
Chapter 1

Random Variables, Sampling and Estimation

1.1 Introduction

This chapter will cover the most important basic statistical theory you need in order

to understand the econometric material that will be coming in the next chapters. The

key topics that we will review are the following:

• Descriptive statistics. e.g. mean and variance.

• Probability. e.g. events, relative frequency, marginal and conditional probability

distributions.

• Random variables, probability distributions, and expectations.

• Sampling. e.g. simple random sampling.

• Estimation. e.g. the distinction between and estimator and an estimate.

• Statistical inference. t and F tests.

1.2 Probabilities

1.2.1 Events

Random experiment. Process leading to two or more possible outcomes,

with uncertainty as to which outcome will occur.

Flip of a coin, toss of a die, a students takes a class and either obtains an A or

not.

Sample space. Set of all basic outcomes of a random experiment.
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When flipping a coin, S = [head, tail].

When taking a class, S = [A, B, C, D, F, drop].

When tossing a die, S = [1, 2, 3, 4, 5, 6].

No two outcomes can occur simultaneously.

Event. Subset of basic outcomes in the sample space.

Event E1: “Pass the class” then the subset of basic outcomes is A, B, C.

Intersection of event. When two events E1 and E2 have some basic outcomes

in common. It is denoted by E1 ∩ E2.

Event E1: Individuals with college degree.

Event E2: Individuals who are married.

E1 ∩ E2: Individuals who have college degree and are married.

Joint probability. Probability that the intersection occurs.

Mutually exclusive events. E1 and E2 are mutually exclusive if E1 ∩ E2 is

empty.

Union of events. Denoted by E1 ∪ E2. At least one of these events occurs.

Either E1, E2, or both.

Complement. The complement of E is denoted by Ē and it is the set of basic

outcomes of a random experiment that belongs to S, but not to E1.

E1 is the complement of Ē1

Event E2: Individuals who are married.

E1 and Ē are mutually exclusive events.

1.2.2 Probability postulates

Given a random experiment, we want to determine the probability that a particular

event will occur. A probability is a measure from 0 to 1.
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0→ the event will not occur.

1→ the event is certain.

When the outcomes are equally likely to occur, the probability of an event E is:

P(E) = NE/N

NE : Number of outcomes in event E.

N: Total number of outcomes in the sample space S.

Example 1: Flip of a coin, Event E is “head” then P(E) = 1/2. NE = 1 and N = 2.

Example 2: Event E is “winning the lottery” then if there are 1000 lottery tickets

and you bought, 2 P(E) = 2/1000 = 0.002.

Some probability rules

P(E ∪ Ē) = P(E) + P(Ē) = 1.

P(Ē) = 1 - P(E).

Conditional probability

P(E1 | E2): Probability that E1 occurs, given that E2 has already occurred.

P(E1 | E2) = P(E1 ∩ E2) / P(E2) given that P(E2) > 0.

Addition rule

P(E1 ∪ E2) = P(E1) + P(E2) - P(E1 ∩ E2).

Statistically independent events

P(E1 ∩ E2) = P(E1)P(E2).

P(E1 | E2) = P(E1)P(E2) / P(E2) = P(E1).

1.3 Discrete random variables and expectations

1.3.1 Discrete random variables

Random variable. Variable that takes numerical values determined by the

outcome of a random experiment.

Examples: Hourly wage, GDP, inflation, the number when tossing a die.

Notation: Random variable X can take n possible values x1,x2, · · ·xn.

Discrete random variable. A random variable that takes a countable number

of values.



4 1 Random Variables, Sampling and Estimation

Examples: Number of years of education.

Continuous random variable. A random variable that can take any value on

an internal.

Examples: Wage, GDP, exact weight.

Consider tossing two dies (green and red). This will yield 36 possible outcomes

because the green can take 6 possible values and the red can take also 6 values,

6×6= 36. The possible outcomes. Let’s define the random variable X to be the sum

of two dice. Therefore X can take 11 possible values, from 2 to 12. This information

is summarized in the following tables.

