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Chapter 1
Random Variables, Sampling and Estimation

1.1 Introduction

This chapter will cover the most important basic statistical theory you need in order
to understand the econometric material that will be coming in the next chapters. The
key topics that we will review are the following:

• Descriptive statistics. e.g. mean and variance.
• Probability. e.g. events, relative frequency, marginal and conditional probability

distributions.
• Random variables, probability distributions, and expectations.
• Sampling. e.g. simple random sampling.
• Estimation. e.g. the distinction between and estimator and an estimate.
• Statistical inference. t and F tests.

1.2 Probabilities

1.2.1 Events

Random experiment. Process leading to two or more possible outcomes,
with uncertainty as to which outcome will occur.

Flip of a coin, toss of a die, a students takes a class and either obtains an A or
not.

Sample space. Set of all basic outcomes of a random experiment.

1



2 1 Random Variables, Sampling and Estimation

When flipping a coin, S = [head, tail].
When taking a class, S = [A, B, C, D, F, drop].
When tossing a die, S = [1, 2, 3, 4, 5, 6].
No two outcomes can occur simultaneously.

Event. Subset of basic outcomes in the sample space.

Event E1: “Pass the class” then the subset of basic outcomes is A, B, C.

Intersection of event. When two events E1 and E2 have some basic outcomes
in common. It is denoted by E1 ∩ E2.

Event E1: Individuals with college degree.
Event E2: Individuals who are married.
E1 ∩ E2: Individuals who have college degree and are married.

Joint probability. Probability that the intersection occurs.

Mutually exclusive events. E1 and E2 are mutually exclusive if E1 ∩ E2 is
empty.

Union of events. Denoted by E1 ∪ E2. At least one of these events occurs.
Either E1, E2, or both.

Complement. The complement of E is denoted by Ē and it is the set of basic
outcomes of a random experiment that belongs to S, but not to E1.

E1 is the complement of Ē1
Event E2: Individuals who are married.
E1 and Ē are mutually exclusive events.

1.2.2 Probability postulates

Given a random experiment, we want to determine the probability that a particular
event will occur. A probability is a measure from 0 to 1.
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0→ the event will not occur.
1→ the event is certain.

When the outcomes are equally likely to occur, the probability of an event E is:

P(E) = NE/N
NE : Number of outcomes in event E.
N: Total number of outcomes in the sample space S.

Example 1: Flip of a coin, Event E is “head” then P(E) = 1/2. NE = 1 and N = 2.

Example 2: Event E is “winning the lottery” then if there are 1000 lottery tickets
and you bought, 2 P(E) = 2/1000 = 0.002.

Some probability rules

P(E ∪ Ē) = P(E) + P(Ē) = 1.
P(Ē) = 1 - P(E).

Conditional probability

P(E1 | E2): Probability that E1 occurs, given that E2 has already occurred.
P(E1 | E2) = P(E1 ∩ E2) / P(E2) given that P(E2) > 0.

Addition rule

P(E1 ∪ E2) = P(E1) + P(E2) - P(E1 ∩ E2).

Statistically independent events

P(E1 ∩ E2) = P(E1)P(E2).
P(E1 | E2) = P(E1)P(E2) / P(E2) = P(E1).

1.3 Discrete random variables and expectations

1.3.1 Discrete random variables

Random variable. Variable that takes numerical values determined by the
outcome of a random experiment.

Examples: Hourly wage, GDP, inflation, the number when tossing a die.
Notation: Random variable X can take n possible values x1,x2, · · ·xn.

Discrete random variable. A random variable that takes a countable number
of values.
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Examples: Number of years of education.

Continuous random variable. A random variable that can take any value on
an internal.

Examples: Wage, GDP, exact weight.

Consider tossing two dies (green and red). This will yield 36 possible outcomes
because the green can take 6 possible values and the red can take also 6 values,
6×6 = 36. Let’s define the random variable X to be the sum of two dice. Therefore
X can take 11 possible values, from 2 to 12. This information is summarized in the
following tables.

Table 1.1 Outcomes with two dies
red / green 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Table 1.2 Frequencies and probability distributions

Value of X 2 3 4 5 6 7 8 9 10 11 12
Frequency 1 2 3 4 5 6 5 4 3 2 1

Probability (p) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

1.3.2 Expected value of random variables

Let E(X) be the expected value of the random variable X . The expected value of a
discrete random variable is the weighted average of all its possible values, taking the
probability of each outcome as its weight. Random variable X can take n particular
values x1,x2, . . . ,xn and the probability of xi is given by pi. Then we have that the
expected value is given by:

E(X) = x1 p1 + x2 p2 + · · ·+ xn pn =
n

∑
i=1

xi pi. (1.1)

We can also write the expected value as: E(X) = µX . For the previous example we
can calculate that the expected value as:



1.3 Discrete random variables and expectations 5

E(X) = 2 ·1/36+3 ·2/36+ · · ·+12 ·1/36 = 252/36 = 7 (1.2)

Table 1.3 Expected value of X , two dice example

X p X p
2 1/36 2/36
3 2/36 6/36
4 3/36 12/36
5 4/36 20/36
6 5/36 30/36
7 6/36 42/36
8 5/36 40/36
9 4/36 36/36
10 3/36 30/36
11 2/36 22/36
12 1/36 12/36

Total E(X) = ∑
n
i=1 xi px 252/36 = 7

1.3.3 Expected value rules

Let X , Y , and Z denote three random variables, and let b, b1, and b2 be arbitrary
constants. Then,

E(X +Y +Z) = E(X)+E(Y )+E(Z) (1.3)
E(bX) = bE(X) for a constant b (1.4)

E(b) = b (1.5)

For the example where Y = b1 +b2X , b1 and b2 are constants we want to calculate
E(X).

E(Y ) = E(b1 +b2X) (1.6)
= E(b1)+E(b2X)

= b1 +b2E(X)

1.3.4 Variance of a discrete random variable

Let var(X) be the variance of the random variable X . var(X) is a useful measure of
the dispersion of its probability distribution. It is defined as the expected value of
the square of the difference between X and its mean. That is, E[(X − µX )

2], where
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µX is the population mean of X .

var(X) = σ
2
X = E[(X−µX )

2] (1.7)
= (x1−µX )

2 p1 +(x2−µX )
2 p2 + · · ·+(xn−µX )

2 pn (1.8)

=
n

∑
i=1

(xi−µX )
2 pi

Taking the square root of the variance (σ2
X ) one can obtain the standard deviation,

σX . The standard deviation also serves as a measure of dispersion of the probability
distribution. A useful way to write the variance is:

σ
2
X = E(X2)−µ

2
X . (1.9)

From the previous example of tossing two dies, we have that the population variance
can be calculated as follows:

Table 1.4 Population variance, X from the two dice example

X p X−µX (X−µX )
2 (X−µX )

2 p
2 1/36 -5 25 0.69
3 2/36 -4 16 0.89
4 3/36 -3 9 0.75
5 4/36 -2 4 0.44
6 5/36 -1 1 0.14
7 6/36 0 0 0.00
8 5/36 1 1 0.14
9 4/36 2 4 0.44
10 3/36 3 9 0.75
11 2/36 4 16 0.89
12 1/36 5 25 0.69

Total 5.83

1.3.5 Probability density

Because discrete random variables, by definition, can only take a finite number of
values, they are easy to summarize graphically. The probability distribution is the
graph that links all the values that a random variable can take with its corresponding
probabilities. For the two dice example above, see Figure 1.1.
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Fig. 1.1 Discrete probabilities, X from the two dice example

1.4 Continuous random variables

1.4.1 Probability density

Continuous random variables can take any value on an interval. This means that it
can take an infinite number of different values, hence it is not possible to obtain a
graph like the one presented in Figure 1.1 for a continuous random variable. Instead,
we will define the probability of a random variable lying within a given interval. For
example, the probability that the height of an individual is between 5.5 and 6 feet.
This is depicted in Figure 1.2 as the shaded area below the probability density curve
for the values of X between 5.5 and 6. The probability of the random variable X
written as a function of the random variable is known as the probability density
function. We can write this ones as f (X). Then, if we use a little math we can easily
find the area under the curve. Recall that the are under a curve can be obtained by
taking the integral.

Probability density function. Is a function that describes the relative likeli-
hood for a random variable to occur at a given point.

∫ 6

5.5
f (X) = 0.18 (1.10)∫

∞

0
f (X) = 1
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Fig. 1.2 Continuous probabilities, X from the height example

The first line in the equation above just calculates the integral under the curve f (X)
between the points 5.5 and 6. The second line shows that the whole area under the
curve presented in Figure 1.2 is equal to one. This is for the same reason why the
summation of all the bars in Figure 1.1 are also equal to one; the total probability is
always equal to one.

1.4.2 Normal distribution

The normal distribution is the most widely known continuous probability distribu-
tion. The graph associated with its probability density function has a bell-shape and
its is known as the Gaussian function or bell curve. Its probability density function
is given by:

f (X) =
1√

2πσ2
e−

(x−µ2)
2σ2 (1.11)

where µ is the mean and σ2 is the variance. Figure 1.2 is an example of this distri-
bution.



1.5 Covariance and correlation 9

1.4.3 Expected value and variance of a continuous random
variable

The basic difference between a discrete and a continuous random variable is that
the second can take on infinite possible values, hence the summations signs that are
used to calculate the expected value and the variance of a discrete random variable
cannot be used for a continuous random variable. Instead, we use integral signs. For
the expected value we have:

E(X) =
∫

X f (X)dX (1.12)

where the integration is performed over the interval for which f (X) is defined. For
the variance we have:

σ
2
X = E[(X−µX )

2] =
∫
(X−µX )

2 f (X)dX (1.13)

1.5 Covariance and correlation

1.5.1 Covariance

When dealing with two variables, the first question you want to answer is whether
these variables move together or whether they move in opposite directions. The
covariance will help us answer that question. For two random variables X and Y , the
covariance is defined as:

cov(X ,Y ) = σXY = E[(X−µX )(Y −µY )] (1.14)

where µX and µY are the population means of X and Y , respectively. When to ran-
dom variables are independent, their covariance is equal to zero. When σXY > 0 we
say that the variables move together. When σXY < 0 they move in opposite direc-
tions.

1.5.2 Correlation

One concern when using the cov(X ,Y ) as a measure of association is that the result
is measured in the units of X times the units of Y . The correlation coefficient, that
is dimensionless, overcomes this difficulty. For variables X and Y the correlation
coefficient is defined as:
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corr(X ,Y ) = ρY X =
σY X√
σ2

X σ2
Y

(1.15)

The correlation coefficient is a number between −1 and 1. When it is positive, we
say that there is a positive correlation between X and Y and that these two variables
move in the same direction. When it is negative, we say that they move in opposite
directions.

1.6 Sampling and estimators

Notice that in the two dice example we know the population characteristics, that
is, the probability distribution. From this probability distribution it is easy to obtain
the population mean an variance. However, what happens most of the time is that
we need to rely on a data set to get estimates of the population parameters (e.g the
mean and the variance). In that case the estimates of the population parameters are
obtained using estimators, and the sample needs to have certain characteristics. The
estimators and the sampling are the subject of this section.

1.6.1 Sampling

The most common way to obtain a sample from the population is through simple
random sampling.

Simple random sampling. It is a procedure to obtain a sample from the pop-
ulation, where each of the observations is chosen randomly and entirely by
chance. This means that each observation in the population has the same prob-
ability of being chosen.

Once the sample of the random variable X has be generated, each of the n obser-
vations can be denoted by {x1,x2, · · · ,xn}.1

1 The textbook Dougherty (2007) makes the distinction between the specific values of the random
variable X before and after they are known, and emphasizes this distinction by using uppercase and
lowercase letter. This distinction is useful only in some cases and that is why most textbooks do
not make this distinction. We will follow emphasize the distinction and we will use only lowercase
letters.
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1.6.2 Estimators

Estimator. It is a general rule (mathematical formula) for estimating an un-
known population parameter given a sample of data.

For example, an estimator for the population mean is the sample mean:

X̄ =
1
n
(x1 + x2 + · · ·+ xn) =

1
n

n

∑
i=1

xi. (1.16)

An interesting feature of this estimator is that the variance of X̄ is 1/n times the
variance of X . The derivation is the following:

σ
2
X̄ = var(X̄) (1.17)

σ
2
X̄ = var{1

n
(x1 + x2 + · · ·+ xn)} (1.18)

σ
2
X̄ =

1
n2 var{1

n
(x1 + x2 + · · ·+ xn)} (1.19)

σ
2
X̄ =

1
n2 {var(x1)+var(x2)+ · · ·+var(xn)} (1.20)

σ
2
X̄ =

1
n2 {σ

2
X +σ

2
X + · · ·+σ

2
X} (1.21)

σ
2
X̄ =

1
n2 {nσ

2
X}=

σ2
X

n
(1.22)

Graphically, this result is shown in Figure 1.3. The distribution of X has a higher
variance (it is more dispersed) than the distribution of X̄ .

1.7 Unbiasedness and efficiency

1.7.1 Unbiasedness

Because estimators are random variables, we can take expectations of the estimators.
If the expectation of the estimator is equal to the true population parameter, then we
say that this estimator is unbiased. Let θ be the population parameter and let θ̂ be a
point estimator of θ . Then, θ̂ is unbiased if:

E(θ̂) = θ (1.23)

Example. The sample mean of X is an unbiased estimator of the population mean
µX :



12 1 Random Variables, Sampling and Estimation

0.4

0.5

0.6

0.7

Probability density function of X

d
e

n
si

ty
 f

u
n

ct
io

n

0

0.1

0.2

0.3

Probability density function of X

µ

P
ro

b
a

b
il

it
y

d
e

n
si

ty
 f

u
n

ct
io

n

0

0 1 2 3 4 5 6 7 8 9 10

X
µ

Fig. 1.3 Probability density functions of X and X̄ .

E(X̄) = E(
1
n

n

∑
i=1

xi) =
1
n

E(
n

∑
i=1

xi) (1.24)

=
1
n

n

∑
i=1

(E(xi)) =
1
n

n

∑
i=1

µX =
1
n

nµX = µX

Unbiased estimator. An estimator is unbiased if its expected value is equal
to the true population parameter.

The bias of an estimator is just the difference between its expected value and the
true population parameter:

Bias(θ̂) = E(θ̂)−θ (1.25)

1.7.2 Efficiency

It is not only important that an estimator is on average correct (unbiased), but also
that it has a high probability of being close to the true parameter. When comparing
two estimators, θ̂1 and θ̂2, we say that θ̂1 is more efficient if var(θ̂1) < var(θ̂2).
A comparison of the efficiency between these two estimators in presented in Fig-
ure 1.4. The estimator with higher variance, (θ̂2), is more dispersed.
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Fig. 1.4 Efficiency of estimators θ̂1 and θ̂2, with var(θ̂1) < var(θ̂2).

Most efficient estimator. The estimator with the smallest variance from all
unbiased estimators.

1.7.3 Unbiasedness versus efficiency

Both, unbiasedness and efficiency, are desired properties of an estimator. However,
there may be conflicts in the selection between two estimators θ̂1 and θ̂2, if, for
example, θ̂1 is more efficients, but it is also biased. This case is presented in Fig-
ure 1.5.
The simplest way to select between these two estimators is to pick the one that

yields the smallest mean square error (MSE):

MSE(θ̂) = var(θ̂)+bias(θ̂)2 (1.26)

1.8 Estimators for the variance, covariance, and correlation

While we have already seen the populations formulas for the variance, covariance
and correlation, it is important to keep in mind that we do not have the whole pop-
ulation. The data sets we will be working with are just samples of the populations.
The formula for the sample variance is:
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Fig. 1.5 θ̂2 is unbiased, but θ̂1 is more efficient.

s2
X =

1
n−1

n

∑
i=1

(xi− X̄)2 (1.27)

Notice how we changed the notation from σ2 to s2. The first one denotes the pop-
ulation variance, while the second one refers to the sample variance. An estimator
for the population covariance is given by:

sXY =
1

n−1

n

∑
i=1

(xi− X̄)(yi− Ȳ ). (1.28)

Finally, the formula for the correlation coefficient, rXY , is:

rXY =
∑

n
i=1(xi− X̄)(yi− Ȳ )√

∑
n
i=1(xi− X̄)2 ∑

n
i=1(yi− Ȳ )2

. (1.29)

1.9 Asymptotic properties of estimators

Asymptotic properties of estimators just refers to their properties when the number
of observations in the sample grows large and approached to infinity.
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Fig. 1.6 The estimator is biased for small samples, but consistent.

