
Chapter 3

Properties and Hypothesis Testing

3.1 Types of data

The regression techniques developed in previous chapters can be applied to three

different kinds of data.

1. Cross-sectional data.

2. Time series data.

3. Panel data.

The first consists on observing various economic unit (e.g. firms, countries, house-

holds, individuals) at one point in time. For example, we observe the wages, experi-

ence and education of many individuals, only once and at all at the same time. The

second consists on observing the same economic unit at different point in time. For

example, we observe daily stock prices over many years. Finally, the third combines

the characteristics of the first and the second. That is, we observe various economic

units at repeated points in time. For example, we have information about the infla-

tion, unemployment and GDP of a group of countries and over many years.

3.2 Assumptions of the model

When the regressors in our econometric model are non stochastic, we will make the

following six assumptions.

1. The model is linear in the parameters and it is correctly specified.

Y = β1 +β2X +u (3.1)

Y = β1Xβ2 +u (3.2)

Equation 2.1 is linear in β , while Equation 2.2 is not.
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2. There is some variation in the regressor in the sample. We need variation in the

variable X to identify the relationship. Consider the OLS estimator for β2:

b2 =
∑

n
i=0(Xi− X̄)(Yi− Ȳ )

∑
n
i=0(Xi− X̄)2

. (3.3)

If there is no variation in X , then the denominator is zero and we cannot obtain

b2.

3. The expected value of the disturbance term is zero.

E(ui) = 0 for all i. (3.4)

Some ui will be negative, some will be positive, but on average they will be zero.

If a constant is included in the model, the condition is satisfied automatically.

4. The disturbance term is homoscedastic.

Homoscedasticity means that the variance of the error terms ui is constant across

all observations i. Hence, we can write:

σ2
ui
= σ2

u for all i. (3.5)

Because the error term has zero mean (from assumption 3), then the population

variance of ui is equal to:

E(u2
i ) = σ2

u for all i. (3.6)

σ2
u is a population parameter, therefore it is unknown and need to be estimated.

5. The values of the disturbance terms have independent distributions.

ui is distributed independently of u j for all j 6= i. (3.7)

This means that there is no autocorrrelation in the error term. This means that

the population covariance between ui and u j is zero:

σuiu j
= 0. (3.8)

With assumptions 1 through 5, we says that OLS coefficients are BLUE: Best

Linear Unbiased Estimators. They are best, because they have the smallest vari-

ance across all unbiased estimators.

6. The disturbance term has a normal distribution.

ui ∼ N[0,σ2
u ] for all i. (3.9)

The error term is distributed normal with mean zero and variance σ2
u . This as-

sumption becomes useful at the time of performing t tests, F tests, and construct-

ing confidence intervals for β1 and β2 using the regression results. The justifica-

tion for this assumption depends on the central limit theorem. This one state that

if a random variable is the composite result of the effects of a large number of
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other random variables (that are not necessarily normal), it will have an approxi-

mately normal distribution.

3.3 Unbiasedness of the coefficients

Recall that an estimator θ̂ is unbiased if E(θ̂) = θ . The expected value of the esti-

mator is equal to the true population parameter. For the slope coefficient in the OLS

regression we have:

b2 =
∑

n
i=0(Xi− X̄)(Yi− Ȳ )

∑
n
i=0(Xi− X̄)2

(3.10)

= β2 +
∑

n
i=0(Xi− X̄)ui

∑
n
i=0(Xi− X̄)2

= β2 +
n

∑
i=1

aiui

where

ai =
(Xi− X̄)

∑
n
i=0(Xi− X̄)2

. (3.11)

Thus, this shows that b2 is equal to its true value, β2, plus a linear combination of

the values of the error terms. If we take expectations of b2 we have:

E(b2) = E(β2)+E
(

n

∑
i=1

aiui

)

= β2 +
n

∑
i=1

E(aiui) = β2 +
n

∑
i=1

aiE(ui) = β . (3.12)

The term ai goes out of the expectation because ai is only a function of constant

Xs. In addition, the last equality holds because E(ui) = 0. Hence, b2 is an unbiased

estimator of β2, E(b2) = β2.

