Chapter 5
Transformations of Variables and Interactions

5.1 Basic idea

One limitation in the linear regression analysis is that the dependent variable has to be linear in the parameters:

\[Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \cdots + \beta_k X_k + u. \]

(5.1)

However, there are equations that are not linear, for example:

\[Y = \beta_1 + \beta_2 X_2 + X_3^{\beta_3} + u. \]

(5.2)

This Equation 5.2 cannot be estimated using OLS. One way to estimate nonlinear models is by using Nonlinear Least Squares (NLS), which is an extension of the methods we discussed before. In this chapter, rather that focusing on NLS, we will see how transformations in the variables can allow us to use OLS on a variety of nonlinear models. For example, consider the estimation of the following Cobb-Douglas production function:

\[P_i = A L_i^{\beta_2} K_i^{\beta_3} e^{\epsilon_i}, \]

(5.3)

where \(P_i \) is total production or total output, \(A \) is a technology constant, \(K_i \) is the amount of capital, and \(L_i \) is labor. Taking natural logs we have:

\[\log P_i = \log A + \beta_2 \log L_i + \beta_3 \log K_i + \epsilon_i. \]

(5.4)

If we simple set \(Y_i = \log P_i, \beta_1 = \log A, X_2 = \log L_i, \) and \(X_3 = \log K_i \) we can write Equation 5.4 as:

\[Y_i = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon_i, \]

(5.5)

that can be easily estimated via OLS. \(\beta_2 \) and \(\beta_3 \) will correspond to the ones given in Equation 5.3. Another example of a model that can be estimated with OLS is:

\[Y_i = \beta_1 + \beta_2 Z_{2i}^2 + \beta_3 \sqrt{Z_{3i}} + \beta_4 \frac{1}{Z_{4i}} + \epsilon_i. \]

(5.6)
We just need to replace $X_2 = Z_2^2$, $X_3 = \sqrt{Z_3}$, $X_4 = \frac{1}{Z_4}$.

5.2 Logarithmic transformations

To explain the logarithm transformation let's go over one example in Gretl. If we want to estimate the following model:

$$\log \text{crime}_i = \beta_1 + \beta_2 \log \text{pop}_i + \beta_3 \text{unem}_i + \beta_4 \text{offi}_i + \epsilon_i, \quad (5.7)$$

you need to create the new variables first. Go to Add \rightarrow Define new variable and type:

$$\log \text{crime} = \log (\text{crime})$$

This will generate the new variable $\log \text{crime}$. Do the same thing for $\log \text{population}$ and then estimate the model. The regression output is:

<table>
<thead>
<tr>
<th>Dependent variable: logcrime</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficient</td>
</tr>
<tr>
<td>const</td>
</tr>
<tr>
<td>unem</td>
</tr>
<tr>
<td>offi</td>
</tr>
<tr>
<td>logpop</td>
</tr>
</tbody>
</table>

Mean dependent var 10.33774 S.D. dependent var 0.742056
Sum squared resid 6.883563 S.E. of regression 0.279683
R-squared 0.862628 Adjusted R-squared 0.857945
F(3, 88) 184.1989 P-value(F) 8.20e-38
Log-likelihood -11.28034 Akaike criterion 30.56069
Schwarz criterion 40.64784 Hannan-Quinn 34.63195

Excluding the constant, p-value was highest for variable 3 (unem)

$$\log \text{crime} = -0.709735 - 0.00456 \text{unem} + 0.000144915 \text{offi} + 0.8640 \log \text{pop} \quad (5.9)$$

$N = 92 \quad R^2 = 0.8579 \quad F(3, 88) = 184.20 \quad \hat{\sigma} = 0.27968$ (standard errors in parentheses)

First, notice how the coefficients are very different from the one obtain with no logarithm transformation. Here the interpretation is different. β_2 is interpreted as the elasticity of crime with respect to pop:

$$\beta_2 = \frac{\Delta \text{crime}}{\Delta \text{pop}} \cdot \frac{\text{crime}}{\text{pop}}. \quad (5.8)$$
A one percentage increase in \(\text{pop} \) will increase \(\text{crime} \) by 0.864 percent. \(\Delta \text{crime}/\text{crime} \) is interpreted as a percentage change in \(\text{crime} \). For \(\beta_4 \) we have:

\[
\beta_4 = \frac{\Delta \text{crime}/\text{crime}}{\Delta \text{offi}}.
\]

(5.9)

Here, a one unit increase in \(\text{offi} \) is associated with a 0.014\% (0.00014 \times 100 percent) increase in \(\text{crime} \).