1.9.1 Consistency

An estimator θ̂ is said to be consistent if its bias becomes smaller as the sample size
grows large. Consistency is important because many of the most common estimators
used in econometrics are biased, then the minimum we should expect from these
estimators is that the bias becomes small as we are able to obtain larger data sets.
Figure 1.6 illustrates the concept of consistency by showing how an estimator of the
population parameter θ becomes unbiased as n→ ∞.

1.9.2 Central limit theorem

Having normally distributed random variables is important because we can then
construct, for example, confidence intervals for its mean. However, what if a random
variable does not follow a normal distribution? The central limit theorem gives us
the answer.

Central limit theorem. States the conditions under which the mean of a suf-
ficiently large number of independent random variables (with finite mean and
variance) will be approximate a normal distribution.

Hence, even if we do not know the underlying distribution of a random variable,
we will still be able to construct confidence intervals that will be approximately
valid. In a numerical example, let’s assume that the random variable X follows a
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Fig. 1.7 Distribution of the sample mean of a uniform distribution.

uniform distribution [-0.5,0.5]. Hence, it is equally likely that this random variable
takes any value within this range. Figure 1.7 shows the distribution of the average
of this random variable for n = 10, 20, and 100. All of these three distributions look
very close to a normal distribution.



Chapter 2
Simple Linear Regression

2.1 Simple linear model

The simple linear regression model shows how one known dependent variable is
determined by a single explanatory variable (regressor). Is is written as:

Yi = β1 +β2Xi +ui. (2.1)

The subscript i refers to the observation i = 1,2, . . .n, and Yi is the dependent vari-
able. We break down Yi into two components, the deterministic (nonrandom) com-
ponent β1 +β2Xi and the stochastic (random) component ui. The explanatory vari-
able is Xi and the population parameters we want to estimate are given by intercept
β1 and the slope β2. The term ui is the disturbance term. Figure 2.1 shows a graphi-
cal representation of the problem. The regression line Yi = β1+β2Xi+ui is shown as
the upward sloping blue line. Only a single observation point at (Xi, Yi) is illustrated.
We can see how for this observation i, we break down Yi into the disturbance term
ui given by the vertical distance between Yi and Ŷi and the height of the regression
line at point Xi, given by β1 +β2Xi.

2.2 Least squares regression

The main idea in econometric analysis is to estimate the parameters β1 and β2.
The most popular estimator for these population parameters is the Ordinary Least
Squares (OLS) estimator. Let the OLS estimators of β1 and β2 be b1 and b2, respec-
tively. Then, the fitter regression equation is:

Yi = b1 +b2Xi + ei. (2.2)

The difference between Equations 2.1 and 2.2 is that the first correspond to the
population, while the second is the sample counterpart. The idea in the OLS es-

17



18 2 Simple Linear Regression

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 X 

Y 

(Xi,Yi) 
Yi 

Xi 

Yi 
^ 

β1 

β2 ui 

β1+β2Xi 

Fig. 2.1 Regression line Yi = β1 +β2Xi +ui.

timator is simple, we want to pick values for the intercept b1 and slope b2 coef-
ficients that are as close as possible to the actual data points. That is, we want to
ei (ei = Y1− b1− b2Xi) to be small. Because some of the ei are positive and some
are negative, we will first square them to have all positive numbers. Then, to take
into account all data points we will sum across all observations. That is how our
objective is to pick b1 and b2 to minimize the following residual sum of squares:

RSS = e2
1 + e2

2 + · · ·+ e2
n =

n

∑
i=1

e2
i . (2.3)

This minimization exercise yields the OLS estimators:

b2 =
∑

n
i=1(Xi− X̄)(Yi− Ȳ )

∑
n
i=1(Xi− X̄)2 (2.4)

for the slope coefficient, and
b1 = Ȳ −b2X̄ (2.5)

for the intercept. The derivation of the least squares coefficient estimators (Equa-
tions 2.4 and 2.5) has the following steps. We start with the regression equation:

Yi = b1 +b2Xi + ei

Ŷi = b1 +b2Xi
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For observation i we obtain the residual, then square it and finally sum across all
observations to obtain the residual sum of squares:

ei = Yi− Ŷi (2.6)
e2

i = (Yi− Ŷi)
2

n

∑
i=1

e2
i =

n

∑
i=1

(Yi− Ŷi)
2

The coefficients b1 and b2 are chosen to minimize the residuals sum of squares:

min
b1,b2

∑
n
i=1(Yi− Ŷi)

2 (2.7)

min
b1,b2

∑
n
i=1(Yi−b1−b2Xi)

2

The first order necessary condition are:

−2
n

∑
i=1

(Yi−b1−b2Xi) = 0 w.r.t. b1 (2.8)

−2
n

∑
i=1

Xi(Yi−b1−b2Xi) = 0 w.r.t. b2 (2.9)

Dividing Equation 2.9 by n and working through some math we obtain the OLS
estimators for the constant:

b1 = Ȳ −b2X̄ .

Plugging this result into Equation 2.9 we obtain:

b2 =
∑

n
i=0(Xi− X̄)(Yi− Ȳ )

∑
n
i=0(Xi− X̄)2 .

2.3 Interpretation of the regression coefficients

If the estimated regression equation is given by:

ŵagei = 4.64+0.09experi, (2.10)

where wage is the hourly wage measured in dollars, and exper is the number of
years of experience, then the interpretation of the slope coefficient is the following:

∆wage
∆exper

= 0.09.
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Therefore, if the change in the number of years of experience is one, ∆exper, then
the change in the hourly wage in dollars is given by ∆wage = 0.09. In words, an
additional year of experience will increase your hourly wage by 0.09 dollars (or 9
cents). For the interpretation of the intercept, just consider the case where some-
one has not experience, exper = 0. Then, this person’s predicted wage will be 4.64
dollars.

If the estimated regression equation takes the form:

̂logwagei = 1.38+0.02experi, (2.11)

where the logwage is the natural logarithm of wage, then the interpretation is differ-
ent. Here, if the number of years of experience increases by one, the wage increases
by 2% (0.02× 100 percent). Finally, for the folowing estimated equation:

̂logwagei = 0.98+0.26logexperi. (2.12)

A one percent increase in exper will increase wage by 0.25 percent. The 0.26 is
interpreted as an elasticity.

2.4 Goodness of fit

How good is the regression equation in explaining the variation in variable Y ? First
we need a way to measure the total variation in Y . Let’s try the sum of squared
deviations about the sample mean of Y . That is,

n

∑
i=1

(Yi− Ȳ )2 (2.13)

Now, let’s start with a simple equality:

Yi− Ȳ = Yi− Ȳ .

If we add and subtract Ŷi on the right hand side of the above equality, we have

Yi− Ȳ = Yi− Ȳ + Ŷi− Ŷi

Yi− Ȳ = (Ŷi− Ȳ )+(Yi− Ŷi)

Squaring both sides of the equation and then summing across all observations i we
obtain:

n

∑
i=1

(Yi− Ȳ )2 =
n

∑
i=1

(Ŷi− Ȳ )2 +
n

∑
i=1

(Yi− Ŷi)
2 (2.14)

T SS = ESS+RSS. (2.15)
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Notice that the sum of deviations from the mean is zero, that is why there are only
two components on the right hand side. The T SS is the Total Sum of Squares, as pre-
sented in Equation 2.13. The first term on the right hand side is ESS, the Explained
Sum of Squares, and the second term on the right hand side is the RRS, Residual
Sum of Squares. This decomposition of the variable Y into two components can be
appreciated in Figure 2.2. For every observation Yi in the sample, the distance be-
tween Yi and Ȳ can be decomposed in two, the part that the regression equation can
explain, Ŷi− Ȳ , and the part that the regression equation cannot explain, Yi− Ŷi.

What is the proportion of the variation in Y that is explain by the regression
equation? We just need to divide Equation 2.15 by T SS and define the ratio of ESS
to T SS as the proportion of the explained variation in Y , the R2:

1 =
ESS
T SS

+
RSS
T SS

(2.16)

R2 =
ESS
T SS

= 1− RSS
T SS

(2.17)

R2 =
∑

n
i=1(Ŷi− Ȳ )2

∑
n
i=1(Yi− Ȳ )2 = 1− ∑

n
i=1 e2

i

∑
n
i=1(Yi− Ȳ )2 (2.18)

The R2 is a number between zero and one, being higher when the model explains
more of the variation in Y . Figures 2.3 and 2.4 illustrate how the regression line
explain the variation in Y when the R2 is low and high, respectively.
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Chapter 3
Properties and Hypothesis Testing

3.1 Types of data

The regression techniques developed in previous chapters can be applied to three
different kinds of data.

1. Cross-sectional data.
2. Time series data.
3. Panel data.

The first consists on observing various economic unit (e.g. firms, countries, house-
holds, individuals) at one point in time. For example, we observe the wages, experi-
ence and education of many individuals, only once and at all at the same time. The
second consists on observing the same economic unit at different point in time. For
example, we observe daily stock prices over many years. Finally, the third combines
the characteristics of the first and the second. That is, we observe various economic
units at repeated points in time. For example, we have information about the infla-
tion, unemployment and GDP of a group of countries and over many years.

3.2 Assumptions of the model

When the regressors in our econometric model are non stochastic, we will make the
following six assumptions.

1. The model is linear in the parameters and it is correctly specified.

Y = β1 +β2X +u (3.1)

Y = β1Xβ2 +u (3.2)

Equation 2.1 is linear in β , while Equation 2.2 is not.

23
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2. There is some variation in the regressor in the sample. We need variation in the
variable X to identify the relationship. Consider the OLS estimator for β2:

b2 =
∑

n
i=0(Xi− X̄)(Yi− Ȳ )

∑
n
i=0(Xi− X̄)2 . (3.3)

If there is no variation in X , then the denominator is zero and we cannot obtain
b2.

3. The expected value of the disturbance term is zero.

E(ui) = 0 for all i. (3.4)

Some ui will be negative, some will be positive, but on average they will be zero.
If a constant is included in the model, the condition is satisfied automatically.

4. The disturbance term is homoscedastic.
Homoscedasticity means that the variance of the error terms ui is constant across
all observations i. Hence, we can write:

σ
2
ui
= σ

2
u for all i. (3.5)

Because the error term has zero mean (from assumption 3), then the population
variance of ui is equal to:

E(u2
i ) = σ

2
u for all i. (3.6)

σ2
u is a population parameter, therefore it is unknown and need to be estimated.

5. The values of the disturbance terms have independent distributions.

ui is distributed independently of u j for all j 6= i. (3.7)

This means that there is no autocorrrelation in the error term. This means that
the population covariance between ui and u j is zero:

σuiu j = 0. (3.8)

With assumptions 1 through 5, we says that OLS coefficients are BLUE: Best
Linear Unbiased Estimators. They are best, because they have the smallest vari-
ance across all unbiased estimators.

6. The disturbance term has a normal distribution.

ui ∼ N[0,σ2
u ] for all i. (3.9)

The error term is distributed normal with mean zero and variance σ2
u . This as-

sumption becomes useful at the time of performing t tests, F tests, and construct-
ing confidence intervals for β1 and β2 using the regression results. The justifica-
tion for this assumption depends on the central limit theorem. This one state that
if a random variable is the composite result of the effects of a large number of
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other random variables (that are not necessarily normal), it will have an approxi-
mately normal distribution.

3.3 Unbiasedness of the coefficients

Recall that an estimator θ̂ is unbiased if E(θ̂) = θ . The expected value of the esti-
mator is equal to the true population parameter. For the slope coefficient in the OLS
regression we have:

b2 =
∑

n
i=0(Xi− X̄)(Yi− Ȳ )

∑
n
i=0(Xi− X̄)2 (3.10)

= β2 +
∑

n
i=0(Xi− X̄)ui

∑
n
i=0(Xi− X̄)2

= β2 +
n

∑
i=1

aiui

where

ai =
(Xi− X̄)

∑
n
i=0(Xi− X̄)2 . (3.11)

Thus, this shows that b2 is equal to its true value, β2, plus a linear combination of
the values of the error terms. If we take expectations of b2 we have:

E(b2) = E(β2)+E
( n

∑
i=1

aiui
)
= β2 +

n

∑
i=1

E(aiui) = β2 +
n

∑
i=1

aiE(ui) = β . (3.12)

The term ai goes out of the expectation because ai is only a function of constant
Xs. In addition, the last equality holds because E(ui) = 0. Hence, b2 is an unbiased
estimator of β2, E(b2) = β2.

3.4 Precision of the coefficients

We are also interested on how precise b1 and b2 are in estimating the population
parameters β1 and β2. A measure of this precision are their population variances,
given by:

σ
2
b1

= σ
2
u

(1
n
+

X̄
∑

n
i=0(Xi− X̄)2

)
, and (3.13)

σ
2
b2

=
σ2

u

∑
n
i=0(Xi− X̄)2 (3.14)
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One concern in the implementation of the above formulas is that σ2
u is an unknown

population parameter and need to be estimated. A natural estimator for this regres-
sion variance is the variance of the regression errors. Because the population regres-
sion errors ui are also unknown, we use the sample counterparts ei and adjust for the
corresponding degrees of freedom. Hence, we have:

S2
u =

1
n−2

n

∑
i=1

e2
i . (3.15)

This S2
u is the unbiased estimator of σ2

u , and n− 2 are the degrees of freedom. We
subtract two from the sample size because we are estimating two parameters: the
regression constant and one slope coefficient. Then, we use the following formulas
to estimate the standard errors of b1 and b2:

Sb1 =

√
S2

u

(1
n
+

X̄
∑

n
i=0(Xi− X̄)2

)
, and (3.16)

Sb2 =

√
S2

u

∑
n
i=0(Xi− X̄)2 . (3.17)

3.5 The Gauss-Markov theorem

The Gauss-Markov theorem simply states that when assumptions 1 through 5 above
are satisfied, the OLS estimators are Best Linear Unbiased Estimators (BLUE) of
the regression parameters. Best refers to smallest variance.

3.6 Hypotheses testing

Hypothesis testing is simply a method of making decisions using data. It starts with
the formulation of the null and the alternative hypotheses and then uses some test
statistics to assess the truth of the null hypothesis.

