
Chapter 6

Analysis with Qualitative Information: Dummy
Variables

In previous chapters, the dependent and the independent variables in our regression

equations had a quantitative meaning. That is, the magnitude of the variable had

a useful information, for example, years of education, years of experience, unem-

ployment rate, or wage. In this chapter we will analyze how to introduce qualitative

information into a regression equation. Example of qualitative information includes

marital status, gender, race, industry (manufacturing, retail, etc.) or geographical

region (south, north, west, etc.).

6.1 Describing qualitative information

Qualitative factors often come in the form of binary information: a person is female

of male; a person does or does not own a computer; a person is married or not. In

all these cases the relevant information can be captured by a binary variable, also

called a dummy variable or zero-one variable. In defining a dummy variable we must

decide which event is assigned a value of one and which a value of zero. Table 6.1

shows how two dummy variables (female and married) look in the data set.

Table 6.1 A partial Listing of the Data in Wage.xls

person wage educ exper female married

1 3.10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

4 6.00 8 44 0 1

5 5.30 12 7 0 1
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525 11.56 16 5 0 1

526 3.50 14 5 1 0
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Fig. 6.1 Graph of wage= β0 +δ0female+β1educ for δ0 < 0.

6.2 A single dummy independent variable

The simplest case is when we have a single dummy independent variable. Let’s

consider the following model:

wage= β0 +δ0female+β1educ+ ε (6.1)

We use the parameter δ0 to emphasize the fact that female corresponds to a

dummy variable. If the person is a female we have female = 1, and if the person is

a male, we have female = 0. The parameter δ0 has the following interpretation: δ0

is the difference in hourly wage between females and males, given the same amount

of education (and the error term ε). Thus, the coefficient δ0 determines whether

there is discrimination against women: if δ0 < 0, it means that on average, women

earn less than men.

The interpretation of δ0 (when δ < 0) can be depicted graphically in Figure 6.1

as an intercept shift between males an females.

Let’s estimate the following more interesting model:

wage= β0 +δ0female+β1educ+β2exper+β1tenure+ ε (6.2)

The regression output in Gretl is:

Model 2: OLS, using observations 1-526

Dependent variable: wage
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coefficient std. error t-ratio p-value

---------------------------------------------------------

const -1.56794 0.724551 -2.164 0.0309 **
female -1.81085 0.264825 -6.838 2.26e-011 ***
educ 0.571505 0.0493373 11.58 9.09e-028 ***
exper 0.0253959 0.0115694 2.195 0.0286 **
tenure 0.141005 0.0211617 6.663 6.83e-011 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086

Sum squared resid 4557.308 S.E. of regression 2.957572

R-squared 0.363541 Adjusted R-squared 0.358655

F(4, 521) 74.39801 P-value(F) 7.30e-50

Log-likelihood -1314.228 Akaike criterion 2638.455

Schwarz criterion 2659.782 Hannan-Quinn 2646.805

ŵage=−1.56794
(0.72455)

−1.81085
(0.26483)

female+0.571505
(0.049337)

educ+0.0253959
(0.011569)

exper

+0.141005
(0.021162)

tenure

N = 526 R̄2 = 0.3587 F(4,521) = 74.398 σ̂ = 2.9576

(standard errors in parentheses)

Where it is easy to see that δ0 = −1.81. If we want to test the null hypothesis

that there is no difference between men and women, H0 : δ0 = 0. The alternative

hypothesis is that there is discrimination against women, H1 : δ0 < 0. Based on the

p-value we reject the null and conclude that there is discrimination, females make

two dollars and twenty seven cents less per hour than males. This is after controlling

for differences in education, experience and tenure.

It is illustrative to additionally estimate the following equation:

wage= β0 +δ0female+ ε (6.3)

where we do not control for education, experience or tenure. The regression output
is:

Model 3: OLS, using observations 1-526

Dependent variable: wage

coefficient std. error t-ratio p-value

---------------------------------------------------------

const 7.09949 0.210008 33.81 8.97e-134 ***
female -2.51183 0.303409 -8.279 1.04e-015 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086

Sum squared resid 6332.194 S.E. of regression 3.476254

R-squared 0.115667 Adjusted R-squared 0.113979

F(1, 524) 68.53668 P-value(F) 1.04e-15

Log-likelihood -1400.732 Akaike criterion 2805.464

Schwarz criterion 2813.995 Hannan-Quinn 2808.804



50 6 Analysis with Qualitative Information: Dummy Variables

ŵage= 7.09949
(0.21001)

−2.51183
(0.30341)

female

N = 526 R̄2 = 0.1140 F(1,524) = 68.537 σ̂ = 3.4763

(standard errors in parentheses)

The expected (predicted) wage for females is ŵage = 7.099− 2.5121 = 4.587,

while the expected wage for males is ŵage= 7.099−2.5120= 7.099. This is not

controlling for differences in education, experience or tenure. Once we control for

those differences, the wage gap between these two groups is smaller and equal to

δ0 =−1.81.

