
Chapter 2

Simple Linear Regression

2.1 Simple linear model

The simple linear regression model shows how one known dependent variable is

determined by a single explanatory variable (regressor). Is is written as:

Yi = β1 +β2Xi +ui. (2.1)

The subscript i refers to the observation i = 1,2, . . .n, and Yi is the dependent vari-

able. We break down Yi into two components, the deterministic (nonrandom) com-

ponent β1 +β2Xi and the stochastic (random) component ui. The explanatory vari-

able is Xi and the population parameters we want to estimate are given by intercept

β1 and the slope β2. The term ui is the disturbance term. Figure 2.1 shows a graphi-

cal representation of the problem. The regression line Yi = β1+β2Xi+ui is shown as

the upward sloping blue line. Only a single observation point at (Xi, Yi) is illustrated.

We can see how for this observation i, we break down Yi into the disturbance term

ui given by the vertical distance between Yi and Ŷi and the height of the regression

line at point Xi, given by β1 +β2Xi.

2.2 Least squares regression

The main idea in econometric analysis is to estimate the parameters β1 and β2.

The most popular estimator for these population parameters is the Ordinary Least

Squares (OLS) estimator. Let the OLS estimators of β1 and β2 be b1 and b2, respec-

tively. Then, the fitter regression equation is:

Yi = b1 +b2Xi + ei. (2.2)

The difference between Equations 2.1 and 2.2 is that the first correspond to the

population, while the second is the sample counterpart. The idea in the OLS es-
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Fig. 2.1 Regression line Yi = β1 +β2Xi +ui.

timator is simple, we want to pick values for the intercept b1 and slope b2 coef-

ficients that are as close as possible to the actual data points. That is, we want to

ei (ei = Y1− b1− b2Xi) to be small. Because some of the ei are positive and some

are negative, we will first square them to have all positive numbers. Then, to take

into account all data points we will sum across all observations. That is how our

objective is to pick b1 and b2 to minimize the following residual sum of squares:

RSS = e2
1 + e2

2 + · · ·+ e2
n =

n

∑
i=1

e2
i . (2.3)

This minimization exercise yields the OLS estimators:

b2 =
∑

n
i=1(Xi− X̄)(Yi− Ȳ )

∑
n
i=1(Xi− X̄)2

(2.4)

for the slope coefficient, and

b1 = Ȳ −b2X̄ (2.5)

for the intercept. The derivation of the least squares coefficient estimators (Equa-

tions 2.4 and 2.5) has the following steps. We start with the regression equation:

Yi = b1 +b2Xi + ei

Ŷi = b1 +b2Xi
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For observation i we obtain the residual, then square it and finally sum across all

observations to obtain the residual sum of squares:

ei = Yi− Ŷi (2.6)

e2
i = (Yi− Ŷi)

2

n

∑
i=1

e2
i =

n

∑
i=1

(Yi− Ŷi)
2

The coefficients b1 and b2 are chosen to minimize the residuals sum of squares:

min
b1,b2

∑
n
i=1(Yi− Ŷi)

2 (2.7)

min
b1,b2

∑
n
i=1(Yi−b1−b2Xi)

2

The first order necessary condition are:

−2
n

∑
i=1

(Yi−b1−b2Xi) = 0 w.r.t. b1 (2.8)

−2
n

∑
i=1

Xi(Yi−b1−b2Xi) = 0 w.r.t. b2 (2.9)

Dividing Equation 2.9 by n and working through some math we obtain the OLS

estimators for the constant:

b1 = Ȳ −b2X̄ .

Plugging this result into Equation 2.9 we obtain:

b2 =
∑

n
i=0(Xi− X̄)(Yi− Ȳ )

∑
n
i=0(Xi− X̄)2

.

2.3 Interpretation of the regression coefficients

If the estimated regression equation is given by:

ŵagei = 4.64+0.09experi, (2.10)

where wage is the hourly wage measured in dollars, and exper is the number of

years of experience, then the interpretation of the slope coefficient is the following:

∆wage

∆exper
= 0.09.
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Therefore, if the change in the number of years of experience is one, ∆exper, then

the change in the hourly wage in dollars is given by ∆wage = 0.09. In words, an

additional year of experience will increase your hourly wage by 0.09 dollars (or 9

cents). For the interpretation of the intercept, just consider the case where some-

one has not experience, exper = 0. Then, this person’s predicted wage will be 4.64

dollars.

If the estimated regression equation takes the form:

̂logwagei = 1.38+0.02experi, (2.11)

where the logwage is the natural logarithm of wage, then the interpretation is differ-

ent. Here, if the number of years of experience increases by one, the wage increases

by 2% (0.02× 100 percent). Finally, for the folowing estimated equation:

̂logwagei = 0.98+0.26logexperi. (2.12)

A one percent increase in exper will increase wage by 0.25 percent. The 0.26 is

interpreted as an elasticity.

2.4 Goodness of fit

How good is the regression equation in explaining the variation in variable Y ? First

we need a way to measure the total variation in Y . Let’s try the sum of squared

deviations about the sample mean of Y . That is,

n

∑
i=1

(Yi− Ȳ )2 (2.13)

Now, let’s start with a simple equality:

Yi− Ȳ = Yi− Ȳ .

If we add and subtract Ŷi on the right hand side of the above equality, we have

Yi− Ȳ = Yi− Ȳ + Ŷi− Ŷi

Yi− Ȳ = (Ŷi− Ȳ )+(Yi− Ŷi)

Squaring both sides of the equation and then summing across all observations i we

obtain:

n

∑
i=1

(Yi− Ȳ )2 =
n

∑
i=1

(Ŷi− Ȳ )2 +
n

∑
i=1

(Yi− Ŷi)
2 (2.14)

T SS = ESS+RSS. (2.15)
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Fig. 2.2 Decomposition of Ŷi − Ȳ .

Notice that the sum of deviations from the mean is zero, that is why there are only

two components on the right hand side. The T SS is the Total Sum of Squares, as pre-

sented in Equation 2.13. The first term on the right hand side is ESS, the Explained

Sum of Squares, and the second term on the right hand side is the RRS, Residual

Sum of Squares. This decomposition of the variable Y into two components can be

appreciated in Figure 2.2. For every observation Yi in the sample, the distance be-

tween Yi and Ȳ can be decomposed in two, the part that the regression equation can

explain, Ŷi− Ȳ , and the part that the regression equation cannot explain, Yi− Ŷi.

What is the proportion of the variation in Y that is explain by the regression

equation? We just need to divide Equation 2.15 by T SS and define the ratio of ESS

to T SS as the proportion of the explained variation in Y , the R2:

1 =
ESS

T SS
+

RSS

T SS
(2.16)

R2 =
ESS

T SS
= 1−

RSS

T SS
(2.17)

R2 =
∑

n
i=1(Ŷi− Ȳ )2

∑
n
i=1(Yi− Ȳ )2

= 1−
∑

n
i=1 e2

i

∑
n
i=1(Yi− Ȳ )2

(2.18)

The R2 is a number between zero and one, being higher when the model explains

more of the variation in Y . Figures 2.3 and 2.4 illustrate how the regression line

explain the variation in Y when the R2 is low and high, respectively.
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Fig. 2.3 Low R2.
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Fig. 2.4 High R2.