Table 1.1 Outcomes with two dies

red / green 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Table 1.2 Frequencies and probability distributions

Value of X 2 3 4 5 6 7 8 9 10 11 12

Frequency 1 2 3 4 5 6 5 4 3 2 1

Probability (p) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

1.3.2 Expected value of random variables

Let E(X) be the expected value of the random variable X . The expected value of a

discrete random variable is the weighted average of all its possible values, taking the

probability of each outcome as its weight. Random variable X can take n particular

values x1,x2, . . . ,xn and the probability of xi is given by pi. Then we have that the

expected value is given by:

E(X) = x1 p1 + x2 p2 + · · ·+ xn pn =
n

∑
i=1

xi pi. (1.1)

We can also write the expected value as: E(X) = µX . For the previous example we

can calculate that the expected value is:
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E(X) = 2 ·1/36+3 ·2/36+ · · ·+12 ·1/36 = 252/36 = 7 (1.2)

Table 1.3 Expected value of X , two dice example

X p X p

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 20/36

6 5/36 30/36

7 6/36 42/36

8 5/36 40/36

9 4/36 36/36

10 3/36 30/36

11 2/36 22/36

12 1/36 12/36

Total E(X) = ∑
n
i=1 xi px 252/36 = 7

1.3.3 Expected value rules

E(X +Y +Z) = E(X)+E(Y )+E(Z) (1.3)

E(bX) = bE(X) for a constant b (1.4)

E(b) = b (1.5)

For the example where Y = b1 +b2X , b1 and b2 are constants we want to calculate

E(X).

E(Y ) = E(b1 +b2X) (1.6)

= E(b1)+E(b2X)

= b1 +b2E(X)

1.3.4 Variance of a discrete random variable

Let var(X) be the variance of the random variable X . var(X) is a useful measure of

the dispersion of its probability distribution. It is defined as the expected value of

the square of the difference between X and its mean. That is, (X −µX )
2, where µX

is the population mean of X .

var(X) = σ2
X = E[(X−µX )

2] (1.7)
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= (x1−µX )
2 p1 +(x2−µX )

2 p2 + · · ·+(xn−µX )
2 pn (1.8)

=
n

∑
i=1

(xi−µX )
2 pi

Taking the square root of the variance (σ2
X ) one can obtain the standard deviation,

σX . The standard deviation also serves as a measure of dispersion of the probability

distribution. A useful way to write the variance is:

σ2
X = E(X2)−µ2

X . (1.9)

From the previous example of tossing two dies, we have that the population variance

can be calculated as follows:

Table 1.4 Population variance, X from the two dice example

X p X −µX (X−µX )
2 (X−µX )

2 p

2 1/36 -5 25 0.69

3 2/36 -4 16 0.89

4 3/36 -3 9 0.75

5 4/36 -2 4 0.44

6 5/36 -1 1 0.14

7 6/36 0 0 0.00

8 5/36 1 1 0.14

9 4/36 2 4 0.44

10 3/36 3 9 0.75

11 2/36 4 16 0.89

12 1/36 5 25 0.69

Total 5.83

1.3.5 Probability density

Because discrete random variables, by definition, can only take a finite number of

values, they are easy to summarize graphically. The probability distribution is the

graph that links all the values that a random variable can take with its corresponding

probabilities. For the two dice example above, see Figure 1.1.
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Fig. 1.1 Discrete probabilities, X from the two dice example

1.4 Continuous random variables

1.4.1 Probability density

Continuous random variables can take any value on an interval. This means that it

can take an infinite number of different values, hence it is not possible to obtain a

graph like the one presented in Figure 1.1 for a continuous random variable. Instead,

we will define the probability of a random variable lying within a given interval. For

example, the probability that the height of an individual is between 5.5 and 6 feet.

This is depicted in Figure 1.2 as the shaded area below the probability density curve

for the values of X between 5.5 and 6. The probability of the random variable X

written as a function of the random variable is known as the probability density

function. We can write this ones as f (X). Then, if we use a little math we can easily

find the area under the curve. Recall that the are under a curve can be obtained by

taking the integral.

Probability density function. Is a function that describes the relative likeli-

hood for a random variable to occur at a given point.

∫ 6

5.5
f (X) = 0.18 (1.10)

∫ ∞

0
f (X) = 1
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Fig. 1.2 Continuous probabilities, X from the height example

The first line in the equation above just calculates the integral under the curve f (X)
between the points 5.5 and 6. The second line shows that the whole area under the

curve presented in Figure 1.2 is equal to one. This is for the same reason why the

summation of all the bars in Figure 1.1 are also equal to one; the total probability is

always equal to one.