What is the interpretation of the coefficient on a dummy variable if the dependent

variable is in logs? Here the coefficient has a percentage interpretation. Let’s say we

want to estimate the following equation:

logwage= β0 +δ0female+β1educ+β2exper+β3tenure+ ε (6.4)

that has the following Gretl estimation output:

̂logwage= 0.501348
(0.10190)

−0.301146
(0.037246)

female+0.0874623
(0.0069389)

educ+0.00462938
(0.0016271)

exper

+0.0173670
(0.0029762)

tenure

N = 526 R̄2 = 0.3876 F(4,521) = 84.072 σ̂ = 0.41596

(standard errors in parentheses)

The coefficient on female, δ0, implies that for the same levels of education, expe-

rience, and tenure, women earn approximately 100(0.301) = 30.1% less than men.

6.3 Dummy variables for multiple categories

One can use several dummy variables in the same equation. For example, we can

add the dummy variable married to Equation 6.3 to obtain:

wage= β0 +δ0female+δ1married+ ε (6.5)

In Gretl we have,

ŵage= 6.18043
(0.29634)

−2.29440
(0.30261)

female+1.33948
(0.30971)

married

N = 526 R̄2 = 0.1429 F(2,523) = 44.779 σ̂ = 3.4190

(standard errors in parentheses)

The coefficient on married gives the (approximate) difference in wages between

married and non married individuals. Based on these results, married individuals
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have higher hourly wages. On important restriction in Equation 6.5 is that it restricts

the effect of marital status on wages is the same whether you are male of female.

If we are interested in this difference we can estimate an alternative model with

additional categories. In particular we need four categories: (1) married men, (2)

married women (3) single men, and (4) single woman. We must select a base group

(for example, single men) and create the dummy variables for the other three groups.

marrmale = married× (1−female)

marrfem = married×female

singfem = (1−married)×female

The equation we want to estimate is:

logwage= β0 +δ0marrmale+δ1marrfem+δ2singfem+ ε (6.6)

and the estimation output is:

̂logwage= 1.5201
(0.050987)

+ 0.4267
(0.061554)

marrmale− 0.0797
(0.065524)

marrfem− 0.1316
(0.066804)

singfem

N = 526 R̄2 = 0.2087 F(3,522) = 47.149 σ̂ = 0.47284

(standard errors in parentheses)

The interpretation of each of the δ coefficients is with respect to the base group. For

example δ2 = 0.1316 means that single females earn approximately 13.16% lower

hourly wages than single men (the base group).

6.4 Incorporating ordinal information

Suppose we want to estimate the effect of city credit ratings on the municipal bond

interest rate (MBR). The credit rating (CR) is an ordinal variable and suppose it goes

from zero (worst credit) to four (best credit). Under these consideration, a potential

candidate for our model is:

MBR= β0 +β1CR+other f actors+ ε (6.7)

where other f actors are just other variables in the model. On concern with this spec-

ification is that it is hard to interpret one unit increase in CR. It is easy to talk about

an additional year of education or an additional year of income, but credit ratings

usually have only an ordinal meaning. Moreover, it is restrictive to assume that each

additional unit increase in CR has the same effect on MBR. An alternative approach

is to create separate dummy variables for each of the values of CR, that is,
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CR1 = 1 if CR= 1

= 0 otherwise.

CR2 = 1 if CR= 2

= 0 otherwise.

CR3 = 1 if CR= 3

= 0 otherwise.

CR4 = 1 if CR= 4

= 0 otherwise.

Then we can focus on estimating the following model:

MBR= β0 +δ1CR1 +δ2CR2 +δ3CR3 +other f actors+ ε (6.8)

Again, we omit one category (CR4) and the interpretation of the dummy coefficients

is relative to the omitted category. For example, δ2 represents the difference in mu-

nicipal bond interest rate between ratings CR2 and CR4.

6.5 Interactions involving dummy variables

Just as quantitative variables can have interactions, so can dummy variables. Actu-

ally, we revisit the estimation of Equation 6.6 to see that the same results can be

achieved by including the interaction term between female and married. The

model we want to estimate is:

logwage= β0+δ0female+δ1married+δ2(female×married)+ε (6.9)

Estimating in Gretl we have:

̂logwage= 1.5201
(0.050987)

− 0.1316
(0.066804)

female+ 0.4267
(0.061554)

married

− 0.3748
(0.085708)

female×married

N = 526 R̄2 = 0.2087 F(3,522) = 47.149 σ̂ = 0.47284

(standard errors in parentheses)

Notice that this regression output is equivalent as the one obtained from Equa-

tion 6.6.
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Fig. 6.2 Graph of wage= β0 +δ0female+β1educ+δ1educ×female.

