
Chapter 4

Multiple Regression Analysis

The simple linear regression covered in Chapter 2 can be generalized to include

more than one variable. Multiple regression analysis is an extension of the simple

regression analysis to cover cases in which the dependent variable is hypothesized

to depend on more than one explanatory variable. While much of the analysis is an

extension of the simple case, we have two main complications. (1) We need to dis-

criminate between the effects of one variable and the effects of the other explanatory

variables. (2) We have to decide which variables to include in the regression equa-

tion. In this chapter we will focus on the extension of the linear regression model

and in (1). In a later chapter we will discuss (2).

4.1 Interpretation of the coefficients

Consider the following population multiple regression model with (k− 1) regres-

sors:

Y = β1 +β2X2 +β3X3 + · · ·+βkXk +u. (4.1)

A simple example of a multiple regression model is:

CRIMEi = β1 +β2POPULAT IONi +β3UNEMPLOYi +β4POLICEi +ui, (4.2)

where i refers to the city, CRIME is crime rates, POPULAT ION is just the number

people in city i, UNEMPLOY is the unemployment rate, and POLICE is the num-

ber of police officers. To estimate the β s in Equation 4.2 you may need to observe

crime rates and all the other variables for n cities. As before, u is the disturbance

term. Because we have more that one regressor, the simple two dimensional charac-

terization illustrated in Figure 2.1 is no longer applicable. Now, we have a (k− 1)
dimensional problem. In our crime example we would need to have a 4D graph!

The sample counterpart of Equation 4.2 is:

CRIMEi = b1 +b2POPULAT IONi +b3UNEMPLOYi +b4POLICEi + ei, (4.3)

33



34 4 Multiple Regression Analysis

where the bs are the sample estimates of the β s, and are estimated using computer

software via Ordinary Least Squares. We also express this relationship as the 4D

fitted plane:

̂CRIME i = b1 +b2POPULAT IONi +b3UNEMPLOYi +b4POLICEi. (4.4)

Notice that we no longer write the disturbance term. Moreover, ̂CRIME i is the fitted

or predicted value of CRIMEi. The interpretation of the coefficients is the same as

before. If the number of police officers increases by one, then the crime rate will

change by b4. Similar interpretation follows for b2 and b3.

4.2 Ordinary Least Squares

The OLS estimates are obtained in the same fashion as before. The unknown rela-

tionship is given by:

Yi = β1 +β2X2i +β3X3i + · · ·+βkXki +ui. (4.5)

The fitted OLS regression is:

Ŷi = b1 +b2X2i +b3X3i + · · ·+bkXki. (4.6)

Then, the OLS regression residuals are:

ei = Yi− Ŷ = Yi−b1−b2X2i−b3X3i−·· ·−bkXki. (4.7)

Recall that OLS minimizes the sum of squared residuals

min
b1,b2,...,bk

∑
n
i=1(Yi− Ŷi)

2, (4.8)

where RSS = ∑
n
i=1(Yi− Ŷi)

2 is the sum of squared residuals. We need to take the

derivative of the RSS with respect to b1, b2, . . . , bk and obtain k first order conditions.

This yields a system of k equations with k unknowns, where the solution is the OLS

estimators of the β s.

4.3 Assumptions

1. The model is linear in the parameters and correctly specified

Y = β1 +β2X2 +β3X3 + · · ·+βkXk +u. (4.9)
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2. There is no exact linear relationship among the regressors in the sample. This is

called multicollinearity.

3. The disturbance term has expectation zero

E(ui) = 0 for all i. (4.10)

4. The disturbance term is homoscedastic.

σ2
ui
= σ2

u for all i. (4.11)

5. The values of the disturbance term have independent distributions.

ui is distributed independently of ui′ for all i′ 6= i. (4.12)

6. The distribution term has a normal distribution.

ui ∼ N[0,σ2] for all i. (4.13)

All the Xs are nonstochastic.

4.4 Properties of the coefficients

4.4.1 Unbiasedness

The OLS estimator b j of β j is unbiased:

E(b j) = β j (4.14)

4.4.2 Efficiency

Following the results from the Gauss-Markov theorem, we have that OLS yields the

most efficient linear estimators, in the sence that they are the one with the smallest

variance among all linear estimators.

4.4.3 Precision of the coefficient, t tests, and confidence intervals

Beside our interest on the point estimates, we are also interested in performing hy-

potheses testing and building confidence intervals. To do this we need a measure of

the precision of the coefficients. While we will not show the derivation here (as it

required matrix algebra), each of the b j has an standard error, Sb j
.
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The null and alternative hypotheses about population coefficient j is written as:

H0 : β j = β 0
j (4.15)

H1 : β j 6= β 0
j . (4.16)

which can be tested using the following t-statistic:

t =
b j−β 0

j

Sb j

(4.17)

The null is not rejected if the following condition is met:

−tn−k,α/2 ≤
b j−β 0

j

Sb j

≤ tn−k,α/2 (4.18)

Notice the difference between Equation 4.18 and Equation 3.25. The critical value

from the t distribution, tn−k,α/2, now has n− k degrees of freedom because we are

estimating k parameters, rather than just 2 as in the simple regression model. The

intuition behind Figures 3.1 and 3.1 still hold. The computer software will also give

you the p-value associated with the t test. If the p-value is below your α , you reject

the null hypothesis.

