Dynamic Price Discrimination in Airlines

Diego Escobari[†] Nicholas G. Rupp[‡] Joseph Meskey[‡]

[†]Department of Economics and Finance The University of Texas - Pan American

> [‡]Department of Economics East Carolina University

EARIE

European Association for Research in Industrial Economics Milan, Italy August 2014

イロト 不得 トイヨト イヨト

-

Outline

1 Introduction

- Motivation
- Contribution and Intuition

2 Data

- Construction of the Data
- Summary Statistics

3 Empirical Analysis

- Static Pricing Equation
- Dynamic Pricing Equation

Conclusion

프 + + 프 +

Motivation Contribution and Intuition

Motivation: Price dispersion

- Price dispersion (Borenstein and Rose, 1994).
- Price dispersion with panels (Gerardi and Shapiro, 2009)
- Role of costly capacity and demand uncertainty (with Gan, 2007); price competition (with Lee, 2012); price discrimination (with Jindapon, 2010); systematic peak-load pricing; demand learning; asymmetric pricing.
- Intertemporal price dispersion (Gaggero and Piga, 2011).
- Dynamic price dispersion (Mantin and Koo, 2009).
- Nonlinear pricing (Hernandez and Wiggins, 2010).
- Intertemporal price discrimination and dynamic adjustment to stochastic demand (Williams, 2013).

Motivation Contribution and Intuition

Motivation: Price discrimination

• Carriers exploit 'fences' such as:

- Saturday-night-stayover.
- Advance purchase discounts.
- Minimum- and maximum-stay.
- Refundable tickets.
- Frequent flier miles.
- Blackouts.
- Volume discounts.
- Fare classes (e.g. coach, first class)
- Hour-of-day purchase.

• Airlines have the most sophisticated pricing systems in the world.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Motivation Contribution and Intuition

Contribution and Intuition

- Explains how sellers offer tickets at different prices at different hours of the day.
- Unique data on posted prices collected every hour.
- Conditions for price discrimination to exist:
 - Different valuation across consumer types.
 - Prevent arbitrage.
- Business travelers (high types) have higher valuations than tourists (low types).
- Incentive compatibility constraint: Prevent high types from behaving as low types.
- Airlines set higher prices during office hours.
- As the proportion of business travelers increases the difference increases.

Construction of the Data Summary Statistics

Construction of the Data

- Lowest available fare (consistent with Deneckere and Peck, 2012).
- Pick a single day: Thursday, July 12, 2012.
- Initially follows Stavins (2001), but with two key improvements:
 - Panel.
 - Keep track of price changes by the hour.
- One-way, non-stop, economy-class.
 - Connecting passengers / sophisticated itineraries / legs.
 - Uncertainty in the return portion of the ticket.
 - Saturday-night-stayover / min- and max-stay.
 - Fare classes (e.g. coach, first class).
- 230 flights.
- 60 days prior to departure. (1422 observations per flight)
- American Airlines, Alaska, JetBlue, Delta, Frontier, AirTran Airways, United, US Airways, and Virgin America,

イロト 不得下 不良下 不良下 …

Construction of the Data Summary Statistics

Summary Statistics

Table: Summary statistics

VARIABLES	(1) mean	(2) sd	(3) min	(4) max
FARE:				
Whole sample	375.3	223.0	58	1,288
$0 \leq ADV < 14.8$	415.8	212.3	86.80	1,288
$14.8 \le ADV < 29.6$	358.2	226.0	58	968
$29.6 \leq ADV < 44.4$	364.0	223.9	58	973
$44.4 \leq ADV < 59.3$	370.1	223.7	58	968
Adv	29.91	16.64	0	59.3
DayWeek:				
Monday	0.184	0.387	0	1
TUESDAY	0.209	0.407	0	1
Wednesday	0.206	0.405	0	1
Thursday	0.205	0.404	0	1
Friday	0.196	0.397	0	1

Notes: The sample size is 145,458.