6.5.1 Allowing for different slopes

Consider the case where we want to estimate the effect of education on hourly wage

and in addition, we want for the marginal effect to change based on your gender.

This can be done by interacting the educ with female and estimating the follow-

ing model:

wage= β0 +δ0female+β1educ+δ1(female×educ)+ ε (6.10)

A graphical approach to this problem in presented in Figure 6.2. The output in Gretl

is

ŵage= 0.200496
(0.84356)

−1.19852
(1.3250)

female+0.539476
(0.064223)

educ

−0.0859990
(0.10364)

female×educ

T = 526 R̄2 = 0.2555 F(3,522) = 61.070 σ̂ = 3.1865

(standard errors in parentheses)
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6.5.2 Testing for differences in regression functions across groups

So far we saw that interacting a dummy variable with other independent variables

is a powerful tool. Now, we can use this tool to test the null hypothesis that two

groups follow the same regression function, against the alternative that one or more

of the slopes differs across the two groups. Suppose we want to test whether the

same regression model describe college GPA for males and for females. The model

is

cumgpa= β0 +β1sat+β2hsperc+β3tothrs+ ε, (6.11)

where cumgpa is cumulative college GPA, sat is the SAT score, hsperc is the

high school rank percentile, and tothrs is the total hours of college courses. The

regression results in Gretl are

̂cumgpa= 0.929111
(0.22855)

+0.0009028
(0.000208)

sat−0.006379
(0.00157)

hsperc+ 0.01198
(0.000931)

tothrs

N = 732 R̄2 = 0.2323 F(3,728) = 74.717 σ̂ = 0.86711

(standard errors in parentheses)

To allow for a difference in the intercept we just need to include the dummy variable

female. Then, to allow differences in the slope parameters we need to include

interaction terms for each of the variables and female. That is

cumgpa = β0 +δ0female+β1sat+δ1sat ·female (6.12)

+ β2hsperc+δ2hsperc ·female

+ β3tothrs+δ3tothrs ·female+ ε

The parameter δ0 is the difference in the intercepts between females and males, δ1

is the slope difference with respect to sat between females and males, and so on.

The null hypothesis that cumgpa follows the same model for females and males is

H0 : δ0 = δ1 = δ2 = δ3 = 0 (6.13)

If at least one of the δ j is different from zero, then the model is different for men
and women. After creating the interaction terms, the estimated model in Gretl is

Model 2: OLS, using observations 1-732

Dependent variable: cumgpa

coefficient std. error t-ratio p-value

----------------------------------------------------------------

const 1.21398 0.264828 4.584 5.37e-06 ***
sat 0.000611312 0.000235026 2.601 0.0095 ***
hsperc -0.00596745 0.00177646 -3.359 0.0008 ***
tothrs 0.0103004 0.00109284 9.425 5.65e-020 ***
female -1.11364 0.528539 -2.107 0.0355 **
satfemale 0.00111674 0.000500034 2.233 0.0258 **
hspercfemale 5.07597e-05 0.00410253 0.01237 0.9901

tothrsfemale 0.00555989 0.00206958 2.686 0.0074 ***
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Mean dependent var 2.080861 S.D. dependent var 0.989617

Sum squared resid 534.3092 S.E. of regression 0.859067

R-squared 0.253652 Adjusted R-squared 0.246436

F(7, 724) 35.15106 P-value(F) 2.54e-42

Log-likelihood -923.4440 Akaike criterion 1862.888

Schwarz criterion 1899.654 Hannan-Quinn 1877.071

̂cumgpa= 1.21398
(0.26483)

+0.000611312
(0.00023503)

sat−0.00596745
(0.0017765)

hsperc+0.0103004
(0.0010928)

tothrs

−1.11364
(0.52854)

female+0.00111674
(0.00050003)

satfemale+5.07597e–005
(0.0041025)

hspercfemale

+0.00555989
(0.0020696)

tothrsfemale

N = 732 R̄2 = 0.2464 F(7,724) = 35.151 σ̂ = 0.85907

(standard errors in parentheses)

Now, to test the null hypothesis presented in Equation 6.13 from the window that
shows the regression output, we need to go to Tests→ Omit variables and
a new window will open. We then have to select the variables to omit. There are
female, satfemale, hspercfemale, and tothrsfemale. This will esti-
mate the restricted model and the comparison between the restricted model (Equa-
tion 6.11) and the full model (Equation 6.12),

Model 3: OLS, using observations 1-732

Dependent variable: cumgpa

coefficient std. error t-ratio p-value

-----------------------------------------------------------

const 0.929111 0.228552 4.065 5.32e-05 ***
sat 0.000902834 0.000207870 4.343 1.60e-05 ***
hsperc -0.00637913 0.00156785 -4.069 5.24e-05 ***
tothrs 0.0119779 0.000931383 12.86 2.96e-034 ***

