
Chapter 5

Transformations of Variables and Interactions

5.1 Basic idea

One limitation in the linear regression analysis is that the dependent variable has to

be linear in the parameters:

Y = β1 +β2X2 +β3X3 + · · ·+βkXk +u. (5.1)

However, there are equations that are not linear, for example:

Y = β1 +β2X2 +X
β3
3 +u. (5.2)

This Equation 5.2 cannot be estimated using OLS. One way to estimate nonlinear

models is by using Nonlinear Least Squares (NLS), which is an extension of the

methods we discussed before. In this chapter, rather that focusing on NLS, we will

see how transformations in the variables can allow us to use OLS on a variety of non-

linear models. For example, consider the estimation of the following Cobb-Douglas

production function:

Pi = AL
β2
i K

β3
i eεi , (5.3)

where Pi is total production or total output, A is a technology constant, Ki is the

amount of capital, and Li is labor. Taking natural logs we have:

logPi = logA+β2 logLi +β3 logKi + εi. (5.4)

If we simple set Yi = logPi, β1 = logA, X2 = logLi, and X3 = logKi we can write

Equation 5.4 as:

Yi = β1 +β2X2i +β3X3i + εi, (5.5)

that can be easily estimated via OLS. β2 and β3 will correspond to the ones given in

Equation 5.3. Another example of a model that can be estimated with OLS is:

Yi = β1 +β2Z2
2i +β3

√
Z3i +β4

1

Z4i

+ εi. (5.6)
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We just need to replace X2i = Z2
2i, X3i =

√
Z3i, X4i =

1
Z4i

.

5.2 Logarithmic transformations

To explain the logarithm transformation let’s go over one example in Gretl. If we

want to estimate the following model:

logcrimei = β1 +β2 logpopi +β3unemi +β4offii +ui, (5.7)

you need to create the new variables first. Go to Add→ Define new variable

and type:

logcrime = log(crime)

This will generate the new variable logcrime. Do the same thing for log popula-
tion and then estimate the model. The regression output is:

Model 1: OLS, using observations 1-92

Dependent variable: logcrime

coefficient std. error t-ratio p-value

-----------------------------------------------------------

const -0.709735 0.807193 -0.8793 0.3817

unem -0.00456848 0.00903041 -0.5059 0.6142

offi 0.000144915 6.15429e-05 2.355 0.0208 **
logpop 0.864044 0.0662782 13.04 2.92e-022 ***

Mean dependent var 10.33774 S.D. dependent var 0.742056

Sum squared resid 6.883563 S.E. of regression 0.279683

R-squared 0.862628 Adjusted R-squared 0.857945

F(3, 88) 184.1989 P-value(F) 8.20e-38

Log-likelihood -11.28034 Akaike criterion 30.56069

Schwarz criterion 40.64784 Hannan-Quinn 34.63195

Excluding the constant, p-value was highest for variable 3 (unem)

̂logcrime=−0.709735
(0.80719)

−0.00456
(0.00903)

unem+0.000144915
(6.1543e–005)

offi+0.8640
(0.0663)

logpop

N = 92 R̄2 = 0.8579 F(3,88) = 184.20 σ̂ = 0.27968

(standard errors in parentheses)

First, notice how the coefficients are very different from the one obtain with no

logarithm transformation. Here the interpretation is different. β2 is interpreted as the

elasticity of crime with respect to pop:

β2 =
∆crime/crime

∆pop/pop
. (5.8)
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A one percentage increase in popwill increase crime by 0.864 percent. ∆crime/crime
is interpreted as a percentage change in crime. For β4 we have:

β4 =
∆crime/crime

∆offi
. (5.9)

Here, a one unit increase in offi is associated with a 0.014% (0.00014 × 100

percent) increase in crime.