3.6.1 Formulation of the null hypothesis

The formulation of the null hypothesis starts with a relationship in mind. For exam-
ple, that the percentage rate of price inflation (p) depends on the percentage rate of
wage inflation (w) following the linear equation:

pi = β1 +β2wi +ui (3.18)
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Then, you want to test the hypothesis that the price inflation is equal to the wage
inflation. This is denoted by H0 and it is know as the null hypothesis. In addition, we
also define an alternative hypothesis, denoted by H1 and represents the conclusion of
the test if the null hypothesis is rejected. For our example the null and the alternative
hypothesis are written as:

H0 : β2 = 1 (3.19)
H1 : β2 6= 1 (3.20)

In general, the null and alternative hypotheses are:

H0 : β2 = β
0
2 (3.21)

H1 : β2 6= β
0
2 . (3.22)

3.6.2 t-tests

Recall that β2 is unknown and that we have to use the estimate b2. Then, the decision
rule to reject the null hypothesis should compare the estimate b2 with the hypothe-
sized value β 0

2 . Intuitively, if the values are far apart, then there is evidence against
the null. This comparison should take into account the fact that b2 is subject to some
sampling variation (it is not the actual β2). We will use the following statistic:

z =
b2−β 0

2
σb2

(3.23)

The numerator is just the distance between the regression estimate and the hypothe-
sized value, with the denominator is the standard deviation of b2, given by the square
root of the expression in Equation 3.14. z is the number of standard deviations be-
tween b2 and β2. For a known σb2 , this one follows a normal distribution. However
σb2 is unknown and we need to use the estimate of the standard error of b2. This
one is given by Sb2 and it is presented in Equation 3.17. Then we use the following
t-statistic:

t =
b2−β 0

2
Sb2

(3.24)

To know if the deviations between b2 and β 0
2 are significantly large, we compare

this t-statistic with the critical values from the table t distribution with n−2 degrees
of freedom. The null hypothesis is not rejected if the following condition is met:

−tn−2,α/2 ≤
b2−β 0

2
Sb2

≤ tn−2,α/2 (3.25)

Where tn−2,α/2 is just the notation of the critical value than comes from the t distri-
bution with n− 2 degrees of freedom and at significance level α . The significance
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Fig. 3.1 Acceptance region for the t-test.

level is the probability that we reject the null hypothesis when in fact it is true. The
rejection regions are illustrated in Figure 3.1.

3.6.3 Confidence intervals

The confidence interval indicates the reliability of an estimate. The confidence in-
terval for the population parameter β2 can be derived from Equation 3.25 in the
following way:

1−α = P
(
− tn−2,α/2 ≤

b2−β2
Sb2

≤ tn−2,α/2
)

(3.26)

1−α = P
(
− tn−2,α/2 ·Sb2 ≤ b2−β2 ≤ tn−2,α/2 ·Sb2

)
1−α = P

(
b2− tn−2,α/2 ·Sb2 ≤ β2 ≤ b2 + tn−2,α/2 ·Sb2

)
The meaning of the above equation is that the population parameter β2 will be be-
tween the lower confidence limit b2− tn−2,α/2 · Sb2 and the upper confidence limit
b2+tn−2,α/2 ·Sb2 with probability (1−α) or 100×(1−α)%. The p values provide an
alternative approach to reporting the significance of regression coefficients or when
carrying out more general hypothesis testing. As you can see from Equation 3.25
and Figure 3.1, different significance levels α can yield a different conclusion in the
rejection or not of the null hypothesis. The p value of a hypothesis test represent the
minimum significance level at which the null is rejected. Then, when the p value is
below the significance level α we reject the null.
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3.6.4 F test

A useful tool if we want to test if there is no relationship between X and Y if the F
test. In the simple linear regression model with only one slope coefficient, the null
and the alternative in an F test are:

H0 : β2 = 0 (3.27)
H1 : β2 6= 0. (3.28)

This test is build on the idea of testing how good is the regression model in explain-
ing the variation in Y . In Equation 2.15 we already separated the variation of Y into
its ‘explained’ and ‘unexplained’ components. These are:

n

∑
i=1

(Yi− Ȳ )2 =
n

∑
i=1

(Ŷi− Ȳ )2 +
n

∑
i=1

(Yi− Ŷi)
2 (3.29)

T SS = ESS+RSS. (3.30)

The total sum of squares (TSS) is the summation of the explained sum of squares
(ESS) and the residual sum of squares (RSS). Then, the F statistic for goodness of fit
of a regression is written as the explained sum of squares, per explanatory variable,
divided by the residual sum of squares, per remaining degrees of freedom:

F =
ESS/(k−1)
RSS/(n− k)

(3.31)
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.2346

R Square 0.0551

Adjusted R Square 0.0543

Standard Error 4.5323

Observations 1260

ANOVA

df SS MS F Significance F

Regression 1 1505.5387 1505.5387 73.2906 0.0000

Residual 1258 25841.9006 20.5421

Total 1259 27347.4393

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 4.6425 0.2326 19.9615 0.0000 4.1862 5.0988

X Variable 1 0.0914 0.0107 8.5610 0.0000 0.0705 0.1124

Fig. 3.3 Regression output in MS Excel.

where k is the total number of coefficients we are estimating, hence (k− 1) is the
number of slope coefficients. That is, the total number of parameters we are estimat-
ing minus the constant parameter. If we divide the numerator and the denominator
by T SS, then the F statistics can be written in terms of the R2 as follows:

F =
(ESS/T SS)/(k−1)
(RSS/T SS)/(n− k)

=
R2/(k−1)

(1−R2)/(n− k)
(3.32)

If this F statistic is greater that the critical value from the table F distribution with
(k− 1) and (n− k) degrees of freedom, Fk−1,n−k, we reject the null hypothesis and
conclude that the regression model does not significantly explain the variation in
variable Y . For the simple regression model with only one slope coefficient, k = 2,
we have:

F =
R2

(1−R2)/(n−2)
. (3.33)

If this F statistic > F1,n−2 we reject the null hypothesis presented in Equation 3.28.
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3.7 Computer output

The computer regression output is very similar across different statistical packages.
Figure 3.3 shows the output using MS Excel for the estimation of the following
simple regression model:

wage=β1 +β2experi +ui (3.34)

To obtain the regression estimated coefficients we use Equations 2.4 and 2.5:

b2 =
∑

n
i=1(Xi− X̄)(Yi− Ȳ )

∑
n
i=1(Xi− X̄)2 = 0.091 (3.35)

b1 = Ȳ −b2X̄ = 4.642 (3.36)

The total sum of squares, estimates sum of squares, and residual sum of squares are
obtained using 2.15 and 2.15:

T SS =
n

∑
i=1

(Yi− Ȳ )2 = 27347.439 (3.37)

ESS =
n

∑
i=1

(Ŷi− Ȳ )2 = 1505.539 (3.38)

RSS =
n

∑
i=1

(Yi− Ŷi)
2 = 25841.901 (3.39)

The regression R2 comes from Equation 2.18:

R2 = 1− ∑
n
i=1 e2

i

∑
n
i=1(Yi− Ȳ )2 = 0.055 (3.40)

From the square root of Equation 3.15:

Su =

√
1

n−2

n

∑
i=1

e2
i = 4.532 (3.41)

Then, the standard errors of the coefficients are computer using Equations 3.17
and 3.17:

Sb1 =

√
S2

u

(1
n
+

X̄
∑

n
i=0(Xi− X̄)2

)
= 0.233 (3.42)

Sb2 =

√
S2

u

∑
n
i=0(Xi− X̄)2 = 0.011 (3.43)

The F statistic uses Equation 3.32:
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F =
R2/(k−1)

(1−R2)/(n− k)
= 73.291 (3.44)

The t statistics use Equation 3.24:

t =
b1

Sb1

= 19.961 (3.45)

t =
b2

Sb2

= 8.561 (3.46)

Finally, for the 95% upper and lower confidence levels, we use Equation 3.26:

b1− tn−2,α/2 ·Sb1 = 4.186 (3.47)
b1 + tn−2,α/2 ·Sb1 = 5.099 (3.48)
b2− tn−2,α/2 ·Sb2 = 0.071 (3.49)
b2 + tn−2,α/2 ·Sb2 = 0.112 (3.50)



Chapter 4
Multiple Regression Analysis

The simple linear regression covered in Chapter 2 can be generalized to include
more than one variable. Multiple regression analysis is an extension of the simple
regression analysis to cover cases in which the dependent variable is hypothesized
to depend on more than one explanatory variable. While much of the analysis is an
extension of the simple case, we have two main complications. (1) We need to dis-
criminate between the effects of one variable and the effects of the other explanatory
variables. (2) We have to decide which variables to include in the regression equa-
tion. In this chapter we will focus on the extension of the linear regression model
and in (1). In a later chapter we will discuss (2).

4.1 Interpretation of the coefficients

Consider the following population multiple regression model with (k− 1) regres-
sors:

Y = β1 +β2X2 +β3X3 + · · ·+βkXk +u. (4.1)

A simple example of a multiple regression model is:

CRIMEi = β1 +β2POPULAT IONi +β3UNEMPLOYi +β4POLICEi +ui, (4.2)

where i refers to the city, CRIME is crime rates, POPULAT ION is just the number
people in city i, UNEMPLOY is the unemployment rate, and POLICE is the num-
ber of police officers. To estimate the β s in Equation 4.2 you may need to observe
crime rates and all the other variables for n cities. As before, u is the disturbance
term. Because we have more that one regressor, the simple two dimensional charac-
terization illustrated in Figure 2.1 is no longer applicable. Now, we have a (k− 1)
dimensional problem. In our crime example we would need to have a 4D graph!

The sample counterpart of Equation 4.2 is:

CRIMEi = b1 +b2POPULAT IONi +b3UNEMPLOYi +b4POLICEi + ei, (4.3)

33
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where the bs are the sample estimates of the β s, and are estimated using computer
software via Ordinary Least Squares. We also express this relationship as the 4D
fitted plane:

̂CRIME i = b1 +b2POPULAT IONi +b3UNEMPLOYi +b4POLICEi. (4.4)

Notice that we no longer write the disturbance term. Moreover, ̂CRIME i is the fitted
or predicted value of CRIMEi. The interpretation of the coefficients is the same as
before. If the number of police officers increases by one, then the crime rate will
change by b4. Similar interpretation follows for b2 and b3.

4.2 Ordinary Least Squares

The OLS estimates are obtained in the same fashion as before. The unknown rela-
tionship is given by:

Yi = β1 +β2X2i +β3X3i + · · ·+βkXki +ui. (4.5)

The fitted OLS regression is:

Ŷi = b1 +b2X2i +b3X3i + · · ·+bkXki. (4.6)

Then, the OLS regression residuals are:

ei = Yi− Ŷ = Yi−b1−b2X2i−b3X3i−·· ·−bkXki. (4.7)

Recall that OLS minimizes the sum of squared residuals

min
b1,b2,...,bk

∑
n
i=1(Yi− Ŷi)

2, (4.8)

where RSS = ∑
n
i=1(Yi− Ŷi)

2 is the sum of squared residuals. We need to take the
derivative of the RSS with respect to b1, b2, . . . , bk and obtain k first order conditions.
This yields a system of k equations with k unknowns, where the solution is the OLS
estimators of the β s.

4.3 Assumptions

1. The model is linear in the parameters and correctly specified

Y = β1 +β2X2 +β3X3 + · · ·+βkXk +u. (4.9)
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2. There is no exact linear relationship among the regressors in the sample. This is
called multicollinearity.

3. The disturbance term has expectation zero

E(ui) = 0 for all i. (4.10)

4. The disturbance term is homoscedastic.

σ
2
ui
= σ

2
u for all i. (4.11)

5. The values of the disturbance term have independent distributions.

ui is distributed independently of ui′ for all i′ 6= i. (4.12)

6. The distribution term has a normal distribution.

ui ∼ N[0,σ2] for all i. (4.13)

All the Xs are nonstochastic.

4.4 Properties of the coefficients

4.4.1 Unbiasedness

The OLS estimator b j of β j is unbiased:

E(b j) = β j (4.14)

4.4.2 Efficiency

Following the results from the Gauss-Markov theorem, we have that OLS yields the
most efficient linear estimators, in the sence that they are the one with the smallest
variance among all linear estimators.

4.4.3 Precision of the coefficient, t tests, and confidence intervals

Beside our interest on the point estimates, we are also interested in performing hy-
potheses testing and building confidence intervals. To do this we need a measure of
the precision of the coefficients. While we will not show the derivation here (as it
required matrix algebra), each of the b j has an standard error, Sb j .
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The null and alternative hypotheses about population coefficient j is written as:

H0 : β j = β
0
j (4.15)

H1 : β j 6= β
0
j . (4.16)

which can be tested using the following t-statistic:

t =
b j−β 0

j

Sb j

(4.17)

The null is not rejected if the following condition is met:

−tn−k,α/2 ≤
b j−β 0

j

Sb j

≤ tn−k,α/2 (4.18)

Notice the difference between Equation 4.18 and Equation 3.25. The critical value
from the t distribution, tn−k,α/2, now has n− k degrees of freedom because we are
estimating k parameters, rather than just 2 as in the simple regression model. The
intuition behind Figures 3.1 and 3.1 still hold. The computer software will also give
you the p-value associated with the t test. If the p-value is below your α , you reject
the null hypothesis.

For the construction of the confidence intervals we have:

1−α = P
(
− tn−k,α/2 ≤

b j−β j
Sb j

≤ tn−k,α/2
)

(4.19)

1−α = P
(
− tn−k,α/2 ·Sb j ≤ b j−β j ≤ tn−k,α/2 ·Sb j

)
1−α = P

(
b j− tn−k,α/2 ·Sb j ≤ β j ≤ b j + tn−k,α/2 ·Sb j

)
.

4.5 Regression output in Gretl

Gretl is an open-source (free) software package for econometric analysis written in
the C programming language. It can be downloaded from:

http://gretl.sourceforge.net/

Just follow the instructions to install it in your computer.
Once you loaded the data set in Gretl, to estimate Equation 4.2 you need to go to

Model→ Ordinary Least Squares. The regression output is:
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Model 1: OLS, using observations 1-92
Dependent variable: crimes

coefficient std. error t-ratio p-value
-----------------------------------------------------------
const 2193.34 3918.06 0.5598 0.5770
pop 0.0652716 0.0106262 6.143 2.30e-08 ***
unem -279.291 407.791 -0.6849 0.4952
officers 15.0406 3.57660 4.205 6.25e-05 ***

Mean dependent var 39663.53 S.D. dependent var 29692.10
Sum squared resid 1.39e+10 S.E. of regression 12548.04
R-squared 0.827293 Adjusted R-squared 0.821405
F(3, 88) 140.5107 P-value(F) 1.90e-33
Log-likelihood -996.7310 Akaike criterion 2001.462
Schwarz criterion 2011.549 Hannan-Quinn 2005.533

Excluding the constant, p-value was highest for variable 3 (unem)

A standard way to present the regression output is:

̂crimes = 2193.34
(3918.1)

−279.291
(407.79)

unem+15.0406
(3.5766)

officers+0.0652716
(0.010626)

pop

N = 92 R̄2 = 0.8214 F(3,88) = 140.51 σ̂ = 12548.
(standard errors in parentheses)

To obtain the confidence intervals for the coefficients as presented in Equa-
tion 4.19 in the Gretl regression output window you need to go to Analysis →
Confidence intervals for the coefficients to obtain:

t(88, 0.025) = 1.987

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL

const 2193.34 -5592.97 9979.66
pop 0.0652716 0.0441542 0.0863890

unem -279.291 -1089.69 531.107
officers 15.0406 7.93282 22.1483

4.6 Multicollinearity

Multicollinearity is when two explanatory variables are highly correlated. In addi-
tion, if their coefficients have a large population variances, we are at risk of getting
erratic estimates of the coefficients. There could also be multicollinearity when there
is an approximate linear relationship between more than two variables.

A simple test for multicollinearity is based in the Variance Inflation Factors.
To implement this text in Gretl, in the regression output window go to Test →
Collinearity:

Variance Inflation Factors
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Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem

pop 4.180
unem 1.094

officers 4.371

VIF(j) = 1/(1 - R(j)ˆ2), where R(j) is the multiple correlation
coefficient between variable j and the other independent variables

Properties of matrix X’X:

1-norm = 2.0266173e+013
Determinant = 6.6859257e+024
Reciprocal condition number = 4.681685e-013

Based on these results, we do not have a multicollinearity problem in the estimation
of Equation 4.2.