For the construction of the confidence intervals we have:

1−α = P
(
− tn−k,α/2 ≤

b j−β j

Sb j

≤ tn−k,α/2

)
(4.19)

1−α = P
(
− tn−k,α/2 ·Sb j

≤ b j−β j ≤ tn−k,α/2 ·Sb j

)

1−α = P
(
b j− tn−k,α/2 ·Sb j

≤ β j ≤ b j + tn−k,α/2 ·Sb j

)
.

4.5 Regression output in Gretl

Gretl is an open-source (free) software package for econometric analysis written in

the C programming language. It can be downloaded from:

http://gretl.sourceforge.net/

Just follow the instructions to install it in your computer.

Once you loaded the data set in Gretl, to estimate Equation 4.2 you need to go to

Model→ Ordinary Least Squares. The regression output is:
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Model 1: OLS, using observations 1-92

Dependent variable: crimes

coefficient std. error t-ratio p-value

-----------------------------------------------------------

const 2193.34 3918.06 0.5598 0.5770

pop 0.0652716 0.0106262 6.143 2.30e-08 ***
unem -279.291 407.791 -0.6849 0.4952

officers 15.0406 3.57660 4.205 6.25e-05 ***

Mean dependent var 39663.53 S.D. dependent var 29692.10

Sum squared resid 1.39e+10 S.E. of regression 12548.04

R-squared 0.827293 Adjusted R-squared 0.821405

F(3, 88) 140.5107 P-value(F) 1.90e-33

Log-likelihood -996.7310 Akaike criterion 2001.462

Schwarz criterion 2011.549 Hannan-Quinn 2005.533

Excluding the constant, p-value was highest for variable 3 (unem)

A standard way to present the regression output is:

̂crimes = 2193.34
(3918.1)

−279.291
(407.79)

unem+15.0406
(3.5766)

officers+0.0652716
(0.010626)

pop

N = 92 R̄2 = 0.8214 F(3,88) = 140.51 σ̂ = 12548.

(standard errors in parentheses)

To obtain the confidence intervals for the coefficients as presented in Equa-
tion 4.19 in the Gretl regression output window you need to go to Analysis →
Confidence intervals for the coefficients to obtain:

t(88, 0.025) = 1.987

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL

const 2193.34 -5592.97 9979.66

pop 0.0652716 0.0441542 0.0863890

unem -279.291 -1089.69 531.107

officers 15.0406 7.93282 22.1483

4.6 Multicollinearity

Multicollinearity is when two explanatory variables are highly correlated. In addi-

tion, if their coefficients have a large population variances, we are at risk of getting

erratic estimates of the coefficients. There could also be multicollinearity when there

is an approximate linear relationship between more than two variables.
A simple test for multicollinearity is based in the Variance Inflation Factors.

To implement this text in Gretl, in the regression output window go to Test →
Collinearity:

Variance Inflation Factors
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Minimum possible value = 1.0

Values > 10.0 may indicate a collinearity problem

pop 4.180

unem 1.094

officers 4.371

VIF(j) = 1/(1 - R(j)ˆ2), where R(j) is the multiple correlation

coefficient between variable j and the other independent variables

Properties of matrix X’X:

1-norm = 2.0266173e+013

Determinant = 6.6859257e+024

Reciprocal condition number = 4.681685e-013

Based on these results, we do not have a multicollinearity problem in the estimation

of Equation 4.2.

4.7 Goodness of fit: R2 and R̄2

The R2 in multiple regression analysis has the same interpretation as in a simple

regression. It is the proportion of the variation in Y explained by the regression

model

R2 =
ESS

T SS
= 1−

RSS

T SS
(4.20)

R2 =
∑

n
i=1(Ŷi− Ȳ )2

∑
n
i=1(Yi− Ȳ )2

= 1−
∑

n
i=1 e2

i

∑
n
i=1(Yi− Ȳ )2

(4.21)

where Ŷ represents the fitted values of the regression equation

Ŷ = b1 +b2X2 +b3X3 + · · ·+bkXk. (4.22)

4.8 F tests

Given the population regression model

Y = β1 +β2X2 +β3X3 + · · ·+βkXk +u, (4.23)

we can use the F test to test if all the slope coefficients β2,β3, . . . ,βk are jointly

equal to zero. That is, let the null hypothesis be:

H0 : β2 = β3 = · · ·= βk = 0. (4.24)



4.9 Adjusted R2, R̄2 39

The alternative hypothesis (H0) is that at least one of the slope coefficients is differ-

ent from zero. The multiple regression version of the F statistic is:

Fk−1,n−k =
ESS/(k−1)

RSS/(n− k)
. (4.25)

The idea is to compare this F statistic to the critical level found in the F distribution

tables with k− 1 and n− k degrees of freedom. Computer software automatically

computes this F statistic and the corresponding p-value for the null in Equation 4.22.

This F statistic can also be written in terms of the R2:

Fk−1,n−k =
R2/(k−1)

(1−R2)/(n− k)
. (4.26)

Consider the example presented in Section 4.5. The F statistic is 140.5107 with 3

and 88 degrees of freedom and has a corresponding p-value of 0.000. Then, be-

cause the p-value is below α = 5% then we reject the null hypothesis that the slope

coefficients on pop, unem, and officers are jointly equal to zero.

4.9 Adjusted R2, R̄2

One concern with the R2 is that it will always go up as we include more variables

into the model. Hence, it is a poor way to compare models. On the other hand a

similar statistic, the adjusted R2 (R̄2) is built on the R2 but with the difference that

R̄2 penalizes for the loss of the degrees of freedom as we include more variables into

the model. Therefore, the R̄2 can either go up or down as we include more variable

into the model. It is defined as:

R̄2 = R2−
k−1

n− k
(1−R2). (4.27)


