Screening and Price Discrimination with Unobserved Consumer Types

Diego Escobari[†] Manuel A. Hernandez[‡]

[†]Department of Economics and Finance The University of Texas - Pan American

[‡]Markets, Trade and Institutions International Food Policy Research Institute

Latin American and Caribbean Economic Association Santa Cruz, Bolivia October 2015

• • • • • • • • • • • • •

Outline

Introduction

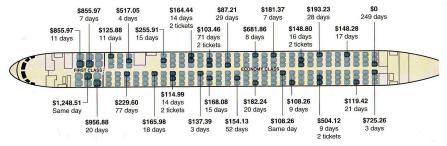
- Motivation
- Contribution and Intuition

2 Data

- Summary Statistics
- 3 Empirical Model
 - Demand Equations
 - Maximum Likelihood

4 Empirical Results

- Pooling Across Types and Price Discrimination
- Determining the Number of Types N
- Recovering Valuations
- Role of Capacity, Competition, and Route Characteristics


5 Conclusion

3 N

Data Empirical Model Empirical Results Conclusion Motivation Contribution and Intuition

Motivation: Price dispersion in airlines

Figure: Price dispersion in airlines

- 33 passengers paid 27 different fares, United flight from Chicago to Los Angeles (*New York Times*)
- Borenstein and Rose (JPE, 1994): 36% difference.
- Gerardi and Shapiro (JPE 2009).

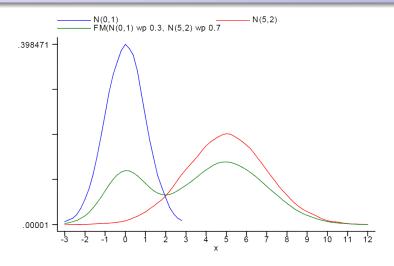
Data Empirical Model Empirical Results Conclusion Motivation Contribution and Intuition

Motivation: Price discrimination in Airlines

• Carriers exploit 'fences' such as:

- Saturday-night-stayover.
- Advance purchase discounts.
- Minimum- and maximum-stay.
- Refundable tickets.
- Frequent flier miles.
- Blackouts.
- Volume discounts.
- Fare classes (e.g. coach, first class)
- Hour-of-day purchase.
- Airlines have the most sophisticated pricing systems in the world.

Motivation Contribution and Intuition

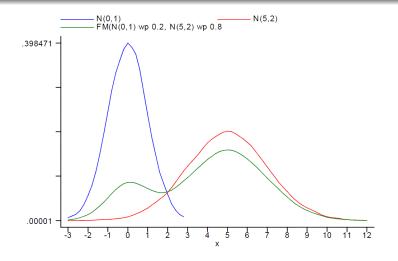

Motivation: Asymmetric Information

- Consumers hold private information (types are unknown to the seller).
- Mechanism design makes buyers reveal information:
 - Differentiated products (menu of prices)
 - Quantity discounts
- Propose using incomplete information to identify unobserved consumer types:
 - Consumers have unit demands.
 - Product is homogeneous.
- Well suited for airlines:
 - No arbitrage opportunities.
 - Price dispersion and consumer heterogeneity.
 - Data on a large number of markets.

- A 🗇 N - A 🖻 N - A 🖻 N

Data Empirical Model Empirical Results Conclusion Motivation Contribution and Intuition

Mixtures: Graphical View

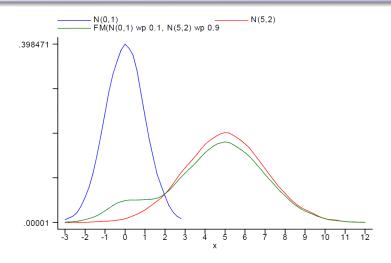


イロト イポト イヨト イヨト

Data Empirical Model Empirical Results Conclusion

Motivation Contribution and Intuition

Mixtures: Graphical View



イロト イヨト イヨト

I ∃ ▶

Data Empirical Model Empirical Results Conclusion Motivation Contribution and Intuition

Mixtures: Graphical View

(日)、

▲ ∃ →

Data Empirical Model Empirical Results Conclusion Motivation Contribution and Intuition

Contribution and Intuition

- Use mixtures to identify consumer types.
- High types (business travelers) have:
 - Less price-sensitive demand.
 - Have higher valuations.
 - Pay higher prices.
- Larger within-type sales dispersion in low types (greater consumer heterogeneity)
- Probability of high-types increases with:
 - Higher capacity utilization.
 - Closer to departure (when fares are low).
 - Income.
 - At hub airports.
 - Market concentration.