4.7 Goodness of fit: R2 and R̄2

The R2 in multiple regression analysis has the same interpretation as in a simple
regression. It is the proportion of the variation in Y explained by the regression
model

R2 =
ESS
T SS

= 1− RSS
T SS

(4.20)

R2 =
∑

n
i=1(Ŷi− Ȳ )2

∑
n
i=1(Yi− Ȳ )2 = 1− ∑

n
i=1 e2

i

∑
n
i=1(Yi− Ȳ )2 (4.21)

where Ŷ represents the fitted values of the regression equation

Ŷ = b1 +b2X2 +b3X3 + · · ·+bkXk. (4.22)

4.8 F tests

Given the population regression model

Y = β1 +β2X2 +β3X3 + · · ·+βkXk +u, (4.23)

we can use the F test to test if all the slope coefficients β2,β3, . . . ,βk are jointly
equal to zero. That is, let the null hypothesis be:

H0 : β2 = β3 = · · ·= βk = 0. (4.24)
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The alternative hypothesis (H0) is that at least one of the slope coefficients is differ-
ent from zero. The multiple regression version of the F statistic is:

Fk−1,n−k =
ESS/(k−1)
RSS/(n− k)

. (4.25)

The idea is to compare this F statistic to the critical level found in the F distribution
tables with k− 1 and n− k degrees of freedom. Computer software automatically
computes this F statistic and the corresponding p-value for the null in Equation 4.22.
This F statistic can also be written in terms of the R2:

Fk−1,n−k =
R2/(k−1)

(1−R2)/(n− k)
. (4.26)

Consider the example presented in Section 4.5. The F statistic is 140.5107 with 3
and 88 degrees of freedom and has a corresponding p-value of 0.000. Then, be-
cause the p-value is below α = 5% then we reject the null hypothesis that the slope
coefficients on pop, unem, and officers are jointly equal to zero.

4.9 Adjusted R2, R̄2

One concern with the R2 is that it will always go up as we include more variables
into the model. Hence, it is a poor way to compare models. On the other hand a
similar statistic, the adjusted R2 (R̄2) is built on the R2 but with the difference that
R̄2 penalizes for the loss of the degrees of freedom as we include more variables into
the model. Therefore, the R̄2 can either go up or down as we include more variable
into the model. It is defined as:

R̄2 = R2− k−1
n− k

(1−R2). (4.27)





Chapter 5
Transformations of Variables and Interactions

5.1 Basic idea

One limitation in the linear regression analysis is that the dependent variable has to
be linear in the parameters:

Y = β1 +β2X2 +β3X3 + · · ·+βkXk +u. (5.1)

However, there are equations that are not linear, for example:

Y = β1 +β2X2 +Xβ3
3 +u. (5.2)

This Equation 5.2 cannot be estimated using OLS. One way to estimate nonlinear
models is by using Nonlinear Least Squares (NLS), which is an extension of the
methods we discussed before. In this chapter, rather that focusing on NLS, we will
see how transformations in the variables can allow us to use OLS on a variety of non-
linear models. For example, consider the estimation of the following Cobb-Douglas
production function:

Pi = ALβ2
i Kβ3

i eεi , (5.3)

where Pi is total production or total output, A is a technology constant, Ki is the
amount of capital, and Li is labor. Taking natural logs we have:

logPi = logA+β2 logLi +β3 logKi + εi. (5.4)

If we simple set Yi = logPi, β1 = logA, X2 = logLi, and X3 = logKi we can write
Equation 5.4 as:

Yi = β1 +β2X2i +β3X3i + εi, (5.5)

that can be easily estimated via OLS. β2 and β3 will correspond to the ones given in
Equation 5.3. Another example of a model that can be estimated with OLS is:

Yi = β1 +β2Z2
2i +β3

√
Z3i +β4

1
Z4i

+ εi. (5.6)

41
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We just need to replace X2i = Z2
2i, X3i =

√
Z3i, X4i =

1
Z4i

.

5.2 Logarithmic transformations

To explain the logarithm transformation let’s go over one example in Gretl. If we
want to estimate the following model:

logcrimei = β1 +β2 logpopi +β3unemi +β4offii +ui, (5.7)

you need to create the new variables first. Go to Add→ Define new variable
and type:

logcrime = log(crime)

This will generate the new variable logcrime. Do the same thing for log popula-
tion and then estimate the model. The regression output is:

Model 1: OLS, using observations 1-92
Dependent variable: logcrime

coefficient std. error t-ratio p-value
-----------------------------------------------------------
const -0.709735 0.807193 -0.8793 0.3817
unem -0.00456848 0.00903041 -0.5059 0.6142
offi 0.000144915 6.15429e-05 2.355 0.0208 **
logpop 0.864044 0.0662782 13.04 2.92e-022 ***

Mean dependent var 10.33774 S.D. dependent var 0.742056
Sum squared resid 6.883563 S.E. of regression 0.279683
R-squared 0.862628 Adjusted R-squared 0.857945
F(3, 88) 184.1989 P-value(F) 8.20e-38
Log-likelihood -11.28034 Akaike criterion 30.56069
Schwarz criterion 40.64784 Hannan-Quinn 34.63195

Excluding the constant, p-value was highest for variable 3 (unem)

̂logcrime=−0.709735
(0.80719)

−0.00456
(0.00903)

unem+0.000144915
(6.1543e–005)

offi+0.8640
(0.0663)

logpop

N = 92 R̄2 = 0.8579 F(3,88) = 184.20 σ̂ = 0.27968
(standard errors in parentheses)

First, notice how the coefficients are very different from the one obtain with no
logarithm transformation. Here the interpretation is different. β2 is interpreted as the
elasticity of crime with respect to pop:

β2 =
∆crime/crime

∆pop/pop
. (5.8)
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A one percentage increase in popwill increase crime by 0.864 percent. ∆crime/crime
is interpreted as a percentage change in crime. For β4 we have:

β4 =
∆crime/crime

∆offi
. (5.9)

Here, a one unit increase in offi is associated with a 0.014% (0.00014 × 100
percent) increase in crime.

5.3 Quadratic terms

So far we have bee estimating the marginal effects (β s) that are constant across all
possible values of X . The simplest way to introduce nonlinearities in the marginal
effect is to estimate the model with quadratic terms. For example, let the model be:

Yi = β1 +β2Xi +β3X2
i + εi. (5.10)

In this case the marginal effect of X on Y is given by:

∆Y
∆X

= β2 +2 ·β3Xi. (5.11)

If we want to estimate the marginal effect of experience of wages and in addition
we allow for a nonlinear effect we can estimate:

wagei = β1 +β2experi +β3expersqi + εi, (5.12)

where wage is average hourly earnings, exper is years of experience and expersq
is the number of years of experience squared. The Gletl output is the following:

Model 1: OLS, using observations 1-526
Dependent variable: wage

coefficient std. error t-ratio p-value
----------------------------------------------------------
const 3.72541 0.345939 10.77 1.46e-024 ***
exper 0.298100 0.0409655 7.277 1.26e-012 ***
expersq -0.00612989 0.000902517 -6.792 3.02e-011 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 6496.147 S.E. of regression 3.524334
R-squared 0.092769 Adjusted R-squared 0.089300
F(2, 523) 26.73982 P-value(F) 8.77e-12
Log-likelihood -1407.455 Akaike criterion 2820.910
Schwarz criterion 2833.706 Hannan-Quinn 2825.920
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Fig. 5.1 Predicted values for Equation 5.12

ŵage= 3.72541
(0.34594)

+0.298100
(0.040966)

exper−0.00612989
(0.00090252)

expersq

N = 526 R̄2 = 0.0893 F(2,523) = 26.740 σ̂ = 3.5243
(standard errors in parentheses)

Here, the marginal effect of experience on average hourly wage is:

∆wage

∆exper
= 0.2981+2 · (−0.006)exper

= 0.2981−0.012exper.

For a person with 2 years of experience, the effect of an additional year of experience
on wage is 0.2741 (=0.2981 - 0.012 × 2) and for a person with 15 years of expe-
rience, the marginal effect of an additional year of experience is 0.1181 (=0.2981 -
0.012 × 15). Hence, we can say that for a reasonable range of years of experience,
experience has a positive effect on wage. In addition, this effect is smaller as you
accumulate more experience.

Figure 5.1 show the fitted regression line along with the 95% confidence interval
for the fitted values and the actual data. This figure clearly shows the nonlinear
marginal effect and innlustrates how wages increase with experience for about the
first 25 years, but then wages decrease later on.
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5.4 Interaction terms

A second popular approach to allow for the marginal effect to change over different
values of X is to include interaction terms in the regression equation. For example,

Y = β1 +β2X2 +β3(X2×X3)+ εi. (5.13)

In this case the marginal effect of X2 on Y depends on X3 is given by:

∆Y
∆X2

= β2 +β3X3. (5.14)

Consider the next example with the interaction between exper and educ in a wage
equation:

wagei = β1 +β2experi +β3(experi×educi)+ εi, (5.15)

where the marginal effect of experience on wage depends on the level of education:

∆wage

∆exper
= β2 +β3educ. (5.16)

When estimating this equation in Gretl we have to make sure we generate the inter-
action term first. That is, go to Add→ Define new variable and type:

expereduc = exper*educ

Then we are ready to estimate the equation via OLS. The regression output is:

Model 1: OLS, using observations 1-526
Dependent variable: wage

coefficient std. error t-ratio p-value
----------------------------------------------------------
const 4.88993 0.242730 20.15 3.11e-067 ***
exper -0.188124 0.0253904 -7.409 5.13e-013 ***
expereduc 0.0207731 0.00217625 9.545 5.17e-020 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 6020.313 S.E. of regression 3.392803
R-squared 0.159223 Adjusted R-squared 0.156008
F(2, 523) 49.52175 P-value(F) 2.01e-20
Log-likelihood -1387.449 Akaike criterion 2780.897
Schwarz criterion 2793.693 Hannan-Quinn 2785.908

ŵage= 4.88993
(0.24273)

−0.188124
(0.025390)

exper+0.0207731
(0.0021762)

expereduc

N = 526 R̄2 = 0.1560 F(2,523) = 49.522 σ̂ = 3.3928
(standard errors in parentheses)
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Here, the marginal effect of experience on wage is:

∆wage

∆exper
= −0.1881+0.0208educ

For a person with twelve years education (high school), the marginal effect from an
additional year of education is 0.0615 (=-0.1881+0.208×12). However, with more
education the marginal effect is larger. A person with 16 years of education (high
school + college) will have a marginal effect of 0.1447 (=-0.1881+0.208×16). No-
tice that for an important range of education the marginal effect is positive, meaning
that more experience leads to higher wages. In addition, the effect if larger if you
have more education. This means that going to school is not only good because it
directly increases your expected wage but also makes additional years of experience
more valuable.



Chapter 6
Analysis with Qualitative Information: Dummy
Variables

In previous chapters, the dependent and the independent variables in our regression
equations had a quantitative meaning. That is, the magnitude of the variable had
a useful information, for example, years of education, years of experience, unem-
ployment rate, or wage. In this chapter we will analyze how to introduce qualitative
information into a regression equation. Example of qualitative information includes
marital status, gender, race, industry (manufacturing, retail, etc.) or geographical
region (south, north, west, etc.).

6.1 Describing qualitative information

Qualitative factors often come in the form of binary information: a person is female
of male; a person does or does not own a computer; a person is married or not. In
all these cases the relevant information can be captured by a binary variable, also
called a dummy variable or zero-one variable. In defining a dummy variable we must
decide which event is assigned a value of one and which a value of zero. Table 6.1
shows how two dummy variables (female and married) look in the data set.

Table 6.1 A partial Listing of the Data in Wage.xls

person wage educ exper female married
1 3.10 11 2 1 0
2 3.24 12 22 1 1
3 3.00 11 2 0 0
4 6.00 8 44 0 1
5 5.30 12 7 0 1
...

...
...

...
...

...
525 11.56 16 5 0 1
526 3.50 14 5 1 0

47
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Fig. 6.1 Graph of wage= β0 +δ0female+β1educ for δ0 < 0.

6.2 A single dummy independent variable

The simplest case is when we have a single dummy independent variable. Let’s
consider the following model:

wage= β0 +δ0female+β1educ+ ε (6.1)

We use the parameter δ0 to emphasize the fact that female corresponds to a
dummy variable. If the person is a female we have female = 1, and if the person is
a male, we have female = 0. The parameter δ0 has the following interpretation: δ0
is the difference in hourly wage between females and males, given the same amount
of education (and the error term ε). Thus, the coefficient δ0 determines whether
there is discrimination against women: if δ0 < 0, it means that on average, women
earn less than men.

The interpretation of δ0 (when δ < 0) can be depicted graphically in Figure 6.1
as an intercept shift between males an females.

Let’s estimate the following more interesting model:

wage= β0 +δ0female+β1educ+β2exper+β1tenure+ ε (6.2)

The regression output in Gretl is:

Model 2: OLS, using observations 1-526
Dependent variable: wage
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coefficient std. error t-ratio p-value
---------------------------------------------------------
const -1.56794 0.724551 -2.164 0.0309 **
female -1.81085 0.264825 -6.838 2.26e-011 ***
educ 0.571505 0.0493373 11.58 9.09e-028 ***
exper 0.0253959 0.0115694 2.195 0.0286 **
tenure 0.141005 0.0211617 6.663 6.83e-011 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 4557.308 S.E. of regression 2.957572
R-squared 0.363541 Adjusted R-squared 0.358655
F(4, 521) 74.39801 P-value(F) 7.30e-50
Log-likelihood -1314.228 Akaike criterion 2638.455
Schwarz criterion 2659.782 Hannan-Quinn 2646.805

ŵage=−1.56794
(0.72455)

−1.81085
(0.26483)

female+0.571505
(0.049337)

educ+0.0253959
(0.011569)

exper

+0.141005
(0.021162)

tenure

N = 526 R̄2 = 0.3587 F(4,521) = 74.398 σ̂ = 2.9576
(standard errors in parentheses)

Where it is easy to see that δ0 = −1.81. If we want to test the null hypothesis
that there is no difference between men and women, H0 : δ0 = 0. The alternative
hypothesis is that there is discrimination against women, H1 : δ0 < 0. Based on the
p-value we reject the null and conclude that there is discrimination, females make
two dollars and twenty seven cents less per hour than males. This is after controlling
for differences in education, experience and tenure.

It is illustrative to additionally estimate the following equation:

wage= β0 +δ0female+ ε (6.3)

where we do not control for education, experience or tenure. The regression output
is:

Model 3: OLS, using observations 1-526
Dependent variable: wage

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 7.09949 0.210008 33.81 8.97e-134 ***
female -2.51183 0.303409 -8.279 1.04e-015 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 6332.194 S.E. of regression 3.476254
R-squared 0.115667 Adjusted R-squared 0.113979
F(1, 524) 68.53668 P-value(F) 1.04e-15
Log-likelihood -1400.732 Akaike criterion 2805.464
Schwarz criterion 2813.995 Hannan-Quinn 2808.804
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ŵage= 7.09949
(0.21001)

−2.51183
(0.30341)

female

N = 526 R̄2 = 0.1140 F(1,524) = 68.537 σ̂ = 3.4763
(standard errors in parentheses)

The expected (predicted) wage for females is ŵage = 7.099− 2.5121 = 4.587,
while the expected wage for males is ŵage= 7.099−2.5120= 7.099. This is not
controlling for differences in education, experience or tenure. Once we control for
those differences, the wage gap between these two groups is smaller and equal to
δ0 =−1.81.

What is the interpretation of the coefficient on a dummy variable if the dependent
variable is in logs? Here the coefficient has a percentage interpretation. Let’s say we
want to estimate the following equation:

logwage= β0 +δ0female+β1educ+β2exper+β3tenure+ ε (6.4)

that has the following Gretl estimation output:

̂logwage= 0.501348
(0.10190)

−0.301146
(0.037246)

female+0.0874623
(0.0069389)

educ+0.00462938
(0.0016271)

exper

+0.0173670
(0.0029762)

tenure

N = 526 R̄2 = 0.3876 F(4,521) = 84.072 σ̂ = 0.41596
(standard errors in parentheses)

The coefficient on female, δ0, implies that for the same levels of education, expe-
rience, and tenure, women earn approximately 100(0.301) = 30.1% less than men.