3.4 Precision of the coefficients

We are also interested on how precise b1 and b2 are in estimating the population

parameters β1 and β2. A measure of this precision are their population variances,

given by:

σ2
b1

= σ2
u

(1

n
+

X̄

∑
n
i=0(Xi− X̄)2

)

, and (3.13)

σ2
b2

=
σ2

u

∑
n
i=0(Xi− X̄)2

(3.14)
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One concern in the implementation of the above formulas is that σ2
u is an unknown

population parameter and need to be estimated. A natural estimator for this regres-

sion variance is the variance of the regression errors. Because the population regres-

sion errors ui are also unknown, we use the sample counterparts ei and adjust for the

corresponding degrees of freedom. Hence, we have:

S2
u =

1

n−2

n

∑
i=1

e2
i . (3.15)

This S2
u is the unbiased estimator of σ2

u , and n− 2 are the degrees of freedom. We

subtract two from the sample size because we are estimating two parameters: the

regression constant and one slope coefficient. Then, we use the following formulas

to estimate the standard errors of b1 and b2:

Sb1
=

√

S2
u

(1

n
+

X̄

∑
n
i=0(Xi− X̄)2

)

, and (3.16)

Sb2
=

√

S2
u

∑
n
i=0(Xi− X̄)2

. (3.17)

3.5 The Gauss-Markov theorem

The Gauss-Markov theorem simply states that when assumptions 1 through 5 above

are satisfied, the OLS estimators are Best Linear Unbiased Estimators (BLUE) of

the regression parameters. Best refers to smallest variance.

3.6 Hypotheses testing

Hypothesis testing is simply a method of making decisions using data. It starts with

the formulation of the null and the alternative hypotheses and then uses some test

statistics to assess the truth of the null hypothesis.

3.6.1 Formulation of the null hypothesis

The formulation of the null hypothesis starts with a relationship in mind. For exam-

ple, that the percentage rate of price inflation (p) depends on the percentage rate of

wage inflation (w) following the linear equation:

pi = β1 +β2wi +ui (3.18)



3.6 Hypotheses testing 27

Then, you want to test the hypothesis that the price inflation is equal to the wage

inflation. This is denoted by H0 and it is know as the null hypothesis. In addition, we

also define an alternative hypothesis, denoted by H1 and represents the conclusion of

the test if the null hypothesis is rejected. For our example the null and the alternative

hypothesis are written as:

H0 : β2 = 1 (3.19)

H1 : β2 6= 1 (3.20)

In general, the null and alternative hypotheses are:

H0 : β2 = β 0
2 (3.21)

H1 : β2 6= β 0
2 . (3.22)

3.6.2 t-tests

Recall that β2 is unknown and that we have to use the estimate b2. Then, the decision

rule to reject the null hypothesis should compare the estimate b2 with the hypothe-

sized value β 0
2 . Intuitively, if the values are far apart, then there is evidence against

the null. This comparison should take into account the fact that b2 is subject to some

sampling variation (it is not the actual β2). We will use the following statistic:

z =
b2−β 0

2

σb2

(3.23)

The numerator is just the distance between the regression estimate and the hypothe-

sized value, with the denominator is the standard deviation of b2, given by the square

root of the expression in Equation 3.14. z is the number of standard deviations be-

tween b2 and β2. For a known σb2
, this one follows a normal distribution. However

σb2
is unknown and we need to use the estimate of the standard error of b2. This

one is given by Sb2
and it is presented in Equation 3.17. Then we use the following

t-statistic:

t =
b2−β 0

2

Sb2

(3.24)

To know if the deviations between b2 and β 0
2 are significantly large, we compare

this t-statistic with the critical values from the table t distribution with n−2 degrees

of freedom. The null hypothesis is not rejected if the following condition is met:

−tn−2,α/2 ≤
b2−β 0

2

Sb2

≤ tn−2,α/2 (3.25)

Where tn−2,α/2 is just the notation of the critical value than comes from the t distri-

bution with n− 2 degrees of freedom and at significance level α . The significance
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Fig. 3.1 Acceptance region for the t-test.

level is the probability that we reject the null hypothesis when in fact it is true. The

rejection regions are illustrated in Figure 3.1.

3.6.3 Confidence intervals

The confidence interval indicates the reliability of an estimate. The confidence in-

terval for the population parameter β2 can be derived from Equation 3.25 in the

following way:

1−α = P
(

− tn−2,α/2 ≤
b2−β2

Sb2

≤ tn−2,α/2

)

(3.26)

1−α = P
(

− tn−2,α/2 ·Sb2
≤ b2−β2 ≤ tn−2,α/2 ·Sb2

)

1−α = P
(

b2− tn−2,α/2 ·Sb2
≤ β2 ≤ b2 + tn−2,α/2 ·Sb2

)

The meaning of the above equation is that the population parameter β2 will be be-

tween the lower confidence limit b2− tn−2,α/2 · Sb2
and the upper confidence limit

b2+tn−2,α/2 ·Sb2
with probability (1−α) or 100×(1−α)%. The p values provide an

alternative approach to reporting the significance of regression coefficients or when

carrying out more general hypothesis testing. As you can see from Equation 3.25

and Figure 3.1, different significance levels α can yield a different conclusion in the

rejection or not of the null hypothesis. The p value of a hypothesis test represent the

minimum significance level at which the null is rejected. Then, when the p value is

below the significance level α we reject the null.
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Fig. 3.2 Confidence interval for β2.