.

Summary Statistics

Construction of the Data

- Posted prices from expedia.com
- Pick a single day: Thursday, June 22, 2006.
 - Controls for systematic peak load pricing.
- One-way, non-stop, economy-class.
 - Connecting passengers / sophisticated itineraries / legs.
 - Uncertainty in the return portion of the ticket.
 - Saturday-night-stayover / min- and max-stay.
 - Fare classes (e.g. coach, first class).
- Panel with 228 cross sectional observations (city pairs).
- Collected every 3 days with 35 observations in time.
- American, Alaska, Continental, Delta, United and US Airways.

Expedia

- 4回ト 4回ト 4回ト

Summary Statistics

VARIABLE	mean	sd	min	max
Mananaliaa				
Monopolies:	222.6	171.7	64	014
Fare (P)	322.6		• •	914
Days	50.8	29.3	1	100
LOAD	0.544	0.245	0.013	1
SALES (Q)	0.017	0.038	-0.392	0.485
I _{FARE>FARE}	0.349	0.477	0	1
ILOAD>LOAD	0.427	0.495	0	1
Full sample:				
FARE (P)	292.2	172.3	54	1,224
DAYS	50.8	29.3	1	100
LOAD	0.513	0.250	0.013	1
SALES (Q)	0.017	0.042	-0.408	0.485
INCOME	35,580.0	4619.4	25,198	53,430.0
Leisure	0.070	0.256	0	1
SLOT	0.298	0.458	0	1
Hub	0.737	0.440	0	1
DISTANCE	1104.4	620.7	91	2,604
HHI	0.679	0.289	0.253	1
I	0.340	0.474	0	1
$I_{LOAD > \overline{LOAD}}$	0.416	0.493	0	1

Table: Summary Statistics

Note: The number of observations is 3,243 for the monopolies and 7,705 for the full sample.

Summary Statistics

Average and standard deviation of fares

• Prices as the flight date nears

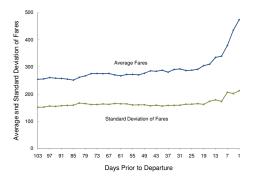


Figure: Average and standard deviation of fares

Demand Equations Maximum Likelihood

Demand Equations

N different consumer types:

$$Q_{ijt} = \begin{cases} \alpha_1 + \beta_1 P_{ijt} + X\delta_1 + \kappa_{i,1} + \varepsilon_{ijt,1} & \text{if } \theta = 1, \\ \alpha_2 + \beta_2 P_{ijt} + X\delta_2 + \kappa_{i,2} + \varepsilon_{ijt,2} & \text{if } \theta = 2, \\ \vdots & \vdots \\ \alpha_N + \beta_N P_{ijt} + X\delta_N + \kappa_{i,N} + \varepsilon_{ijt,N} & \text{if } \theta = N, \end{cases}$$

- *i*: flight; *j*: route; *t*: time.
- Unobserved types: $\theta = 1, ..., N$
- Q: Sales.
- P: Posted price.
- X: Other factors (days in advance).

(日)、

Demand Equations Maximum Likelihood

Maximum Likelihood

• $\varepsilon_{ijt,\theta} \sim N(0, \sigma_{\varepsilon,\theta}^2)$, $\theta = 1, ..., N$, the log-likelihood for the *k*th flight-time period is:

$$\ln I_k = \ln \left[\sum_{\theta=1}^N \frac{r_\theta}{\sigma_{\varepsilon,\theta} \sqrt{2\pi}} \exp\left(\frac{-\varepsilon_{k,\theta}^2}{2\sigma_{\varepsilon,\theta}^2}\right) \right]$$

• where r_{θ} is the mixing parameter defined as the probability of being in a regime dominated by type θ consumers.