6.3 Dummy variables for multiple categories

One can use several dummy variables in the same equation. For example, we can
add the dummy variable married to Equation 6.3 to obtain:

wage= β0 +δ0female+δ1married+ ε (6.5)

In Gretl we have,

ŵage= 6.18043
(0.29634)

−2.29440
(0.30261)

female+1.33948
(0.30971)

married

N = 526 R̄2 = 0.1429 F(2,523) = 44.779 σ̂ = 3.4190
(standard errors in parentheses)

The coefficient on married gives the (approximate) difference in wages between
married and non married individuals. Based on these results, married individuals
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have higher hourly wages. On important restriction in Equation 6.5 is that it restricts
the effect of marital status on wages is the same whether you are male of female.
If we are interested in this difference we can estimate an alternative model with
additional categories. In particular we need four categories: (1) married men, (2)
married women (3) single men, and (4) single woman. We must select a base group
(for example, single men) and create the dummy variables for the other three groups.

marrmale = married× (1−female)
marrfem = married×female
singfem = (1−married)×female

The equation we want to estimate is:

logwage= β0 +δ0marrmale+δ1marrfem+δ2singfem+ ε (6.6)

and the estimation output is:

̂logwage= 1.5201
(0.050987)

+ 0.4267
(0.061554)

marrmale− 0.0797
(0.065524)

marrfem− 0.1316
(0.066804)

singfem

N = 526 R̄2 = 0.2087 F(3,522) = 47.149 σ̂ = 0.47284
(standard errors in parentheses)

The interpretation of each of the δ coefficients is with respect to the base group. For
example δ2 = 0.1316 means that single females earn approximately 13.16% lower
hourly wages than single men (the base group).

6.4 Incorporating ordinal information

Suppose we want to estimate the effect of city credit ratings on the municipal bond
interest rate (MBR). The credit rating (CR) is an ordinal variable and suppose it goes
from zero (worst credit) to four (best credit). Under these consideration, a potential
candidate for our model is:

MBR= β0 +β1CR+other f actors+ ε (6.7)

where other f actors are just other variables in the model. On concern with this spec-
ification is that it is hard to interpret one unit increase in CR. It is easy to talk about
an additional year of education or an additional year of income, but credit ratings
usually have only an ordinal meaning. Moreover, it is restrictive to assume that each
additional unit increase in CR has the same effect on MBR. An alternative approach
is to create separate dummy variables for each of the values of CR, that is,
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CR1 = 1 if CR= 1
= 0 otherwise.

CR2 = 1 if CR= 2
= 0 otherwise.

CR3 = 1 if CR= 3
= 0 otherwise.

CR4 = 1 if CR= 4
= 0 otherwise.

Then we can focus on estimating the following model:

MBR= β0 +δ1CR1 +δ2CR2 +δ3CR3 +other f actors+ ε (6.8)

Again, we omit one category (CR4) and the interpretation of the dummy coefficients
is relative to the omitted category. For example, δ2 represents the difference in mu-
nicipal bond interest rate between ratings CR2 and CR4.

6.5 Interactions involving dummy variables

Just as quantitative variables can have interactions, so can dummy variables. Actu-
ally, we revisit the estimation of Equation 6.6 to see that the same results can be
achieved by including the interaction term between female and married. The
model we want to estimate is:

logwage= β0+δ0female+δ1married+δ2(female×married)+ε (6.9)

Estimating in Gretl we have:

̂logwage= 1.5201
(0.050987)

− 0.1316
(0.066804)

female+ 0.4267
(0.061554)

married

− 0.3748
(0.085708)

female×married

N = 526 R̄2 = 0.2087 F(3,522) = 47.149 σ̂ = 0.47284
(standard errors in parentheses)

Notice that this regression output is equivalent as the one obtained from Equa-
tion 6.6.
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Fig. 6.2 Graph of wage= β0 +δ0female+β1educ+δ1educ×female.

6.5.1 Allowing for different slopes

Consider the case where we want to estimate the effect of education on hourly wage
and in addition, we want for the marginal effect to change based on your gender.
This can be done by interacting the educ with female and estimating the follow-
ing model:

wage= β0 +δ0female+β1educ+δ1(female×educ)+ ε (6.10)

A graphical approach to this problem in presented in Figure 6.2. The output in Gretl
is

ŵage= 0.200496
(0.84356)

−1.19852
(1.3250)

female+0.539476
(0.064223)

educ

−0.0859990
(0.10364)

female×educ

T = 526 R̄2 = 0.2555 F(3,522) = 61.070 σ̂ = 3.1865
(standard errors in parentheses)
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6.5.2 Testing for differences in regression functions across groups

So far we saw that interacting a dummy variable with other independent variables
is a powerful tool. Now, we can use this tool to test the null hypothesis that two
groups follow the same regression function, against the alternative that one or more
of the slopes differs across the two groups. Suppose we want to test whether the
same regression model describe college GPA for males and for females. The model
is

cumgpa= β0 +β1sat+β2hsperc+β3tothrs+ ε, (6.11)

where cumgpa is cumulative college GPA, sat is the SAT score, hsperc is the
high school rank percentile, and tothrs is the total hours of college courses. The
regression results in Gretl are

̂cumgpa= 0.929111
(0.22855)

+0.0009028
(0.000208)

sat−0.006379
(0.00157)

hsperc+ 0.01198
(0.000931)

tothrs

N = 732 R̄2 = 0.2323 F(3,728) = 74.717 σ̂ = 0.86711
(standard errors in parentheses)

To allow for a difference in the intercept we just need to include the dummy variable
female. Then, to allow differences in the slope parameters we need to include
interaction terms for each of the variables and female. That is

cumgpa = β0 +δ0female+β1sat+δ1sat ·female (6.12)
+ β2hsperc+δ2hsperc ·female
+ β3tothrs+δ3tothrs ·female+ ε

The parameter δ0 is the difference in the intercepts between females and males, δ1
is the slope difference with respect to sat between females and males, and so on.
The null hypothesis that cumgpa follows the same model for females and males is

H0 : δ0 = δ1 = δ2 = δ3 = 0 (6.13)

If at least one of the δ j is different from zero, then the model is different for men
and women. After creating the interaction terms, the estimated model in Gretl is

Model 2: OLS, using observations 1-732
Dependent variable: cumgpa

coefficient std. error t-ratio p-value
----------------------------------------------------------------
const 1.21398 0.264828 4.584 5.37e-06 ***
sat 0.000611312 0.000235026 2.601 0.0095 ***
hsperc -0.00596745 0.00177646 -3.359 0.0008 ***
tothrs 0.0103004 0.00109284 9.425 5.65e-020 ***
female -1.11364 0.528539 -2.107 0.0355 **
satfemale 0.00111674 0.000500034 2.233 0.0258 **
hspercfemale 5.07597e-05 0.00410253 0.01237 0.9901
tothrsfemale 0.00555989 0.00206958 2.686 0.0074 ***
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Mean dependent var 2.080861 S.D. dependent var 0.989617
Sum squared resid 534.3092 S.E. of regression 0.859067
R-squared 0.253652 Adjusted R-squared 0.246436
F(7, 724) 35.15106 P-value(F) 2.54e-42
Log-likelihood -923.4440 Akaike criterion 1862.888
Schwarz criterion 1899.654 Hannan-Quinn 1877.071

̂cumgpa= 1.21398
(0.26483)

+0.000611312
(0.00023503)

sat−0.00596745
(0.0017765)

hsperc+0.0103004
(0.0010928)

tothrs

−1.11364
(0.52854)

female+0.00111674
(0.00050003)

satfemale+5.07597e–005
(0.0041025)

hspercfemale

+0.00555989
(0.0020696)

tothrsfemale

N = 732 R̄2 = 0.2464 F(7,724) = 35.151 σ̂ = 0.85907
(standard errors in parentheses)

Now, to test the null hypothesis presented in Equation 6.13 from the window that
shows the regression output, we need to go to Tests→ Omit variables and
a new window will open. We then have to select the variables to omit. There are
female, satfemale, hspercfemale, and tothrsfemale. This will esti-
mate the restricted model and the comparison between the restricted model (Equa-
tion 6.11) and the full model (Equation 6.12),

Model 3: OLS, using observations 1-732
Dependent variable: cumgpa

coefficient std. error t-ratio p-value
-----------------------------------------------------------
const 0.929111 0.228552 4.065 5.32e-05 ***
sat 0.000902834 0.000207870 4.343 1.60e-05 ***
hsperc -0.00637913 0.00156785 -4.069 5.24e-05 ***
tothrs 0.0119779 0.000931383 12.86 2.96e-034 ***

Mean dependent var 2.080861 S.D. dependent var 0.989617
Sum squared resid 547.3649 S.E. of regression 0.867107
R-squared 0.235416 Adjusted R-squared 0.232265
F(3, 728) 74.71707 P-value(F) 3.87e-42
Log-likelihood -932.2797 Akaike criterion 1872.559
Schwarz criterion 1890.942 Hannan-Quinn 1879.651

Comparison of Model 2 and Model 3:

Null hypothesis: the regression parameters are zero for the variables
female, satfemale, hspercfemale, tothrsfemale

Test statistic: F(4, 724) = 4.4227, with p-value = 0.00154347
Of the 3 model selection statistics, 1 has improved.

The F statistics that Gretl is reporting comes from
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F =
RSS−RSSUR

RSSUR
· n−2k

q
, (6.14)

where RSS is the residual sum of squares of the model estimates in Equation 6.11
and RSSUR is the unrestricted model in Equation 6.12. n is the sample size, k is the
number of parameters we are estimating, and q is the number of restrictions when
comparing the model in Equation 6.11 and in Equation 6.12. Substituting the values
we obtain,

F =
547.3649−534.3092

534.3092
· 732−2 ·4

4
= 0.024434 ·181 = 4.4227, (6.15)

An alternative way to calculate this F statistic is to follow the formula,

F =
RSS− (RSS1 +RSS2)

RSS1 +RSS2
· n−2k

k
, (6.16)

where RSS is the residual sum of squares of the model estimates in Equation 6.11.
RSS1 and RSS2 are the residual sum of squares of the model estimated in Equa-
tion 6.11 using only the females in the sample (RSS1) and using only the males in
the sample (RSS2). As before, n is the sample size and k is the number of parameters
we are estimating. The estimation of Equation 6.11 with just females is:

Model 5: OLS, using observations 1-180
Dependent variable: cumgpa

coefficient std. error t-ratio p-value
----------------------------------------------------------
const 0.100346 0.481095 0.2086 0.8350
sat 0.00172805 0.000464216 3.723 0.0003 ***
hsperc -0.00591669 0.00388949 -1.521 0.1300
tothrs 0.0158603 0.00184854 8.580 4.82e-015 ***

Mean dependent var 2.268611 S.D. dependent var 1.126549
Sum squared resid 143.6897 S.E. of regression 0.903559
R-squared 0.367483 Adjusted R-squared 0.356702
F(3, 176) 34.08447 P-value(F) 2.03e-17
Log-likelihood -235.1319 Akaike criterion 478.2638
Schwarz criterion 491.0356 Hannan-Quinn 483.4422

and with just males is:

Model 6: OLS, using observations 1-552
Dependent variable: cumgpa

coefficient std. error t-ratio p-value
-----------------------------------------------------------
const 1.21398 0.260270 4.664 3.90e-06 ***
sat 0.000611312 0.000230981 2.647 0.0084 ***
hsperc -0.00596745 0.00174588 -3.418 0.0007 ***
tothrs 0.0103004 0.00107403 9.590 3.06e-020 ***

Mean dependent var 2.019638 S.D. dependent var 0.933655
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Sum squared resid 390.6194 S.E. of regression 0.844280
R-squared 0.186740 Adjusted R-squared 0.182288
F(3, 548) 41.94377 P-value(F) 2.06e-24
Log-likelihood -687.8093 Akaike criterion 1383.619
Schwarz criterion 1400.873 Hannan-Quinn 1390.360

Using the formula in Equation 6.17,

F =
547.3649− (143.6897+390.6194)

143.6897+390.6194
· 732−2 ·4

4
= 0.024434 ·181 = 4.4227,

(6.17)
which is the same result as in Equation 6.15. This version of the F test is know also
as the Cho test. A large F statistic is evidence against the null hypothesis. In our
example the F statistic of 4.4227 has an associated p-value of 0.0015, below the
usual 0.05 (or 5%). Hence, we reject the null hypothesis that there is no difference
between the equation for females and the equation for males. This means that there
is difference and we are better off estimating Equation 6.12 instead of Equation 6.11.

The key to estimate Equation 6.11 with just the female portion of the data change
the sample. To do this go to Sample→ Restrict, based on criterion...,
then after a new window shows up, select the “use dummy variable” and then
female. Once the sample is restricted, just estimate the model using Ordinary
Least Squares again.

6.6 The dummy variable trap

The dummy variable trap occurs when there is an exact linear relationship among
the variables in the regression model. That is the reason why we do not include
female and male in the same regression equation because female + male =
1. The same occurs when we have more than one category and we should always
omit one of the categories (base group). Than is why singmen does not appear in
Equation 6.6 (marrmale + singmale + marrfem + singfem = 1).





Chapter 7
Specification of Regression Variables

So far we assumed we know what are the variables that needed to be in our regres-
sion model. However, what happens if we include in the regression model a variable
that should not be there? What if we leave out a variable that should be included?
Can we a proxy for a variable that we do not observe? These are the main question
this chapter will address.

7.1 Model specification

What happens in practice is that it is difficult to be sure about the correct specifica-
tion of the regression model. While theory may help, it usually depends on simpli-
fying assumptions that may not necessarily hold. The properties of the regression
estimates depend crucially on the validity of the specification of the model. The
following is a quick summary of the consequences of misspecifying the regression
model:

1. If you leave out a variable that should be included. The regression estimates are
potentially biased. The standard errors of the coefficients and the corresponding
t and F tests are in general invalid.

2. If you include a variable that should not be in the model. The coefficients will
not be biased, but they are potentially inefficient.

7.2 Omitting a variable

7.2.1 The bias problem

Suppose that the true regression model that we should be estimated is given by
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Y = β1 +β2X2 +β3X3 +u. (7.1)

However, we do not have the variable X3 or maybe we have it but we do not include
it in the model. Hence, we estimate the following model

Y = β1 +β2X2 +u. (7.2)

Then the predicted or fitted values are

Ŷ = b1 +b2X2 (7.3)

Recall from previous chapters that the formula to estimate b2 is given by

b2 =
∑

n
i=1(X2i− X̄2)(Yi− Ȳ )

∑
n
i=1(X2i− X̄2)2 (7.4)

We say that b2 is unbiased if its expected value is equal to the true population pa-
rameter β2. If we plug Equation 7.1 into Equation 7.4 and take expectations we
obtain

E[b2] = E
[

∑
n
i=1(X2i− X̄2)(Yi− Ȳ )

∑
n
i=1(X2i− X̄2)2

]
(7.5)

= β2 +β3
∑

n
i=1(X2i− X̄2)(X3i− X̄3)

∑
n
i=1(X2i− X̄2)2 .

For b2 to be unbiased we need that the second term on the right-hand side be equal
to zero. This term is known as the omitted variable bias and it will be zero if β3 = 0
or if ∑

n
i=1(X2i− X̄2)(X3i− X̄3)/∑

n
i=1(X2i− X̄2)

2 is equal to zero. Then the conditions
for b2 to be unbiased in the estimation of Equation 7.2 are:

1. That X3 does not affect Y . That is, β3 = 0.
2. That X2 and X3 are linearly uncorrelated. That is, the slope coefficient when we

regress X3 on X2 os zero, ∑
n
i=1(X2i− X̄2)(X3i− X̄3)]/[∑

n
i=1(X2i− X̄2)

2 = 0.

7.2.2 Invalid statistical tests

When a variable is omitted from the model, the standard errors of the coefficients
and the texts statistics are generally invalid. This means that the t and F tests cannot
be used.