イロト 不得 トイヨト イヨト

3

Static Pricing Equation Dynamic Pricing Equation

Static Pricing Equation

$$\text{LNFARE}_{ijt} = \beta \text{HOUR}_t + \sum_{k=0}^{59} \gamma_k I_{[\text{ADV}_t = k]} + v_{ij} + \varepsilon_{ijt},$$

- *i*: flight; *j*: route; *t*: time.
 - Day in advance fixed effects.
 - *v_{ij}* controls for:
 - Time-invariant flight-, carrier-, and airport-pair-specific characteristics.
 - Flight-specific characteristics: Aircraft size, departure time, hub effect at the flight level, and systematic peak-load pricing.
 - Carrier-specific characteristics: Managerial capacity.
 - Airport-pair-specific characteristics: Herfindal index, distance between airport pairs, and hub effect.

イロト イポト イラト イラト

Table: Static Pricing Equation

	(1)		(2)	(3)	(4)		
Variables	Coef	StErr	Coef	StErr	Coef	StErr	Coef	StErr	
2.00	3 341*	(0 040)	3 310*	(0.971)	3 333*	(0.955)	3 580*	(1.008	
3.00	9 775*	(2.938)	9.819*	(2 937)	9 768+	(2 925)	10.06*	(2.874	
4.00	9.265*	(3 275)	9.360*	(3 274)	9 260+	(3.263)	9 792+	(3.278	
5:00	8 392+	(3.296)	8 443+	(3 301)	8 381+	(3.282)	8 555†	(3.223	
6.00	7 993*	(2 939)	8 054*	(2.921)	7 978+	(2 929)	7 803†	(2.847	
7.00	8 437*	(2.855)	8 478*	(2.849)	8 415+	(2.847)	7.825†	(2.938	
8:00	8.284*	(2.662)	8.307*	(2.653)	8.280†	(2.653)	7.223†	(2.788	
9:00	7.101*	(2.665)	7.173*	(2.653)	7.093†	(2.653)	5.964†	(2.803	
10.00	5 428+	(2 118)	5 485*	(2 124)	5 424+	(2 106)	4 217†	(2 142	
11:00	3.278†	(1.344)	3.338†	(1.349)	3.268†	(1.335)	1.890	(1.364	
12:00	3.376†	(1.474)	3.458†	(1.478)	3.361†	(1.463)	1.706	(1.350	
13:00	2.935†	(1.396)	2.959†	(1.392)	2.889±	(1.389)	1.137	(1.156	
14:00	1.749	(1.566)	1.748	(1.572)	1.750	(1.553)	0.130	(1.260	
15:00	0.118	(1.808)	0.147	(1.803)	0.126	(1.799)	-1.549	(1.45	
16:00	0.782	(1.688)	0.776	(1.692)	0.794	(1.677)	-1.060	(1.51)	
17:00	0.885	(1.590)	0.907	(1.584)	0.883	(1.579)	-1.218	(1.36)	
18:00	0.514	(1.461)	0.543	(1.466)	0.512	(1.453)	-2.136	(1.41	
19:00	0.534	(1.448)	0.562	(1.447)	0.530	(1.438)	-2.403	(1.38)	
20:00	0.367	(1.198)	0.364	(1.202)	0.357	(1.191)	-2.992 [±]	(1.44	
21:00	0.0819	(0.787)	0.106	(0.805)	0.0952	(0.791)	-3.717†	(1.35	
22:00	-0.584	(0.957)	-0.578	(0.970)	-0.583	(0.961)	-3.997†	(1.67)	
23:00	-1.583*	(0.520)	-1.581*	(0.535)	-1.578†	(0.519)	-3.797*	(1.12	
24:00	-0.901*	(0.279)	-0.891*	(0.276)	-0.893†	(0.279)	-1.183*	(0.26	
Monday _t	-9.826*	(3.655)	-9.815*	(3.667)	-9.809†	(3.652)		`	
TUESDAY	-18.02*	(3.525)	-18.00*	(3.539)	-18.02 [*]	(3.530)			
WEDNESDAY _t	-34.31*	(6.441)	-34.32*	(6.471)	-34.31*	(6.451)			
THURSDAY,	-34.51*	(8.410)	-34.51*	(8.426)	-34.55*	(8.381)			
ADV _t	-45.04*	(9.152)	-45.02*	(9.158)	-45.02*	(9.176)			
ADV ²	1.249*	(0.255)	1.248*	(0.255)	1.248*	(0.255)			
ADV_t^3	-0.0106*	(0.00229)	-0.0106*	(0.00229)	-0.0106*	(0.00229)			
Route FE	No		Yes		Yes		Y	es	
Flight FE	Ì	No	ī	No		Yes		Yes	
ADV FE	i	No	i	No	r	lo	Ý	es	
Within R ²						308	0 321		