5.3 Quadratic terms

So far we have bee estimating the marginal effects (β s) that are constant across all

possible values of X . The simplest way to introduce nonlinearities in the marginal

effect is to estimate the model with quadratic terms. For example, let the model be:

Yi = β1 +β2Xi +β3X2
i + εi. (5.10)

In this case the marginal effect of X on Y is given by:

∆Y

∆X
= β2 +2 ·β3Xi. (5.11)

If we want to estimate the marginal effect of experience of wages and in addition

we allow for a nonlinear effect we can estimate:

wagei = β1 +β2experi +β3expersqi + εi, (5.12)

where wage is average hourly earnings, exper is years of experience and expersq
is the number of years of experience squared. The Gletl output is the following:

Model 1: OLS, using observations 1-526

Dependent variable: wage

coefficient std. error t-ratio p-value

----------------------------------------------------------

const 3.72541 0.345939 10.77 1.46e-024 ***
exper 0.298100 0.0409655 7.277 1.26e-012 ***
expersq -0.00612989 0.000902517 -6.792 3.02e-011 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086

Sum squared resid 6496.147 S.E. of regression 3.524334

R-squared 0.092769 Adjusted R-squared 0.089300

F(2, 523) 26.73982 P-value(F) 8.77e-12

Log-likelihood -1407.455 Akaike criterion 2820.910

Schwarz criterion 2833.706 Hannan-Quinn 2825.920
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Fig. 5.1 Predicted values for Equation 5.12

ŵage= 3.72541
(0.34594)

+0.298100
(0.040966)

exper−0.00612989
(0.00090252)

expersq

N = 526 R̄2 = 0.0893 F(2,523) = 26.740 σ̂ = 3.5243

(standard errors in parentheses)

Here, the marginal effect of experience on average hourly wage is:

∆wage

∆exper
= 0.2981+2 · (−0.006)exper

= 0.2981−0.012exper.

For a person with 2 years of experience, the effect of an additional year of experience

on wage is 0.2741 (=0.2981 - 0.012 × 2) and for a person with 15 years of expe-

rience, the marginal effect of an additional year of experience is 0.1181 (=0.2981 -

0.012 × 15). Hence, we can say that for a reasonable range of years of experience,

experience has a positive effect on wage. In addition, this effect is smaller as you

accumulate more experience.

Figure 5.1 show the fitted regression line along with the 95% confidence interval

for the fitted values and the actual data. This figure clearly shows the nonlinear

marginal effect and innlustrates how wages increase with experience for about the

first 25 years, but then wages decrease later on.
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5.4 Interaction terms

A second popular approach to allow for the marginal effect to change over different

values of X is to include interaction terms in the regression equation. For example,

Y = β1 +β2X2 +β3(X2×X3)+ εi. (5.13)

In this case the marginal effect of X2 on Y depends on X3 is given by:

∆Y

∆X2
= β2 +β3X3. (5.14)

Consider the next example with the interaction between exper and educ in a wage

equation:

wagei = β1 +β2experi +β3(experi×educi)+ εi, (5.15)

where the marginal effect of experience on wage depends on the level of education:

∆wage

∆exper
= β2 +β3educ. (5.16)

When estimating this equation in Gretl we have to make sure we generate the inter-

action term first. That is, go to Add→ Define new variable and type:

expereduc = exper*educ

Then we are ready to estimate the equation via OLS. The regression output is:

Model 1: OLS, using observations 1-526

Dependent variable: wage

coefficient std. error t-ratio p-value

----------------------------------------------------------

const 4.88993 0.242730 20.15 3.11e-067 ***
exper -0.188124 0.0253904 -7.409 5.13e-013 ***
expereduc 0.0207731 0.00217625 9.545 5.17e-020 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086

Sum squared resid 6020.313 S.E. of regression 3.392803

R-squared 0.159223 Adjusted R-squared 0.156008

F(2, 523) 49.52175 P-value(F) 2.01e-20

Log-likelihood -1387.449 Akaike criterion 2780.897

Schwarz criterion 2793.693 Hannan-Quinn 2785.908

ŵage= 4.88993
(0.24273)

−0.188124
(0.025390)

exper+0.0207731
(0.0021762)

expereduc

N = 526 R̄2 = 0.1560 F(2,523) = 49.522 σ̂ = 3.3928

(standard errors in parentheses)
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Here, the marginal effect of experience on wage is:

∆wage

∆exper
= −0.1881+0.0208educ

For a person with twelve years education (high school), the marginal effect from an

additional year of education is 0.0615 (=-0.1881+0.208×12). However, with more

education the marginal effect is larger. A person with 16 years of education (high

school + college) will have a marginal effect of 0.1447 (=-0.1881+0.208×16). No-

tice that for an important range of education the marginal effect is positive, meaning

that more experience leads to higher wages. In addition, the effect if larger if you

have more education. This means that going to school is not only good because it

directly increases your expected wage but also makes additional years of experience

more valuable.