7.2.3 Example

Consider the case where the true model to explain wages is given by
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wage= β1 +β2educ+β3ability+u. (7.6)

That is, your wage is determined by your number of years of formal education
(educ) and your ability. The problem in this equation is that actually it is very
difficult to measure ability. Hence, we decide omit it and estimate the following
model

wage= β1 +β2educ+u. (7.7)

What is the problem with the estimate of β2 if we use Equation 7.7? Is is biased! To
get an idea of the size of the bias we will proxy ability with another variable,
IQ. Equation 7.5 becomes

E[b2] = β2 +β3
∑

n
i=1(educi−educ)(IQi−IQ)

∑
n
i=1(educi−educ)2 . (7.8)

Notice that we can actually analyze if the bias is positive or negative based on the
signs of the second part on the right-hand size. It seems that β3 should be positive
because higher ability (or IQ) should be correlated positively with wages. Moreover,
the part that multiplies β3 should also be positive because education and ability (or
IQ) seem to be positively correlated. Hence, the whole second part on the right-hand
side is positive, implying that β2 is biased upwards. This means that on average
we will be getting a larger coefficient (by estimating Equation 7.7) than the true
coefficient (if we were estimating the true Equation 7.6).

Let’s look at this empirically by estimating Equations 7.6 and 7.7 with real data
(where we use IQ in place of ability):

Model 1: OLS, using observations 1-935
Dependent variable: wage

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 146.952 77.7150 1.891 0.0589 *
educ 60.2143 5.69498 10.57 9.35e-025 ***

Mean dependent var 957.9455 S.D. dependent var 404.3608
Sum squared resid 1.36e+08 S.E. of regression 382.3203
R-squared 0.107000 Adjusted R-squared 0.106043
F(1, 933) 111.7929 P-value(F) 9.35e-25
Log-likelihood -6885.458 Akaike criterion 13774.92
Schwarz criterion 13784.60 Hannan-Quinn 13778.61

ŵage= 146.952
(77.715)

+60.2143
(5.6950)

educ

N = 935 R̄2 = 0.1060 F(1,933) = 111.79 σ̂ = 382.32
(standard errors in parentheses)

Model 2: OLS, using observations 1-935
Dependent variable: wage

coefficient std. error t-ratio p-value



62 7 Specification of Regression Variables

---------------------------------------------------------
const -128.890 92.1823 -1.398 0.1624
educ 42.0576 6.54984 6.421 2.15e-010 ***
IQ 5.13796 0.955827 5.375 9.66e-08 ***

Mean dependent var 957.9455 S.D. dependent var 404.3608
Sum squared resid 1.32e+08 S.E. of regression 376.7300
R-squared 0.133853 Adjusted R-squared 0.131995
F(2, 932) 72.01515 P-value(F) 8.27e-30
Log-likelihood -6871.185 Akaike criterion 13748.37
Schwarz criterion 13762.89 Hannan-Quinn 13753.91

ŵage=−128.890
(92.182)

+42.0576
(6.5498)

educ+5.13796
(0.95583)

IQ

N = 935 R̄2 = 0.1320 F(2,932) = 72.015 σ̂ = 376.73
(standard errors in parentheses)

The empirical results are consistent with our theoretical analysis. The estimate of β2
in Equation 7.7 is too large (upward biased). The bias can be obtained separately by
estimating a regression of IQ on educ and then plugging the results in Equation 7.8

Model 3: OLS, using observations 1-935
Dependent variable: IQ

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 53.6872 2.62293 20.47 3.36e-077 ***
educ 3.53383 0.192210 18.39 1.16e-064 ***

Mean dependent var 101.2824 S.D. dependent var 15.05264
Sum squared resid 155346.5 S.E. of regression 12.90357
R-squared 0.265943 Adjusted R-squared 0.265157
F(1, 933) 338.0192 P-value(F) 1.16e-64
Log-likelihood -3716.973 Akaike criterion 7437.946
Schwarz criterion 7447.627 Hannan-Quinn 7441.637

ÎQ= 53.6872
(2.6229)

+3.53383
(0.19221)

educ

N = 935 R̄2 = 0.2652 F(1,933) = 338.02 σ̂ = 12.904
(standard errors in parentheses)

Replacing the valued in Equation 7.8

E[b2] = β2 +β3
∑

n
i=1(educi−educ)(IQi−IQ)

∑
n
i=1(educi−educ)2 . (7.9)

= β2 +5.13796×3.53383
= β2 +18.15667
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That is exactly the difference between the coefficients in Equations 7.6 and 7.7,
60.2143 - 42.0576 = 18.15667.

7.3 Including a variable that should not be included

Suppose that the true population model is given by

Y = β1 +β2X2 +u. (7.10)

However, for some season you include X3 and end up estimating the following
model

Y = β1 +β2X2 +β3X3 +u. (7.11)

In a regression model like Equation 7.11 with two variables (X2 and X3) the OLS
estimator for b2 is given by

b2 =
∑

n
i=1(X2i− X̄2)(Yi− Ȳ )∑

n
i=1(X3i− X̄3)

2

∑
n
i=1(X2i− X̄2)2 ∑

n
i=1(X3i− X̄3)2−

(
∑

n
i=1(X2i− X̄2)(X3i− X̄3)

)2

− ∑
n
i=1(X3i− X̄3)(Yi− Ȳ )∑

n
i=1(X2i− X̄2)(X3i− X̄3)

∑
n
i=1(X2i− X̄2)2 ∑

n
i=1(X3i− X̄3)2−

(
∑

n
i=1(X2i− X̄2)(X3i− X̄3)

)2 (7.12)

Which is certainly different from the OLS estimator for b2 in Equation 7.10,

b2 =
∑

n
i=1(X2i− X̄2)(Yi− Ȳ )

∑
n
i=1(X2i− X̄2)2 (7.13)

Interestingly, b2 in both Equations (7.12 and 7.13) is unbiased, E(b2) = β2. Hence,
estimating the effect of X2 on Y will yield unbiased estimates even if we include
irrelevant variables. Then, what is the problem? Including irrelevant variables will
inflate the standard errors of the coefficients. This means that the estimate b2 from
Equation 7.11 will be inefficient. The implied population variance of b2 in Equa-
tion 7.11 is

σ
2
b2
=

σ2
u

∑
n
i=1(X2i− X̄2)2 ·

1
(1− r2

X2X3
)

(7.14)

where r2
X2X3

is the correlation coefficient between X2 and X3, while the population
variance of b2 in Equation 7.10 is

σ
2
b2
=

σ2
u

∑
n
i=1(X2i− X̄2)2 . (7.15)

Notice that because 0≤ r2
X2X3
≤ 1, the population variance in Equation 7.15 is larger

than the implied population variance in Equation 7.14. Actually, they will be equal if
r2

X2X3
= 0, that is, if X2 and X3 are linearly uncorrelated. Moreover, when linearly un-
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correlated ∑
n
i=1(X2i− X̄2)(X3i− X̄3) = 0, then Equation 7.12 reduces to 7.13, mean-

ing that including X3 in the equation will not affect the estimation of β2. While the
population variances are the same, the estimated (sample) variances will still differ
due to a reduction in the degrees of freedom.

7.3.1 Example

Consider the following model where we want to see how age affects the likelihood
of being married. Are older people more likely to be married? Well, let’s estimate
the exact response of married to age,1

married= β1 +β2age+ ε (7.16)

The estimation results from Gretl are

Model 1: OLS, using observations 1-935
Dependent variable: married

coefficient std. error t-ratio p-value
--------------------------------------------------------
const 0.540935 0.107608 5.027 5.98e-07 ***
age 0.0106442 0.00323870 3.287 0.0011 ***

Mean dependent var 0.893048 S.D. dependent var 0.309217
Sum squared resid 88.28274 S.E. of regression 0.307608
R-squared 0.011445 Adjusted R-squared 0.010385
F(1, 933) 10.80160 P-value(F) 0.001052
Log-likelihood -223.4066 Akaike criterion 450.8133
Schwarz criterion 460.4944 Hannan-Quinn 454.5047

̂married= 0.540935
(0.10761)

+0.0106442
(0.0032387)

age

N = 935 R̄2 = 0.0104 F(1,933) = 10.802 σ̂ = 0.30761
(standard errors in parentheses)

If the average age in the sample is 33 years of age, the predicted value for
married is 89.2 ( ̂married = 0.5409 + 0.0106× 33). This means that if you
are 33 years old, the probability that you are married is 89.2%. In addition, every
year you get older, the probability that you are married increases by 0.011 or about
1.%. For some reason you think that only fools get married and then you decide to
wrongly estimate the model

married= β1 +β2age+β3IQ+ ε (7.17)

1 Because married is actually a dummy variable this is a linear probability model, a type of
model that we will see in detail in Chapter 9.
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where the variable IQ is X3 in Equation 7.11 and should not be in the model. The
estimation results from Gretl are

Model 2: OLS, using observations 1-935
Dependent variable: married

coefficient std. error t-ratio p-value
----------------------------------------------------------
const 0.563197 0.129804 4.339 1.59e-05 ***
age 0.0106007 0.00324337 3.268 0.0011 ***
IQ -0.000205573 0.000669635 -0.3070 0.7589

Mean dependent var 0.893048 S.D. dependent var 0.309217
Sum squared resid 88.27381 S.E. of regression 0.307757
R-squared 0.011545 Adjusted R-squared 0.009424
F(2, 932) 5.442677 P-value(F) 0.004467
Log-likelihood -223.3594 Akaike criterion 452.7187
Schwarz criterion 467.2404 Hannan-Quinn 458.2559

̂married= 0.563197
(0.12980)

+0.0106007
(0.0032434)

age−0.000205573
(0.00066963)

IQ

N = 935 R̄2 = 0.0094 F(2,932) = 5.4427 σ̂ = 0.30776
(standard errors in parentheses)

Not surprisingly, the effect of IQ on married is not significant. This means that
fools are not more likely to be married. However, the results do not necessarily
support the conjecture that higher IQ is associated with married people either. Nev-
ertheless, including IQ does not seems to help in the estimation of β2. As we have
seen theoretically, the estimate of the second equation is less efficient as can be
appreciated from its larger standard error (0.003243 > 0.003239).

7.4 Testing a linear restriction

Testing linear restriction on the regression coefficients is sometimes very useful.
Consider the following regression model,

logwage= β1 +β2exper+β3educ+ ε (7.18)

The regression output in Gretl is
Model 1: OLS, using observations 1-935
Dependent variable: logwage

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 5.50271 0.112037 49.12 8.13e-261 ***
educ 0.0777820 0.00657687 11.83 3.62e-030 ***
exper 0.0197768 0.00330251 5.988 3.02e-09 ***
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Mean dependent var 6.779004 S.D. dependent var 0.421144
Sum squared resid 143.9786 S.E. of regression 0.393044
R-squared 0.130859 Adjusted R-squared 0.128994
F(2, 932) 70.16174 P-value(F) 4.13e-29
Log-likelihood -452.0704 Akaike criterion 910.1407
Schwarz criterion 924.6624 Hannan-Quinn 915.6779

̂logwage= 5.50271
(0.11204)

+0.0777820
(0.0065769)

educ+0.0197768
(0.0033025)

exper

N = 935 R̄2 = 0.1290 F(2,932) = 70.162 σ̂ = 0.39304
(standard errors in parentheses)

Let’s say that we want to text whether the effect of a year on education on wages is
the same as the effect of a year of experience of wages. That is, we want to text the
following null hypothesis,

H0 : β2 = β3 (7.19)

While it may be tempting to just look and compare the regression estimates b2 and
b3, this approach is not correct. Remember that b2 and b3 are just estimates and are
not the unknown β2 and β3. The statistically correct approach is to run an auxiliary
restricted regression where we force b2 = b3. Then, we have to compare if the re-
gression fit with the restricted coefficients is significantly lower that the regression
fit with the unrestricted (original) regression. To do this we calculate the residual
sum of squares from the restricted model (RSSR) and the residual sum of squares
from the unrestricted model (RSSU ) and calculate the following F statistic:

Fr,n−k =
(RSSR−RSSU )/r

RSSU/(n− k)
(7.20)

where F is distributed with r and n− k degrees of freedom. The number of restric-
tions r is equal to one in our example.

This is done automatically in Gretl. After you estimate the unrestricted regression
model, in the regression output window you have to go to Tests → Linear
restrictions and a new window will open. In the new window you have to
type the command b[educ] - b[exper] = 0 to obtain

Restriction:
b[educ] - b[exper] = 0

Test statistic: F(1, 932) = 97.8892, with p-value = 5.14357e-022

Restricted estimates:

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 6.24122 0.0877816 71.10 0.0000 ***
educ 0.0214837 0.00346501 6.200 8.46e-010 ***
exper 0.0214837 0.00346501 6.200 8.46e-010 ***

Standard error of the regression = 0.412948
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The calculated F-statistics (that used Equation 7.20) is 97.8892 with an associated
p-value that is below 0.05. This means that the fit in the two regression equations is
significantly different and we reject the null hypothesis presented in Equation 7.19.
We conclude that the effect of education and experience have a significantly differ-
ent effect on wages.

If you want to test whether education had four times the effect on wages than
experience, the null is

H0 : β2 = 4×β3 (7.21)

The command in Gretl is b[educ] - 4*b[exper] = 0 to have

Restriction:
b[educ] - 4*b[exper] = 0

Test statistic: F(1, 932) = 0.0126711, with p-value = 0.910399

Restricted estimates:

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 5.50597 0.108181 50.90 1.89e-271 ***
educ 0.0778171 0.00656598 11.85 2.78e-030 ***
exper 0.0194543 0.00164150 11.85 2.78e-030 ***

Standard error of the regression = 0.392836

Notice that the F-statistics is fairly small and has a p-value that is now greater than
5%. We do not reject the null hypothesis and conclude that, on average, one year of
education has four times the effect on wages than one year of experience.





Chapter 8
Heteroscedasticity

The fourth assumption in the estimation of the coefficients via ordinary least squares
is the one of homoscedasticity. This means that the error terms ui in the linear re-
gression model have a constant variance across all observations i,

σ
2
ui
= σ

2
u for all i. (8.1)

When this assumption does not hold, and σ2
ui

changes across i we say we have an
heteroscedasticity problem. This chapter discusses the problems associated with het-
eroscedastic errors, presents some tests for heteroscedasticity and points out some
possible solutions.

8.1 Heteroscedasticity and its implications

What happens if the errors are heteroscedasticity? The good news is that under het-
eroscedastic errors, OLS is still unbiased. The bad news is that we will obtain the
incorrect standard errors of the coefficients. This means that the t and the F tests that
we discussed in earlier chapters are no longer valid. Figure 8.1 shows the regression
equation wage = β0 + β1educ + u with heteroscedastic errors. The variance of ui
increases with higher values of educ.