	(1)	(2)		(3)		(4)		
Sample:	$0 \le AD$	$0 \leq ADV < 14.8$		$14.8 \le ADV < 29.6$		$29.6 \le ADV < 44.4$		$44.4 \le ADV < 59.3$	
Variables	Coef	StErr	Coef	StErr	Coef	StErr	Coef	StErr	
2.00	7 5104	(2.020)	1 002	(1 502)	1 6124	(0.665)	0.205	(0.620)	
2:00	7.510	(2.950)	1.992	(1.505)	1.015	(0.005)	0.205	(0.020)	
3:00	32.78*	(9.450)	4.375	(3.147)	1.924†	(0.790)	2.181	(1.320)	
4:00	33.317	(10.19)	3.892	(3.589)	1.003	(0.924)	2.395	(1.328)	
5:00	29.72T	(9.059)	3.309	(4.070)	0.748	(0.810)	2.382	(1.393)	
6:00	26.117	(8.007)	2.611	(4.255)	0.950	(0.767)	2.178‡	(1.102)	
7:00	23.55†	(7.171)	2.984	(3.880)	1.123	(0.693)	1.873	(1.176)	
8:00	20.28†	(6.258)	2.910	(3.372)	0.945	(0.861)	2.455‡	(1.162)	
9:00	18.44†	(5.985)	1.638	(3.408)	1.734	(1.214)	2.874‡	(1.259)	
10:00	17.82†	(6.034)	-2.831	(3.120)	0.673	(0.817)	1.108	(0.858)	
11:00	15.45*	(3.922)	-5.406	(3.465)	0.329	(0.666)	-1.080	(0.979)	
12:00	12.33*	(3.632)	-3.941	(4.121)	1.518	(0.887)	-0.634	(1.100)	
13:00	11.72†	(4.423)	-4.271	(4.801)	-0.0909	(0.931)	-0.355	(1.190)	
14:00	10.22*	(2.681)	-4.431	(5.171)	-1.043	(1.149)	-1.644	(1.767)	
15:00	8.145‡	(3.739)	-5.465	(5.457)	-1.036	(1.179)	-1.482	(1.053)	
16:00	7.923‡	(3.862)	-2.688	(4.284)	-1.160	(0.936)	-1.814‡	(0.889)	
17:00	3.964	(3.608)	-2.359	(4.292)	-2.361†	(0.784)	-1.942‡	(1.015)	
18:00	-0.879	(2.879)	-1.132	(3.705)	-2.534†	(0.816)	-2.057‡	(1.006)	
19:00	-0.899	(1.984)	-0.753	(3.799)	-2.432†	(0.729)	-1.525	(0.825)	
20:00	-7.183†	(2.650)	0.0696	(3.467)	-1.857†	(0.749)	-1.479	(1.016)	
21:00	-12.72†	(4.631)	0.271	(1.921)	-1.762*	(0.448)	0.316	(0.574)	
22:00	-13.11†	(4.372)	-0.934	(1.778)	-1.434†	(0.528)	0.0911	(0.905)	
23:00	-12.24†	(4.789)	-2.666	(1.975)	-0.193	(0.565)	0.285	(0.334)	
24:00	-4.231*	(0.959)	-0.635	(0.539)	-0.257	(0.546)	-0.0143	(0.0794)	
Observations	31.	037	36 377		39 405		38 550		
Within R ²	0.324		0.012		0.011		0.025		

Table: Static Pricing Equation: Role of ADV_t .