Mean dependent var 2.080861 S.D. dependent var 0.989617

Sum squared resid 547.3649 S.E. of regression 0.867107

R-squared 0.235416 Adjusted R-squared 0.232265

F(3, 728) 74.71707 P-value(F) 3.87e-42

Log-likelihood -932.2797 Akaike criterion 1872.559

Schwarz criterion 1890.942 Hannan-Quinn 1879.651

Comparison of Model 2 and Model 3:

Null hypothesis: the regression parameters are zero for the variables

female, satfemale, hspercfemale, tothrsfemale

Test statistic: F(4, 724) = 4.4227, with p-value = 0.00154347

Of the 3 model selection statistics, 1 has improved.

The F statistics that Gretl is reporting comes from
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F =
RSS−RSSUR

RSSUR
·

n−2k

q
, (6.14)

where RSS is the residual sum of squares of the model estimates in Equation 6.11

and RSSUR is the unrestricted model in Equation 6.12. n is the sample size, k is the

number of parameters we are estimating, and q is the number of restrictions when

comparing the model in Equation 6.11 and in Equation 6.12. Substituting the values

we obtain,

F =
547.3649−534.3092

534.3092
·

732−2 ·4

4
= 0.024434 ·181 = 4.4227, (6.15)

An alternative way to calculate this F statistic is to follow the formula,

F =
RSS− (RSS1 +RSS2)

RSS1 +RSS2
·

n−2k

k
, (6.16)

where RSS is the residual sum of squares of the model estimates in Equation 6.11.

RSS1 and RSS2 are the residual sum of squares of the model estimated in Equa-

tion 6.11 using only the females in the sample (RSS1) and using only the males in

the sample (RSS2). As before, n is the sample size and k is the number of parameters

we are estimating. The estimation of Equation 6.11 with just females is:

Model 5: OLS, using observations 1-180

Dependent variable: cumgpa

coefficient std. error t-ratio p-value

----------------------------------------------------------

const 0.100346 0.481095 0.2086 0.8350

sat 0.00172805 0.000464216 3.723 0.0003 ***
hsperc -0.00591669 0.00388949 -1.521 0.1300

tothrs 0.0158603 0.00184854 8.580 4.82e-015 ***

Mean dependent var 2.268611 S.D. dependent var 1.126549

Sum squared resid 143.6897 S.E. of regression 0.903559

R-squared 0.367483 Adjusted R-squared 0.356702

F(3, 176) 34.08447 P-value(F) 2.03e-17

Log-likelihood -235.1319 Akaike criterion 478.2638

Schwarz criterion 491.0356 Hannan-Quinn 483.4422

and with just males is:

Model 6: OLS, using observations 1-552

Dependent variable: cumgpa

coefficient std. error t-ratio p-value

-----------------------------------------------------------

const 1.21398 0.260270 4.664 3.90e-06 ***
sat 0.000611312 0.000230981 2.647 0.0084 ***
hsperc -0.00596745 0.00174588 -3.418 0.0007 ***
tothrs 0.0103004 0.00107403 9.590 3.06e-020 ***

Mean dependent var 2.019638 S.D. dependent var 0.933655
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Sum squared resid 390.6194 S.E. of regression 0.844280

R-squared 0.186740 Adjusted R-squared 0.182288

F(3, 548) 41.94377 P-value(F) 2.06e-24

Log-likelihood -687.8093 Akaike criterion 1383.619

Schwarz criterion 1400.873 Hannan-Quinn 1390.360

Using the formula in Equation 6.17,

F =
547.3649− (143.6897+390.6194)

143.6897+390.6194
·

732−2 ·4

4
= 0.024434 ·181 = 4.4227,

(6.17)

which is the same result as in Equation 6.15. This version of the F test is know also

as the Cho test. A large F statistic is evidence against the null hypothesis. In our

example the F statistic of 4.4227 has an associated p-value of 0.0015, below the

usual 0.05 (or 5%). Hence, we reject the null hypothesis that there is no difference

between the equation for females and the equation for males. This means that there

is difference and we are better off estimating Equation 6.12 instead of Equation 6.11.

The key to estimate Equation 6.11 with just the female portion of the data change

the sample. To do this go to Sample→ Restrict, based on criterion...,

then after a new window shows up, select the “use dummy variable” and then

female. Once the sample is restricted, just estimate the model using Ordinary

Least Squares again.

6.6 The dummy variable trap

The dummy variable trap occurs when there is an exact linear relationship among

the variables in the regression model. That is the reason why we do not include

female and male in the same regression equation because female + male =
1. The same occurs when we have more than one category and we should always

omit one of the categories (base group). Than is why singmen does not appear in

Equation 6.6 (marrmale + singmale + marrfem + singfem = 1).