8.2 Testing for heteroscedasticity

8.2.1 Breusch-Pagan test

Given the linear regression model

Y = β1 +β2X2 +β3X3 + · · ·+βK +u (8.2)
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Fig. 8.1 wage = β0 + β1educ + u with heteroscedastic errors.

we know that OLS is unbiased and consistent if we assume E[u|X2,X3, . . . ,XK ] = 0.
Let the null hypothesis that we have homoscedastic errors be

H0 : Var[u|X2,X3, . . . ,XK ] = σ
2. (8.3)

Because we are assuming that u has zero conditional expectation, Var[u|X2,X3, . . . ,XK ] =
E[u2|X2,X3, . . . ,XK ], and so the null hypothesis of homoscedasticity is equivalent to

H0 : E[u2|X2,X3, . . . ,XK ] = σ
2. (8.4)

This shows that if we want to test for violation of the homoscedasticity assump-
tion, we want to test whether E[u2|X2,X3, . . . ,XK ] is related to one or more of the
independent variables. If H0 is false, E[u|X2,X3, . . . ,XK ] can be any function of the
independent variables. A simple approach is to assume a linear function

u2 = δ1 +δ2X1 +δ3X3 + · · ·+δKXK + ε, (8.5)

where ε is an error term with mean zero given X2, X3, . . . , XK . The null hypothesis
for homoscedasticity is:

H0 : δ1 = δ2 = δ3 = · · ·= δK = 0. (8.6)

Under the null, it is reasonable to assume that ε is independent of X2, X3, . . . , XK . To
be able to implement this test, we follow a two step procedure. In the first step we
estimate Equation 5.14 via OLS. We estimate the residuals, square them and then
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estimate the following equation:

û2 = δ1 +δ2X1 +δ3X3 + · · ·+δKXK + error. (8.7)

We can then easily compute the F statistic for the joint significance of all vari-
ables X2, X3, . . . , XK . Using OLS residuals in place of the errors does not affect
the large sample distribution of the F statistic. An additional LM statistic to test for
heteroscedasticity can be constructed based on the R2

û2 obtained from Equation 8.7:

LM = n ·R2
u2 . (8.8)

Under the null hypothesis, LM is distributed asymptotically as χ2
K−1. This LM ver-

sion of the test is called the Breusch-Pagan test for heteroscedasticity.

8.2.2 Breusch-Pagan test in Gretl

As an example, consider once again our wage equation

wage= β1 +β2educ+u (8.9)

Once we estimated the model in Gretl

ŵage = 146.952
(77.715)

+60.2143
(5.6950)

educ

N = 935 R̄2 = 0.1060 F(1,933) = 111.79 σ̂ = 382.32
(standard errors in parentheses)

In the regression output window, go to Tests → Heteroskedasticity →
Breusch-Pagan to obtain

Breusch-Pagan test for heteroskedasticity
OLS, using observations 1-935
Dependent variable: scaled uhatˆ2

coefficient std. error t-ratio p-value
--------------------------------------------------------
const -0.885844 0.450097 -1.968 0.0494 **
educ 0.140019 0.0329833 4.245 2.40e-05 ***

Explained sum of squares = 88.3581

Test statistic: LM = 44.179066,
with p-value = P(Chi-square(1) > 44.179066) = 0.000000

Notice how Gretl reports the auxiliary regression presented in Equation 8.7 and
the LM statistic from Equation 8.8. The large LM statistic associated with a small p-
value (below 0.05 or 5%) indicates that we reject the null hypothesis of homoscedas-
ticity. Hence, we have heteroscedaticity in the model of Equation 8.9.
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8.2.3 White test

White (1980) proposed a test for heteroscedasticity that that adds the squares and
cross products of all the independent variables to Equation 8.2. In a model with only
three independent variables, the White test is based on the estimation of:

û2 = δ1 +δ2X2 +δ3X3 +δ4X4 +δ5X2
2 +δ6X2

3 +δ7X2
4 (8.10)

δ8X2 ·X3 +δ9X2 ·X4 +δ10X3 ·X4 + error.

Compared with the Breusch-Pagan test (see Equation 8.7), Equation 8.10 has more
regressors. The White test for heteroscedasticity is based on the LM statistic for
testing that all the δ j in Equation 8.10 are zero, except for the intercept.

8.2.4 White test in Gretl

We not use Gretl to test for heteroscedasticity in Equation 8.9 using the White test.
In the regression output window, go to Tests → Heteroskedasticity →
White’s test to obtain

White’s test for heteroskedasticity
OLS, using observations 1-935
Dependent variable: uhatˆ2

coefficient std. error t-ratio p-value
----------------------------------------------------------
const -126650 435765 -0.2906 0.7714
educ 20049.7 63065.6 0.3179 0.7506
sq_educ 13.2563 2234.63 0.005932 0.9953

Unadjusted R-squared = 0.018950

Test statistic: TRˆ2 = 17.717812,
with p-value = P(Chi-square(2) > 17.717812) = 0.000142

Consistent with the Breusch-Pagan test, here the White test has a large LM statistic
(labeled TRˆ2 following LM = n ·R2

u2 as in Equation 8.8) associated with a small p-
value (smaller than 5%). Hence, we reject the null of homoscedasticity and conclude
that our model is heteroscedastic.

8.3 What to do with heteroscedasticity?

There is a number of possible solutions when heteroscedastic errors are found. This
section proposes three ways to solve the heteroscedasticity problem. First, a simple
transformation of the variables; second, the use of weighted least squares; and third,
the use of heteroscedasticity-robust standard errors.



8.3 What to do with heteroscedasticity? 73

8.3.1 Simple transformation of the variables

An easy way to obtain homoscedastic errors is to come up with a simple transfor-
mation of the variables. Let’s revisit the estimation of Equation 8.9, but this time
with a simple logarithm transformation of wages,

logwage= β1 +β2educ+u (8.11)

The Gretl regression output is

̂logwage= 5.97306
(0.081374)

+0.0598392
(0.0059631)

educ

N = 935 R̄2 = 0.0964 F(1,933) = 100.70 σ̂ = 0.40032
(standard errors in parentheses)

Now, if we want to test for the existence of heteroscedasticity we go to Tests→
Heteroskedasticity→ Breusch-Pagan to obtain

Breusch-Pagan test for heteroskedasticity
OLS, using observations 1-935
Dependent variable: scaled uhatˆ2

coefficient std. error t-ratio p-value
-------------------------------------------------------
const 0.689778 0.329663 2.092 0.0367 **
educ 0.0230332 0.0241578 0.9534 0.3406

Explained sum of squares = 2.391

Test statistic: LM = 1.195499,
with p-value = P(Chi-square(1) > 1.195499) = 0.274223

Notice that the p-value associated with this test is above 0.05. Hence, we fail to
reject the null of homoscedasticity. Compare this homoscedasticity results with the
heteroscedastic errors found earlier when the variable wage was not in logs.

8.3.2 Weighted Least Squares

We want to estimate the following regression model

Y = β1 +β2X2 +β3X3 + · · ·+βKXK +u, (8.12)

but the errors u are heteroscedastic. When one is willing to assume that the het-
eroscedasticity appears as some function of X2, X3, . . . , XK , one can use Weighted
Least Squares (WLS) to obtain homoscedastic errors. Let’s say that the variance of
u can be approximated using
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u2 = σ
2 exp(δ1 +δ2X2 +δ3X3 + · · ·+δKXK)η , (8.13)

where η is a random variable with mean equal to unity. If we assume that η is
independent from X2, X3, . . . , XK we have

log(u2) = α1 +δ2X2 +δ3X3 + · · ·+δKXK + ε. (8.14)

To be able to implement this procedure, we replace the unobserved u with the OLS
estimated residuals û to estimate:

log(û2) = α1 +δ2X2 +δ3X3 + · · ·+δKXK + ε. (8.15)

Finally, once Equation 8.15 is estimated, we obtain the fitted values and calculate
the exponent to obtain

ĥi = exp( ̂log(û2)). (8.16)

We can use this ĥi as a weight in a Weighted Least Squares regression to solve the
heteroscedasticity problem. That is, we estimate the following weighted equation

Y
ĥ
= β1

1
ĥ
+β2

X2

ĥ
+β3

X3

ĥ
+ · · ·+βK

XK

ĥ
+

u
ĥ
. (8.17)

Notice that Equation 8.17 is just Equation 8.12 divided by the weight ĥi. The new
error term u/ĥ should be homoscedastic.

8.3.3 Weighted Least Squares in Gretl

Consider the following model

sav= β1 +β2inc+u (8.18)

where sav is savings and inc is income. The Gretl output is

Model 1: OLS, using observations 1-100
Dependent variable: sav

coefficient std. error t-ratio p-value
--------------------------------------------------------
const 124.842 655.393 0.1905 0.8493
inc 0.146628 0.0575488 2.548 0.0124 **

Mean dependent var 1582.510 S.D. dependent var 3284.902
Sum squared resid 1.00e+09 S.E. of regression 3197.415
R-squared 0.062127 Adjusted R-squared 0.052557
F(1, 98) 6.491778 P-value(F) 0.012391
Log-likelihood -947.8935 Akaike criterion 1899.787
Schwarz criterion 1904.997 Hannan-Quinn 1901.896

and the Breusch-Pagan test for heteroscedasticity yields
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Breusch-Pagan test for heteroskedasticity
OLS, using observations 1-100
Dependent variable: scaled uhatˆ2

coefficient std. error t-ratio p-value
--------------------------------------------------------
const 0.0457266 1.14381 0.03998 0.9682
inc 9.59914e-05 0.000100436 0.9557 0.3416

Explained sum of squares = 28.444

Test statistic: LM = 14.221987,
with p-value = P(Chi-square(1) > 14.221987) = 0.000162

That is, we have heteroscedastic errors.
To estimate the WLS regression

sav

ĥ
= β1

1
ĥ
+β2

inc

ĥ
+

u
ĥ
, (8.19)

in the Gretl main window we have to go to Model→ Other linear models
→ Heteroskedasticity corrected to get the following computer output

Model 2: Heteroskedasticity-corrected, using observations 1-100
Dependent variable: sav

coefficient std. error t-ratio p-value
--------------------------------------------------------
const -233.130 460.844 -0.5059 0.6141
inc 0.185993 0.0616965 3.015 0.0033 ***

Statistics based on the weighted data:

Sum squared resid 1043.864 S.E. of regression 3.263689
R-squared 0.084866 Adjusted R-squared 0.075527
F(1, 98) 9.088089 P-value(F) 0.003276
Log-likelihood -259.1695 Akaike criterion 522.3391
Schwarz criterion 527.5494 Hannan-Quinn 524.4478

Statistics based on the original data:

Mean dependent var 1582.510 S.D. dependent var 3284.902
Sum squared resid 1.01e+09 S.E. of regression 3205.216

ŝav=−233.130
(460.84)

+0.185993
(0.061697)

inc

N = 100 R̄2 = 0.0755 F(1,98) = 9.0881 σ̂ = 3.2637
(standard errors in parentheses)

The estimates of the standard errors can now be used for inferences. The statistically
significant coefficient on inc indicates that the marginal propensity to save out of
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your income is 0.18. Of every additional dollar that you make, you will save 18
cents.

8.3.4 White’s heteroscedasticity-consistent standard errors

Even under the presence of heteroscedastic errors, at least in large samples a con-
sistent estimator of the variances of the coefficients can be obtained via White’s
heteroscedasticity-consistent standard errors. This procedure leaves the OLS coef-
ficients unaffected. For the estimation of Equation 8.18 you just have to make sure
to select the option Robust standard errors in the Gretl “specify model”
window when you estimate the model via OLS

Model 3: OLS, using observations 1-100
Dependent variable: sav
Heteroskedasticity-robust standard errors, variant HC1

coefficient std. error t-ratio p-value
--------------------------------------------------------
const 124.842 528.219 0.2363 0.8137
inc 0.146628 0.0613441 2.390 0.0187 **

Mean dependent var 1582.510 S.D. dependent var 3284.902
Sum squared resid 1.00e+09 S.E. of regression 3197.415
R-squared 0.062127 Adjusted R-squared 0.052557
F(1, 98) 5.713342 P-value(F) 0.018748
Log-likelihood -947.8935 Akaike criterion 1899.787
Schwarz criterion 1904.997 Hannan-Quinn 1901.896

Notice that the constant and slope coefficients are the same as before. However, the
estimated standard errors are different.



Chapter 9
Binary Choice Models

Some time we are interested in analyzing binary response or qualitative response
variables that have outcomes Y equal to 1 when the even occurs and equal to 0 when
the event does not occur. Some example include going to college, getting married,
buying a house, or getting a job. All these cases involve a yes/no answer. How is this
yes/no answer affected by other variables? That is the subject matter of this chapter.

9.1 The linear probability model

9.1.1 The model

The simplest binary choice model is the linear probability model, where as its name
suggests, the probability of the event occurring, p, is assumed to be a linear function
of a set of explanatory variable. If we only have one variable the model is

pi = p(Yi = 1) = β1 +β2Xi. (9.1)

The response variable Yi can be written as the summation of its deterministic and its
random component,

Yi = E(Yi|Xi)+ui. (9.2)

It is simple to compute E(Yi|Xi), the expected value of Yi given Xi, because Y takes
only two values. It is 1 with probability pi and 0 with probability 1− pi,

E(Yi|Xi) = 1× pi +0× (1− pi) = pi = β1 +β2Xi. (9.3)

This means that we can write the model as

Yi = β1 +β2Xi +ui, (9.4)

77
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that is just the same model we have been estimating in previous chapters. The big
difference is that Yi takes only the values 0 and 1.

9.1.2 The linear probability model in Gretl

Let’s estimate the following model

inlfi = β1 +β2educi +β3faminci +ui, (9.5)

where inlf is equal to one if individual i is in the labor force, zero otherwise,
educ is the number of years of education and faminc is the family income. The
regression command in Gretl is the same as before.

Model 1: OLS, using observations 1-753
Dependent variable: inlf

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 0.0689887 0.0973736 0.7085 0.4789
educ 0.0379040 0.00835610 4.536 6.67e-06 ***
faminc 1.45940e-06 1.56306e-06 0.9337 0.3508

Mean dependent var 0.568393 S.D. dependent var 0.495630
Sum squared resid 178.0367 S.E. of regression 0.487219
R-squared 0.036221 Adjusted R-squared 0.033651
F(2, 750) 14.09349 P-value(F) 9.81e-07
Log-likelihood -525.5192 Akaike criterion 1057.038
Schwarz criterion 1070.911 Hannan-Quinn 1062.383

înlf= 0.0689887
(0.097374)

+0.0379040
(0.0083561)

educ+1.45940e–006
(1.5631e–006)

faminc

N = 753 R̄2 = 0.0337 F(2,750) = 14.093 σ̂ = 0.48722
(standard errors in parentheses)

For example, the coefficient on educ indicates that every additional years of edu-
cation increases the probability of being in the labor force by about 4%. This infor-
mation is graphed in Figure 9.1.

There are two main problems with a linear probability model such as the one
presented in Equation 9.4.