Static Pricing Equation Dynamic Pricing Equation

Static Rolling Regression

Figure: Rolling Regression: Pricing Estimates

通 トーイ 通 ト

< 🗇 🕨

э

Static Pricing Equation Dynamic Pricing Equation

Dynamic Pricing Equation

$$\text{LNFARE}_{jt} = \alpha \text{LNFARE}_{j,t-1} + \beta \text{HOUR}_t + \sum_{k=0}^{59} \gamma_k I_{[\text{ADV}=k]} + v_{ij} + \varepsilon_{ijt}.$$

• Buyers and sellers are allowed to behave dynamically.

- LNFARE_{*j*,*t*-1} is treated as endogenous.
- Forward looking.
- Can form beliefs about future prices.
- Estimation is consistent with rational expectations.

イロト イボト イヨト イヨト

Static Pricing Equation Dynamic Pricing Equation

Dynamic Panels

- LNFARE_{*j*,*t*-1} as endogenous:
 - Allowed to be correlated with ε_{ijt} and earlier shocks.
 - Cannot be correlated with $\varepsilon_{ij,t+1}$ and future shocks.
- To estimate (α, β, γ), we use the methods described in Holtz-Eakin (1988) and Arellano and Bond (1991):
 - Take first differences to eliminate the fixed effect term v_{ij}.
 - Use $\Delta \varepsilon_{ijt}$ to construct the moments $E(\Delta \varepsilon_{ijt} M)$.
 - Assume ε_{ijt} is not serially correlated.
 - Lagged values of LNFARE_{ijt} are valid instruments.
- Two specification tests:
 - Second order serial correlation test.
 - Sargan test for the validity of the instruments.

ヘロト 人間 ト ヘヨト ヘヨト

	(1)		(2	2)	(3)		
Sample:	$0 \le ADV < 29.6$		$29.6 \le A$	DV < 59.3	$0 \le {\rm Adv} < 59.3$		
Variables	Coef	StErr	Coef	StErr	Coef	StErr	
2:00	3.458*	(0.758)	0.693*	(0.253)	1.936*	(0.379)	
3:00	10.46*	(0.770)	0.979*	(0.255)	5.095*	(0.383)	
4:00	3.534*	(0.780)	0.689*	(0.256)	1.788*	(0.386)	
5:00	2.680*	(0.783)	0.528†	(0.258)	1.311*	(0.389)	
6:00	2.745*	(0.784)	0.571†	(0.261)	1.373*	(0.391)	
7:00	2.531*	(0.791)	0.399	(0.264)	1.180*	(0.395)	
8:00	2.101*	(0.796)	0.795*	(0.268)	1.208*	(0.399)	
9:00	0.808	(0.798)	0.734*	(0.273)	0.529	(0.403)	
10:00	0.328	(0.796)	-0.454‡	(0.274)	-0.348	(0.404)	
11:00	-0.476	(0.798)	-1.155*	(0.275)	-0.937†	(0.405)	
12:00	0.179	(0.800)	0.175	(0.275)	0.199	(0.406)	
13:00	-0.481	(0.803)	-0.906*	(0.276)	-0.807†	(0.407)	
14:00	-0.826	(0.802)	-1.237*	(0.277)	-1.069*	(0.407)	
15:00	-0.925	(0.801)	-0.843*	(0.277)	-0.833†	(0.407)	
16:00	-0.610	(0.800)	-1.202*	(0.276)	-0.901†	(0.406)	
17:00	-0.841	(0.795)	-1.481*	(0.274)	-1.121*	(0.404)	
18:00	-1.670†	(0.789)	-1.285*	(0.272)	-1.365*	(0.401)	
19:00	-1.234	(0.785)	-1.099*	(0.272)	-1.083*	(0.400)	
20:00	-0.797	(0.780)	-0.900*	(0.270)	-0.815†	(0.397)	
21:00	-2.377*	(0.781)	-0.525‡	(0.270)	-1.423*	(0.398)	
22:00	-1.589†	(0.767)	-0.326	(0.264)	-0.964†	(0.390)	
23:00	-1.846†	(0.746)	-0.192	(0.257)	-1.034*	(0.379)	
24:00	1.009	(0.752)	-0.00598	(0.255)	0.435	(0.380)	
$LnFare_{ij,t-1}$	0.630*	(0.00856)	0.392*	(0.0128)	0.625*	(0.00608)	
Specification tests:							
Serial correlation	0.0211		0.0297		0.0900		
	[0	.983]	[0.9	976]	[0.928]		
Sargan	3	70.5	26	3.2	443.8		
		[1]	[1]		[1]		