3.6.4 F test

A useful tool if we want to test if there is no relationship between X and Y if the F

test. In the simple linear regression model with only one slope coefficient, the null

and the alternative in an F test are:

H0 : β2 = 0 (3.27)

H1 : β2 6= 0. (3.28)

This test is build on the idea of testing how good is the regression model in explain-

ing the variation in Y . In Equation 2.15 we already separated the variation of Y into

its ‘explained’ and ‘unexplained’ components. These are:

n

∑
i=1

(Yi− Ȳ )2 =
n

∑
i=1

(Ŷi− Ȳ )2 +
n

∑
i=1

(Yi− Ŷi)
2 (3.29)

T SS = ESS+RSS. (3.30)

The total sum of squares (TSS) is the summation of the explained sum of squares

(ESS) and the residual sum of squares (RSS). Then, the F statistic for goodness of fit

of a regression is written as the explained sum of squares, per explanatory variable,

divided by the residual sum of squares, per remaining degrees of freedom:

F =
ESS/(k−1)

RSS/(n− k)
(3.31)
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Fig. 3.3 Regression output in MS Excel.

where k is the total number of coefficients we are estimating, hence (k− 1) is the

number of slope coefficients. That is, the total number of parameters we are estimat-

ing minus the constant parameter. If we divide the numerator and the denominator

by T SS, then the F statistics can be written in terms of the R2 as follows:

F =
(ESS/T SS)/(k−1)

(RSS/T SS)/(n− k)
=

R2/(k−1)

(1−R2)/(n− k)
(3.32)

If this F statistic is greater that the critical value from the table F distribution with

(k− 1) and (n− k) degrees of freedom, Fk−1,n−k, we reject the null hypothesis and

conclude that the regression model does not significantly explain the variation in

variable Y . For the simple regression model with only one slope coefficient, k = 2,

we have:

F =
R2

(1−R2)/(n−2)
. (3.33)

If this F statistic > F1,n−2 we reject the null hypothesis presented in Equation 3.28.
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3.7 Computer output

The computer regression output is very similar across different statistical packages.

Figure 3.3 shows the output using MS Excel for the estimation of the following

simple regression model:

wage=β1 +β2experi +ui (3.34)

To obtain the regression estimated coefficients we use Equations 2.4 and 2.5:

b2 =
∑

n
i=1(Xi− X̄)(Yi− Ȳ )

∑
n
i=1(Xi− X̄)2

= 0.091 (3.35)

b1 = Ȳ −b2X̄ = 4.642 (3.36)

The total sum of squares, estimates sum of squares, and residual sum of squares are

obtained using 2.15 and 2.15:

T SS =
n

∑
i=1

(Yi− Ȳ )2 = 27347.439 (3.37)

ESS =
n

∑
i=1

(Ŷi− Ȳ )2 = 1505.539 (3.38)

RSS =
n

∑
i=1

(Yi− Ŷi)
2 = 25841.901 (3.39)

The regression R2 comes from Equation 2.18:

R2 = 1−
∑

n
i=1 e2

i

∑
n
i=1(Yi− Ȳ )2

= 0.055 (3.40)

From the square root of Equation 3.15:

Su =

√

1

n−2

n

∑
i=1

e2
i = 4.532 (3.41)

Then, the standard errors of the coefficients are computer using Equations 3.17

and 3.17:

Sb1
=

√

S2
u

(1

n
+

X̄

∑
n
i=0(Xi− X̄)2

)

= 0.233 (3.42)

Sb2
=

√

S2
u

∑
n
i=0(Xi− X̄)2

= 0.011 (3.43)

The F statistic uses Equation 3.32:
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F =
R2/(k−1)

(1−R2)/(n− k)
= 73.291 (3.44)

The t statistics use Equation 3.24:

t =
b1

Sb1

= 19.961 (3.45)

t =
b2

Sb2

= 8.561 (3.46)

Finally, for the 95% upper and lower confidence levels, we use Equation 3.26:

b1− tn−2,α/2 ·Sb1
= 4.186 (3.47)

b1 + tn−2,α/2 ·Sb1
= 5.099 (3.48)

b2− tn−2,α/2 ·Sb2
= 0.071 (3.49)

b2 + tn−2,α/2 ·Sb2
= 0.112 (3.50)


