
educ 0.0777820 0.00657687 11.83 3.62e-030 ***
exper 0.0197768 0.00330251 5.988 3.02e-09 ***
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Mean dependent var 6.779004 S.D. dependent var 0.421144

Sum squared resid 143.9786 S.E. of regression 0.393044

R-squared 0.130859 Adjusted R-squared 0.128994

F(2, 932) 70.16174 P-value(F) 4.13e-29

Log-likelihood -452.0704 Akaike criterion 910.1407

Schwarz criterion 924.6624 Hannan-Quinn 915.6779

̂logwage= 5.50271
(0.11204)

+0.0777820
(0.0065769)

educ+0.0197768
(0.0033025)

exper

N = 935 R̄2 = 0.1290 F(2,932) = 70.162 σ̂ = 0.39304

(standard errors in parentheses)

Let’s say that we want to text whether the effect of a year on education on wages is

the same as the effect of a year of experience of wages. That is, we want to text the

following null hypothesis,

H0 : β2 = β3 (7.19)

While it may be tempting to just look and compare the regression estimates b2 and

b3, this approach is not correct. Remember that b2 and b3 are just estimates and are

not the unknown β2 and β3. The statistically correct approach is to run an auxiliary

restricted regression where we force b2 = b3. Then, we have to compare if the re-

gression fit with the restricted coefficients is significantly lower that the regression

fit with the unrestricted (original) regression. To do this we calculate the residual

sum of squares from the restricted model (RSSR) and the residual sum of squares

from the unrestricted model (RSSU ) and calculate the following F statistic:

Fr,n−k =
(RSSR−RSSU )/r

RSSU/(n− k)
(7.20)

where F is distributed with r and n− k degrees of freedom. The number of restric-

tions r is equal to one in our example.
This is done automatically in Gretl. After you estimate the unrestricted regression

model, in the regression output window you have to go to Tests → Linear
restrictions and a new window will open. In the new window you have to
type the command b[educ] - b[exper] = 0 to obtain

Restriction:

b[educ] - b[exper] = 0

Test statistic: F(1, 932) = 97.8892, with p-value = 5.14357e-022

Restricted estimates:

coefficient std. error t-ratio p-value

---------------------------------------------------------

const 6.24122 0.0877816 71.10 0.0000 ***
educ 0.0214837 0.00346501 6.200 8.46e-010 ***
exper 0.0214837 0.00346501 6.200 8.46e-010 ***

Standard error of the regression = 0.412948
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The calculated F-statistics (that used Equation 7.20) is 97.8892 with an associated

p-value that is below 0.05. This means that the fit in the two regression equations is

significantly different and we reject the null hypothesis presented in Equation 7.19.

We conclude that the effect of education and experience have a significantly differ-

ent effect on wages.

If you want to test whether education had four times the effect on wages than

experience, the null is

H0 : β2 = 4×β3 (7.21)

The command in Gretl is b[educ] - 4*b[exper] = 0 to have

Restriction:

b[educ] - 4*b[exper] = 0

Test statistic: F(1, 932) = 0.0126711, with p-value = 0.910399

Restricted estimates:

coefficient std. error t-ratio p-value

---------------------------------------------------------

const 5.50597 0.108181 50.90 1.89e-271 ***
educ 0.0778171 0.00656598 11.85 2.78e-030 ***
exper 0.0194543 0.00164150 11.85 2.78e-030 ***

Standard error of the regression = 0.392836

Notice that the F-statistics is fairly small and has a p-value that is now greater than

5%. We do not reject the null hypothesis and conclude that, on average, one year of

education has four times the effect on wages than one year of experience.