1.4.2 Normal distribution

The normal distribution is the most widely known continuous probability distribu-

tion. The graph associated with its probability density function has a bell-shape and

its is known as the Gaussian function or bell curve. Its probability density function

is given by:

f (X) =
1√

2πσ2
e
− (x−µ2)

2σ2 (1.11)

where µ is the mean and σ2 is the variance. Figure 1.1 is an example of this distri-

bution.
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1.4.3 Expected value and variance of a continuous random

variable

The basic difference between a discrete and a continuous random variable is that

the second can take on infinite possible values, hence the summations signs that are

used to calculate the expected value and the variance of a discrete random variable

cannot be used for a continuous random variable. Instead, we use integral signs. For

the expected value we have:

E(X) =
∫

X f (X)dX (1.12)

where the integration is performed over the interval for which f (X) is defined. For

the variance we have:

σ2
X = E[(X−µX )

2] =
∫

(X−µX )
2 f (X)dX (1.13)

1.5 Covariance and correlation

1.5.1 Covariance

When dealing with two variables, the first question you want to answer is whether

these variables move together or whether they move in opposite directions. The

covariance will help us answer that question. For two random variables X and Y , the

covariance is defined as:

cov(X ,Y ) = σXY = E[(X−µX )(Y −µY )] (1.14)

where µX and µY are the population means of X and Y , respectively. When to ran-

dom variables are independent, their covariance is equal to zero. When σXY > 0 we

say that the variables move together. When σXY < 0 they move in opposite direc-

tions.

1.5.2 Correlation

One concern when using the cov(X ,Y ) as a measure of association is that the result

is measured in the units of X times the units of Y . The correlation coefficient, that

is dimensionless, overcomes this difficulty. For variables X and Y the correlation

coefficient is defined as:
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corr(X ,Y ) = ρY X =
σY X

√

σ2
X σ2

Y

(1.15)

The correlation coefficient is a number between −1 and 1. When it is positive, we

say that there is a positive correlation between X and Y and that these two variables

move in the same direction. When it is negative, we say that they move in opposite

directions.

1.6 Sampling and estimators

Notice that in the two dice example we know the population characteristics, that

is, the probability distribution. From this probability distribution it is easy to obtain

the population mean an variance. However, what happens most of the time is that

we need to rely on a data set to get estimates of the population parameters (e.g the

mean and the variance). In that case the estimates of the population parameters are

obtained using estimators, and the sample needs to have certain characteristics. The

estimators and the sampling are the subject of this section.

1.6.1 Sampling

The most common way to obtain a sample from the population is through simple

random sampling.

Simple random sampling. It is a procedure to obtain a sample from the pop-

ulation, where each of the observations is chosen randomly and entirely by

chance. This means that each observation in the population has the same prob-

ability of being chosen.

Once the sample of the random variable X has be generated, each of the n obser-

vations can be denoted by {x1,x2, · · · ,xn}.1

1 The textbook Dougherty (2007) makes the distinction between the specific values of the random

variable X before and after they are known, and emphasizes this distinction by using uppercase and

lowercase letter. This distinction is useful only in some cases and that is why most textbooks do

not make this distinction. We will follow emphasize the distinction and we will use only lowercase

letters.
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1.6.2 Estimators

Estimator. It is a general rule (mathematical formula) for estimating an un-

known population parameter given a sample of data.

For example, an estimator for the population mean is the sample mean:

X̄ =
1

n
(x1 + x2 + · · ·+ xn) =

1

n

n

∑
i=1

xi. (1.16)

An interesting feature of this estimator is that the variance of X̄ is 1/n times the

variance of X . The derivation is the following:

σ2
X̄
= var(X̄) (1.17)

σ2
X̄
= var{1

n
(x1 + x2 + · · ·+ xn)} (1.18)

σ2
X̄
=

1

n2
var{1

n
(x1 + x2 + · · ·+ xn)} (1.19)

σ2
X̄
=

1

n2
{var(x1)+var(x2)+ · · ·+var(xn)} (1.20)

σ2
X̄
=

1

n2
{σ2

X +σ2
X + · · ·+σ2

X} (1.21)

σ2
X̄
=

1

n2
{nσ2

X}=
σ2

X

n
(1.22)

Graphically, this result is shown in Figure 1.3. The distribution of X has a higher

variance (it is more dispersed) than the distribution of X̄ .

1.7 Unbiasedness and efficiency

1.7.1 Unbiasedness

Because estimators are random variables, we can take expectations of the estimators.