1. The model will predict unrealistic probabilities, beyond 1 and below 0 (see Fig-
ure 9.1).

2. Because Yi only takes the values of 0 and 1, the error term u will be far from
following a normal distribution.

The solution is to transform the linear probability model. Two common transforma-
tions are the logit and the probit.
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Fig. 9.1 inlfi = β1 +β2educi +β3faminci +ui

9.2 Logit analysis

9.2.1 The logit transformation

Let Zi be,
Zi = β1 +β2Xi (9.6)

The logit model hypothesizes that the probability of occurrence of the event Y = 1
is determined by the function

pi = F(Zi) =
1

1+ e−Z (9.7)

where
∂ p
∂Z

= f (Z) =
e−Z

(1+ e−Z)2 (9.8)

and
∂ p
∂X

=
∂ p
∂Z

∂Z
∂X

= f (Z)β2 (9.9)

This means that the marginal effect of variable X on the probability of Y = 1 is
f (Z)β2, where f (Z) needs to be evaluated on some specific value of X , let’s say, the
mean of X .
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9.2.2 Logit regression in Gretl

Fortunately, all these calculations are done automatically by Gretl. If we want to
obtain the logit estimates of Equation 9.5 in the main Gretl window we have to go
to Model → Nonlinear models → Logit → Binary... and select the
option “Show p-values” to obtain

Convergence achieved after 4 iterations

Model 2: Logit, using observations 1-753
Dependent variable: inlf

coefficient std. error z p-value
----------------------------------------------------------
const -1.85287 0.428444 -4.325 1.53e-05 ***
educ 0.161773 0.0367856 4.398 1.09e-05 ***
faminc 6.58050e-06 6.83134e-06 0.9633 0.3354

Mean dependent var 0.568393 S.D. dependent var 0.244933
McFadden R-squared 0.027185 Adjusted R-squared 0.021359
Log-likelihood -500.8762 Akaike criterion 1007.752
Schwarz criterion 1021.625 Hannan-Quinn 1013.097

Number of cases ’correctly predicted’ = 449 (59.6%)
f(beta’x) at mean of independent vars = 0.245
Likelihood ratio test: Chi-square(2) = 27.9939 [0.0000]

Predicted
0 1

Actual 0 69 256
1 48 380

Gretl actually estimates this model using an estimation technique called Maximum
Likelihood Estimation, that is why the computer iterates before giving the esti-
mates. The output is very similar as the one obtained in previous chapters. The
effect of educ on inlf is statistically significant. However, the key difference in
this output is that the coefficients are not interpreted as the marginal effects. Recall
that the marginal effects are calculated using Equation 9.9. To make Gretl obtain
this marginal effects you need to reestimate the model and select the option “Show
slopes at mean” to obtain

coefficient std. error z slope
-------------------------------------------------------------
const -1.85287 0.428444 -4.325
educ 0.161773 0.0367856 4.398 0.0396234
faminc 6.58050e-06 6.83134e-06 0.9633 1.61178e-06

The marginal effect of educ on inlf is actually 0.0396. An additional year of
education will increase the probability that you are in the labor force by about 4%.
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9.3 Probit analysis

9.3.1 The probit transformation

The probit model is similar in spirit as the logit model. Let Zi be,

Zi = β1 +β2Xi (9.10)

The probit model hypothesizes that the probability of occurrence of the event Y = 1
is determined by the function

pi = F(Zi) (9.11)

where F(·) is actually the cumulative standardized normal distribution. Then,

∂ p
∂Z

= f (Z) =
1√
2π

e−
1
2 Z2

(9.12)

is just the derivative of F(·). As in the logit case,

∂ p
∂X

=
∂ p
∂Z

∂Z
∂X

= f (Z)β2 (9.13)

Again, this means that the marginal effect of variable X on the probability of Y = 1
is f (Z)β2, where f (Z) needs to be evaluated on some specific value of X , let’s say,
the mean of X .

9.3.2 Probit regression in Gretl

If we want to obtain the probit estimates of Equation 9.5 in the main Gretl window
we have to go to Model→ Nonlinear models→ Probit→ Binary...
and select the option “Show p-values” to obtain

Convergence achieved after 5 iterations

Model 3: Probit, using observations 1-753
Dependent variable: inlf

coefficient std. error z p-value
----------------------------------------------------------
const -1.14768 0.261470 -4.389 1.14e-05 ***
educ 0.100666 0.0224296 4.488 7.19e-06 ***
faminc 3.84752e-06 4.09647e-06 0.9392 0.3476

Mean dependent var 0.568393 S.D. dependent var 0.392673
McFadden R-squared 0.027216 Adjusted R-squared 0.021389
Log-likelihood -500.8606 Akaike criterion 1007.721
Schwarz criterion 1021.593 Hannan-Quinn 1013.065
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Number of cases ’correctly predicted’ = 449 (59.6%)
f(beta’x) at mean of independent vars = 0.393
Likelihood ratio test: Chi-square(2) = 28.0252 [0.0000]

Predicted
0 1

Actual 0 69 256
1 48 380

Once again, the effect of educ on inlf is statistically significant. To make Gretl
obtain this marginal effects using Equation 9.13 you need to reestimate the model
and select the option “Show slopes at mean” to obtain

coefficient std. error z slope
-------------------------------------------------------------
const -1.14768 0.261470 -4.389
educ 0.100666 0.0224296 4.488 0.0395289
faminc 3.84752e-06 4.09647e-06 0.9392 1.51081e-06

The marginal effect of educ on inlf is 0.0395. We obtain almost the same re-
sults as before. The probit model predicts that an additional year of education will
increase the probability that you are in the labor force by about 4%.



Chapter 10
Time Series

10.1 Time Series Data

The main difference between time series data and cross-sectional data is the tem-
poral ordering. To emphasize the proper ordering of the observations, Table 10.1
presents a partial listing of the data on U.S. inflation and unemployment rates from
1948 through 2003. Unlike cross-sectional data, in time series the temporal order in
which the observations appear in the data set is very important. In terms of notation,
we use the subscript t to denote time and we use it instead of the previous subscript
i, i.e., Xt .

Table 10.1 U.S. Inflation and Unemployment Rates, 1965-2011

Year Inflation Unemployment
1948 8.1 3.8
1949 -1.2 5.9
1950 1.3 5.3
1951 7.9 3.3

...
...

...
2000 3.4 4.0
2001 2.8 4.7
2002 1.6 5.8
2003 2.3 6.0

A second key difference between time series and cross-sectional data is that in the
latter we assume that the sample was randomly drawn from the population. While
in time series the variables are also considered random, a variable indexed by time
is called a stochastic process or a time series process. When we collect a time series
data set we are one possible outcome or realization of the stochastic process. We
can only see a single realization because we cannot go back in time and start the
process again.
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Fig. 10.1 Inflation, 1948-2003.

Graphing the data is particularly important to visualize the dynamics of the vari-
ables. Figure 10.1 presents the time series graph of inflation from 1948 through
2003. One can easily identify the periods of high inflation late in the seventies and
early eighties. To obtain this graph in Gretl, go to View→ Graph specified
vars → Time series plot and then select the variables you want to plot
against time.

10.2 Time Series Regression Models

10.2.1 Static Models

The simplest static model has the form

Yt = β1 +β2Xt +ut , t = 1,2,3, . . . ,n. (10.1)
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We call this a static model because we are only modeling a contemporaneous rela-
tionship between Xt and Yt . That is, when a change in X at time t is believed to have
an immediate effect on Y : ∆Yt = β2∆Xt . One example is the static Phillips curve
given by:

inflationt = β1 +β2unemploymentt +ut . (10.2)

where inflation is the annual inflation rate, and unemployment is the un-
employment rate. Estimation in Gretl via OLS is follows the same steps as in the
previous chapters. The output for the estimation of Equation 10.1 is:

Model 1: OLS, using observations 1948-2003 (T = 56)
Dependent variable: inflation

coefficient std. error t-ratio p-value
----------------------------------------------------------
const 1.05357 1.54796 0.6806 0.4990
unemployment 0.502378 0.265562 1.892 0.0639 *

Mean dependent var 3.883929 S.D. dependent var 3.040381
Sum squared resid 476.8157 S.E. of regression 2.971518
R-squared 0.062154 Adjusted R-squared 0.044786
F(1, 54) 3.578726 P-value(F) 0.063892
Log-likelihood -139.4304 Akaike criterion 282.8607
Schwarz criterion 286.9114 Hannan-Quinn 284.4311
rho 0.572055 Durbin-Watson 0.801482

̂inflation= 1.05357
(1.5480)

+0.502378
(0.26556)

unemployment

T = 56 R̄2 = 0.0448 F(1,54) = 3.5787 σ̂ = 2.9715
(standard errors in parentheses)

The estimation results indicate that a one point increase in the unemployment rate
is linked with a 0.5 increase in the inflation rate. Of course more variables can be
included in the model. Notice that we can use this model to predict inflation
given that we know the values for unemployment by simply plugging values for
unemployment in the estimated equation. If we do this for the actual unemployment
values for 1948-2003 period and graph them, we obtain the fitted values graph.
Figure 10.2 plots the actual and the fitted values for inflation.

10.2.2 Finite Distributed Lag Models

The simplest dynamic model is the finite distributed lag (FDL) model, where we al-
low one or more variables to to affect Yt with a lag. Consider the following example:

Yt = β1 +β2Xt +β3Xt−1 +β4Xt−2 +ut , (10.3)
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Fig. 10.2 Inflation, 1948-2003. Actual and fitted based on an static model.

where the FDL is of order two. Let’s say that we are interested in the effect on Y
of a permanent increase in X . Before time t, X equals to a constant c. At time t, X
increases permanently to c+ 1. That is, Xs = c for s < t and Xs = c+ 1 for s ≥ t.
Setting the errors to be equal to zero we have:

Yt−1 = β1 +β2c+β3c+β4c (10.4)
Yt = β1 +β2(c+1)+β3c+β4c

Yt+1 = β1 +β2(c+1)+β3(c+1)+β4c

Yt+2 = β1 +β2(c+1)+β3(c+1)+β4(c+1)

and so on. The contemporaneous effect of X on Y is called the impact multiplier
and in this case this one is given by β2. However, over time the marginal effect of X
on Y is larger. We say that the long-run multiplier is the long-run change Y given a
permanent increase in X . This one is given by β2 +β3 +β4.

Consider the following example in Gretl:

inft = β1 +β2unemt +β3unemt−1 +β4unemt−2 +ut , (10.5)
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To estimate this model in Gretl we first need to create the lagged values of unem. To
do this we have to go to select unem and then go to Add→ Lags of selected
variables and select the number of lags. An alternative approach is to just in-
clude the lags when estimating the model via OLS. That is, when specifying the
model in Gretl (Model → Ordinary Least Squares) there is an icon that
allows you to select the lags. Just select two lags for unem to obtain:

Model 2: OLS, using observations 1950-2003 (T = 54)
Dependent variable: inf

coefficient std. error t-ratio p-value
--------------------------------------------------------
const -0.124609 1.68922 -0.07377 0.9415
unem 0.903211 0.402071 2.246 0.0291 **
unem_1 -0.856337 0.525700 -1.629 0.1096
unem_2 0.668123 0.386722 1.728 0.0902 *

Mean dependent var 3.900000 S.D. dependent var 2.961323
Sum squared resid 395.2340 S.E. of regression 2.811526
R-squared 0.149632 Adjusted R-squared 0.098610
F(3, 50) 2.932693 P-value(F) 0.042366
Log-likelihood -130.3660 Akaike criterion 268.7320
Schwarz criterion 276.6880 Hannan-Quinn 271.8003
rho 0.661217 Durbin-Watson 0.676987

înf=−0.124609
(1.6892)

+0.903211
(0.40207)

unem−0.856337
(0.52570)

unem 1+0.668123
(0.38672)

unem 2

T = 54 R̄2 = 0.0986 F(3,50) = 2.9327 σ̂ = 2.8115
(standard errors in parentheses)

A permanent increase in unemployment leads to a contemporaneous increase in
inflation of 0.903 (impact multiplier). However, in the long-run the same increase
in unemployment leads to a permanent effect on inflation of 0.903 -0.856 + 0.668 =
0.715 (long-run multiplier).

10.2.3 Autoregressive Model

An autoregresive model is a simple model where the current values of a variable are
related to its past values. The first-order autoregressive model is given by:

Yt = φYt−1 +ut . (10.6)

This one is usually denoted by AR(1). A more general model is the pth autoregres-
sive model or AR(p) given by:

Yt = φ1Yt−1 +φ2Yt−2 +φ3Yt−3 + · · ·+φpYt−p +ut (10.7)
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where there are p lags of the variable Y explaining its current value. The estimation
of an AR(p) model in Gretl is simple; go to Model→ Time series→ ARIMA
and then select the dependent variable and the AR order. Make sure that the MA
order is zero. For the example above, consider estimating the following model:

inft = φ1inft−1 +φ2inft−2 +ut (10.8)

The output in Gretl is:

Function evaluations: 17
Evaluations of gradient: 8

Model 4: ARMA, using observations 1948-2003 (T = 56)
Estimated using Kalman filter (exact ML)
Dependent variable: inf
Standard errors based on Hessian

coefficient std. error z p-value
-------------------------------------------------------
const 4.02526 0.791433 5.086 3.66e-07 ***
phi_1 0.815712 0.148739 5.484 4.15e-08 ***
phi_2 -0.175228 0.152459 -1.149 0.2504

Mean dependent var 3.883929 S.D. dependent var 3.040381
Mean of innovations -0.054104 S.D. of innovations 2.171763
Log-likelihood -123.2506 Akaike criterion 254.5012
Schwarz criterion 262.6026 Hannan-Quinn 257.6421

Real Imaginary Modulus Frequency
-----------------------------------------------------------
AR

Root 1 2.3276 -0.5378 2.3889 -0.0361
Root 2 2.3276 0.5378 2.3889 0.0361

-----------------------------------------------------------

That yields the following estimated equation:

înft = 4.025+0.8157inft−1−0.1752inft−2. (10.9)

where we can see that higher inflation last period has a positive effect on inflation
this period. We can use this model to predict the path of inf based on its previous
values. It Gretl the command to obtain this Graphs→ Fitted, actual plot
→ Against time. The resulting graph is shown in Figure 10.3.

10.2.4 Moving-Average Models

The moving-average models express an observed series as a function of the current
and lagged unobserved shocks. The simplest moving-average model is the moving-
average of order one, or MA(1):
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Fig. 10.3 Inflation, 1948-2003. Actual and fitted based on an AR(2) model.

Yt = θut−1 +ut (10.10)

A more general moving-average of order q is be written as:

Yt = θ1ut−1 +θ2ut−2 +θ3ut−3 + · · ·+θqut−q +ut (10.11)

For the example above:

inft = θ1ut−1 +θ2ut−2 +ut (10.12)

the output in Gretl is:

Function evaluations: 51
Evaluations of gradient: 19

Model 6: ARMA, using observations 1948-2003 (T = 56)
Estimated using Kalman filter (exact ML)
Dependent variable: inf
Standard errors based on Hessian

coefficient std. error z p-value
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Fig. 10.4 Inflation, 1948-2003. Actual and fitted based on an MA(2) model.

-------------------------------------------------------
const 3.98267 0.615240 6.473 9.58e-011 ***
theta_1 1.18549 0.130300 9.098 9.19e-020 ***
theta_2 0.267922 0.127516 2.101 0.0356 **

Mean dependent var 3.883929 S.D. dependent var 3.040381
Mean of innovations -0.041523 S.D. of innovations 1.899580
Log-likelihood -116.5030 Akaike criterion 241.0061
Schwarz criterion 249.1075 Hannan-Quinn 244.1470

Real Imaginary Modulus Frequency
-----------------------------------------------------------
MA

Root 1 -1.1343 0.0000 1.1343 0.5000
Root 2 -3.2904 0.0000 3.2904 0.5000

-----------------------------------------------------------

and the actual and fitted values are presented in Figure 10.4.
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10.2.5 Autoregressive Moving Average Models

One can easily combine an AR(1) model and an MA(1) models to obtain an autore-
gressive moving-average model ARMA(1,1):

Yt = φYt−1 +θut−1 +ut (10.13)

or a more general ARMA(p,q) model:

Yt = φ1Yt−1 +φ2Yt−2 + · · ·+φpYt−p +θ1ut−1 +θ2ut−2 + · · ·+θqut−q +ut (10.14)

The output in Gretl for a ARMA(2,2) for inflation is:

Function evaluations: 61
Evaluations of gradient: 20

Model 5: ARMA, using observations 1948-2003 (T = 56)
Estimated using Kalman filter (exact ML)
Dependent variable: inf
Standard errors based on Hessian

coefficient std. error z p-value
-------------------------------------------------------
const 3.94843 1.05291 3.750 0.0002 ***
phi_1 0.828806 0.236639 3.502 0.0005 ***
phi_2 0.0226838 0.173277 0.1309 0.8958
theta_1 0.274108 0.197397 1.389 0.1650
theta_2 -0.587919 0.169467 -3.469 0.0005 ***

Mean dependent var 3.883929 S.D. dependent var 3.040381
Mean of innovations -0.053524 S.D. of innovations 1.831760
Log-likelihood -114.4824 Akaike criterion 240.9648
Schwarz criterion 253.1169 Hannan-Quinn 245.6761

Real Imaginary Modulus Frequency
-----------------------------------------------------------
AR

Root 1 1.1691 0.0000 1.1691 0.0000
Root 2 -37.7065 0.0000 37.7065 0.5000

MA
Root 1 -1.0917 0.0000 1.0917 0.5000
Root 2 1.5580 0.0000 1.5580 0.0000

-----------------------------------------------------------