5.3 Quadratic terms

So far we have been estimating the marginal effects (\(\beta \)'s) that are constant across all possible values of \(X \). The simplest way to introduce nonlinearities in the marginal effect is to estimate the model with quadratic terms. For example, let the model be:

\[
Y_i = \beta_1 + \beta_2 X_i + \beta_3 X_i^2 + \epsilon_i.
\]

(5.10)

In this case the marginal effect of \(X \) on \(Y \) is given by:

\[
\frac{\Delta Y}{\Delta X} = \beta_2 + 2 \cdot \beta_3 X_i.
\]

(5.11)

If we want to estimate the marginal effect of experience of wages and in addition we allow for a nonlinear effect we can estimate:

\[
\text{wage}_i = \beta_1 + \beta_2 \text{exper}_i + \beta_3 \text{expersq}_i + \epsilon_i,
\]

(5.12)

where \(\text{wage} \) is average hourly earnings, \(\text{exper} \) is years of experience and \(\text{expersq} \) is the number of years of experience squared. The Gletl output is the following:

Model 1: OLS, using observations 1-526
Dependent variable: wage

<table>
<thead>
<tr>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>3.72541</td>
<td>0.345939</td>
<td>10.77</td>
</tr>
<tr>
<td>exper</td>
<td>0.298100</td>
<td>0.0409655</td>
<td>7.277</td>
</tr>
<tr>
<td>expersq</td>
<td>-0.00612989</td>
<td>0.000902517</td>
<td>-6.792</td>
</tr>
</tbody>
</table>

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 6496.147 S.E. of regression 3.524334
R-squared 0.092769 Adjusted R-squared 0.089300
F(2, 523) 26.73982 P-value(F) 8.77e-12
Log-likelihood -1407.455 Akaike criterion 2820.910
Schwarz criterion 2833.706 Hannan-Quinn 2825.920
Here, the marginal effect of experience on average hourly wage is:

$$\frac{\Delta \text{wage}}{\Delta \text{exper}} = 0.2981 + 2 \cdot (-0.006) \text{exper}$$

For a person with 2 years of experience, the effect of an additional year of experience on wage is 0.2741 (=0.2981 - 0.012 × 2) and for a person with 15 years of experience, the marginal effect of an additional year of experience is 0.1181 (=0.2981 - 0.012 × 15). Hence, we can say that for a reasonable range of years of experience, experience has a positive effect on wage. In addition, this effect is smaller as you accumulate more experience.

Figure 5.1 show the fitted regression line along with the 95% confidence interval for the fitted values and the actual data. This figure clearly shows the nonlinear marginal effect and illustrates how wages increase with experience for about the first 25 years, but then wages decrease later on.
5.4 Interaction terms

A second popular approach to allow for the marginal effect to change over different values of X is to include interaction terms in the regression equation. For example,

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 (X_2 \times X_3) + \epsilon_i. \quad (5.13)$$

In this case the marginal effect of X_2 on Y depends on X_3 is given by:

$$\frac{\Delta Y}{\Delta X_2} = \beta_2 + \beta_3 X_3. \quad (5.14)$$

Consider the next example with the interaction between exper and educ in a wage equation:

$$\text{wage}_i = \beta_1 + \beta_2 \text{exper}_i + \beta_3 (\text{exper}_i \times \text{educ}_i) + \epsilon_i, \quad (5.15)$$

where the marginal effect of experience on wage depends on the level of education:

$$\frac{\Delta \text{wage}}{\Delta \text{exper}} = \beta_2 + \beta_3 \text{educ}. \quad (5.16)$$

When estimating this equation in Gretl we have to make sure we generate the interaction term first. That is, go to Add \rightarrow Define new variable and type:

$$\text{expereduc} = \text{exper} \times \text{educ}$$

Then we are ready to estimate the equation via OLS. The regression output is:

Model 1: OLS, using observations 1-526
Dependent variable: wage

<table>
<thead>
<tr>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>4.88993</td>
<td>0.242730</td>
<td>20.15</td>
</tr>
<tr>
<td>exper</td>
<td>-0.188124</td>
<td>0.0253904</td>
<td>-7.409</td>
</tr>
<tr>
<td>expereduc</td>
<td>0.0207731</td>
<td>0.00217625</td>
<td>9.545</td>
</tr>
</tbody>
</table>

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 6020.313 S.E. of regression 3.392803
R-squared 0.159223 Adjusted R-squared 0.156008
F(2, 523) 49.52175 P-value(F) 2.01e-20
Log-likelihood -1387.449 Akaike criterion 2780.897
Schwarz criterion 2793.693 Hannan-Quinn 2785.908

$$\hat{\text{wage}} = 4.88993 - 0.188124 \text{exper} + 0.0207731 \text{expereduc}$$

$$(0.24273) (0.0253904) (0.00217625)$$

$N = 526 \quad R^2 = 0.1560 \quad F(2, 523) = 49.522 \quad \sigma = 3.3928$

(standard errors in parentheses)
Here, the marginal effect of experience on wage is:

\[
\frac{\Delta \text{wage}}{\Delta \text{exper}} = -0.1881 + 0.0208 \text{educ}
\]

For a person with twelve years education (high school), the marginal effect from an additional year of education is 0.0615 (=-0.1881+0.208×12). However, with more education the marginal effect is larger. A person with 16 years of education (high school + college) will have a marginal effect of 0.1447 (=-0.1881+0.208×16). Notice that for an important range of education the marginal effect is positive, meaning that more experience leads to higher wages. In addition, the effect if larger if you have more education. This means that going to school is not only good because it directly increases your expected wage but also makes additional years of experience more valuable.