If the expectation of the estimator is equal to the true population parameter, then we

say that this estimator is unbiased. Let θ be the population parameter and let θ̂ be a

point estimator of θ . Then, θ̂ is unbiased if:

E(θ̂) = θ (1.23)

Example. The sample mean of X is an unbiased estimator of the population mean

µX :
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Fig. 1.3 Probability density functions of X and X̄ .

E(X̄) = E(
1

n

n

∑
i=1

xi) =
1

n
E(

n

∑
i=1

xi) (1.24)

=
1

n

n

∑
i=1

(E(xi)) =
1

n

n

∑
i=1

µX =
1

n
nµX = µX

Unbiased estimator. An estimator is unbiased if its expected value is equal

to the true population parameter.

The bias of an estimator is just the difference between its expected value and the

true population parameter:

Bias(θ̂) = E(θ̂)−θ (1.25)

1.7.2 Efficiency

It is not only important that an estimator is on average correct (unbiased), but also

that it has a high probability of being close to the true parameter. When comparing

two estimators, θ̂1 and θ̂2, we say that θ̂1 is more efficient if var(θ̂1) < var(θ̂2).
A comparison of the efficiency between these two estimators in presented in Fig-

ure 1.4. The estimator with higher variance, (θ̂2), is more dispersed.
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Fig. 1.4 Efficiency of estimators θ̂1 and θ̂2, with var(θ̂1) < var(θ̂2).

Most efficient estimator. The estimator with the smallest variance from all

unbiased estimators.

1.7.3 Unbiasedness versus efficiency

Both, unbiasedness and efficiency, are desired properties of an estimator. However,

there may be conflicts in the selection between two estimators θ̂1 and θ̂2, if, for

example, θ̂1 is more efficients, but it is also biased. This case is presented in Fig-

ure 1.5.

The simplest way to select between these two estimators is to pick the one that

yields the smallest mean square error (MSE):

MSE(θ̂) = var(θ̂)+bias(θ̂)2 (1.26)

1.8 Estimators for the variance, covariance, and correlation

While we have already seen the populations formulas for the variance, covariance

and correlation, it is important to keep in mind that we do not have the whole pop-

ulation. The data sets we will be working with are just samples of the populations.

The formula for the sample variance is:
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Fig. 1.5 θ̂2 is unbiased, but θ̂1 is more efficient.

s2
X =

1

n−1

n

∑
i=1

(xi− X̄)2 (1.27)

Notice how we changed the notation from σ2 to s2. The first one denotes the pop-

ulation variance, while the second one refers to the sample variance. An estimator

for the population covariance is given by:

sXY =
1

n−1

n

∑
i=1

(xi− X̄)(yi− Ȳ ). (1.28)

Finally, the formula for the correlation coefficient, rXY , is:

rXY =
∑

n
i=1(xi− X̄)(yi− Ȳ )

√

∑
n
i=1(xi− X̄)2 ∑

n
i=1(yi− Ȳ )2

. (1.29)

1.9 Asymptotic properties of estimators

Asymptotic properties of estimators just refers to their properties when the number

of observations in the sample grows large and approached to infinity.
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Fig. 1.6 The estimator is biased for small samples, but consistent.

1.9.1 Consistency

An estimator θ̂ is said to be consistent if its bias becomes smaller as the sample size

grows large. Consistency is important because many of the most common estimators

used in econometrics are biased, then the minimum we should expect from these

estimators is that the bias becomes small as we are able to obtain larger data sets.

Figure 1.6 illustrates the concept of consistency by showing how an estimator of the

population parameter θ becomes unbiased as n→ ∞.

1.9.2 Central limit theorem

Having normally distributed random variables is important because we can then

construct, for example, confidence intervals for its mean. However, what if a random

variable does not follow a normal distribution? The central limit theorem gives us

the answer.

Central limit theorem. States the conditions under which the mean of a suf-

ficiently large number of independent random variables (with finite mean and

variance) will be approximate a normal distribution.

Hence, even if we do not know the underlying distribution of a random variable,

we will still be able to construct confidence intervals that will be approximately

valid. In a numerical example, let’s assume that the random variable X follows a
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Fig. 1.7 Distribution of the sample mean of a uniform distribution.

uniform distribution [-0.5,0.5]. Hence, it is equally likely that this random variable

takes any value within this range. Figure 1.7 shows the distribution of the average

of this random variable for n = 10, 20, and 100. All of these three distributions look

very close to a normal distribution.