Table: Dynamic Pricing Equation: Role of ADV_t

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Static Pricing Equation Dynamic Pricing Equation

Regression Estimates

Table: Dynamic Pricing Equation. Role of ADV_t .

Sample:	$0\leq\mathrm{Adv}<29.6$			$29.6\leq\mathrm{Adv}<59.3$			$0\leq\mathrm{Adv}<59.3$		
	Weekdays		Weekends	Weekdays		Weekends	Weekdays		Weekends
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Variables:									
LNFARE ij, t-1	0.629* (0.00840)	0.625* (0.00843)	0.743* (0.0372)	0.404* (0.0126)	0.404* (0.0126)	0.778* (0.0452)	0.625* (0.00602)	0.616* (0.00605)	0.794* (0.0231)
Officet ^a	-3.509* (0.340)	-3.237*	0.0213	-1.001*	-0.836	0.138‡	-2.117* (0.174)	-4.172* (0.360)	0.189‡
Evening _t	-4.439* (0.338)	-7.054*	0.662*	-1.006* (0.118)	-0.990‡ (0.584)	0.210* (0.0789)	-2.488* (0.172)	-6.125* (0.359)	0.474* (0.116)
$Office_t \cdot Adv_t^b$		-0.0190	. ,	. ,	-0.00387	. ,		0.0698*	. ,
$Evening_t \cdot Adv_t$		0.169*			-0.000397 (0.0134)			0.122*	
Price discrimination:		. ,			. ,			. ,	
$\beta_{\text{OFFICE}} - \beta_{\text{EVENING}}$	0.931* [0.00519]		-0.640* [0.00368]	0.00477 [0.967]		-0.0719 [0.331]	0.371† [0.0290]		-0.284† [0.0114]
At $ADV_t = 7^c$. ,	2.502* [1.48e-07]	. ,					1.587* [6.65e-08]	
At $ADV_t = 21$		-0.128 [0.753]						0.857* [9.11e-06]	
At $ADV_t = 35$					0.0329			0.126	
Specification tests:								. ,	
Serial correlation ^{d}	-0.0511 [0.959]	-0.0831 [0.934]	-0.868 [0.386]	0.0194	0.0198	-0.0687 [0.945]	-0.0438 [0.965]	-0.0976 [0.922]	-0.826 [0.409]
Sargan ^e	331.4 [1]	325.2 [1]	232.8 [0.903]	280.5 [1]	270.9 [1]	174.2 [0.998]	380.4 [1]	387.5 [1]	328.4 [1]

Diego Escobari

Dynamic Price Discrimination in Airlines

イロト 不得 トイヨト イヨト

-

Conclusion

- Dynamic price discrimination for perishable good under uncertain demand is a challenging task.
- Fares variation over time cannot be labeled as price discriminatory.
- Estimate price differences within the same flight within the same day to departure.
- Airlines separate consumers in two types: Business and tourists.
- High valuation consumers pay higher prices during office hours.
- The difference is higher as the proportion of high types increases.

イロト イポト イヨト イヨト