•
$$\sum_{\theta=1}^{N} r_{\theta} = 1$$

イロト イポト イラト イラト

Demand Equations Maximum Likelihood

Maximum Likelihood

- Each *k*th observation can be associated to a particular demand regime θ , $\theta = 1, ..., N$, with probability r_{θ} .
- We can model the probability of being in a type- θ demand as,

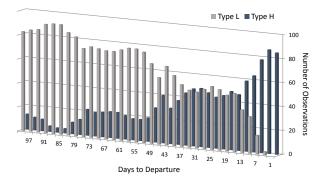
$$r_{ heta} = rac{\exp{\left(G\delta_{ heta}
ight)}}{1 + \sum\limits_{s=1}^{N-1}\exp{\left(G\delta_{s}
ight)}}$$

• G: Observables that can help us identify the type.

イロト イポト イラト イラト

Maximum Likelihood Estimates: Price Discrimination

Model:	(1)	(:	2)		
Type θ :	Pooled	Н	L		
Demand Equation	one:				
		0.0707	0 7410*		
Constant	1.6840*	0.0737	3.7413*		
	(0.1496)	(0.0955)	(0.3788)		
LNFARE	-2.3664*	-1.4578*	-2.6381*		
	(0.3409)	(0.1581)	(0.9031)		
Days	-0.0332*	-0.0175 [*]	-0.0491*́		
	(0.0027)	(0.0014)	(0.0065)		
σ_{ε}	3.7172*	1.1275*	5.5912*		
02	(0.0485)	(0.0380)	(0.1361)		
	(0.0405)	(0.0300)	(0.1301)		
Probability of Type H, $r_H = \text{Prob}(\theta = H)$:					
	ype 11, 1 _H –				
I _{Fare>Fare}		• • • •	376*		
		(0.1	138)		
Average Fare	322.6	381.6	290.9		
Observations	3,243	3.2	243		
Log likelihood	6.075.1	- /	06.9		
SBIC ^a	-3.737		360		
JDIC	-3.131	-4.	500		


Table: Maximum Likelihood Estimates: Price Discrimination

Note: The dependent variable is $S_{\rm ALES} \times 100$. Standard errors in parentheses. All regressions control for flight fixed effects. \ddagger significant at 10%; \ddagger significant at 5%; * significant at 1%. ^a Schwarz Bayesian Information criterion.

Pooling Across Types and Price Discrimination Determining the Number of Types N Recovering Valuations Role of Capacity, Competition, and Route Characteristics

Probability of type-H demand

Figure: Number of observations by type and days in advance

Determining the Number of Types *N* and Recovering Valuations

Determining the Number of Types N

Number of types N	SBIC ^a	Log likelihood	LR test ^b
1	-3.737	6075.057	
2	-4.360	7106.864	0.000
3	-4.351	7111.356	0.110
4	-4.340	7114.844	0.222
5	-4.331	7119.636	0.088

Table: Determining the Number of Types N

Note: ^a Schwarz Bayesian Information criterion. ^b p-value of likelihood ratio (LR) test reported.

Recovering Valuations

- Reservation values are uniformly distributed $[0, \bar{v}_{\theta}]$.
- Demand is: $Q = N_{\theta} N_{\theta}/\bar{v}_{\theta}P$.
- The number of consumers of each type is $N_{\theta} = \alpha_{\theta} + X \delta_{\theta}$.

$$ar{v}_{ heta} = -rac{lpha_{ heta} + X\delta_{ heta}}{eta_{ heta}}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Maximum Likelihood Estimates: Reservation Values

Model:	(1)	(2	2)
Type θ:	Pooled	Н	L
Demand Equations:			
CONSTANT	1.6529*	0.0787	3.6683*
	(0.1425)	(0.0917)	(0.3607)
FARE	-0.0074*	-0.0046*	-0.0076*
	(0.0010)	(0.0005)	(0.0025)
Days	-0.0326*	-0.0174 [*]	-0.0475*
	(0.0025)	(0.0014)	(0.0063)
σ_{ε}	3.7190*	1.1356*	5.6126*
	(0.0475)	(0.0365)	(0.1326)
Probability of Type <i>F</i>	$f_{ru} = Prob$	$(\theta - H)$	
I _{FARE} FARE	,		502*
FARE>FARE			096)
		(0.1	000)
Reservation Values:	554.3	692.8	546.4
Average Fare	322.6	381.6	290.9
Observations	3,243	3,2	243
Log likelihood	6,073.5	7,10	06.3
SBIC ^a	-3.736		360

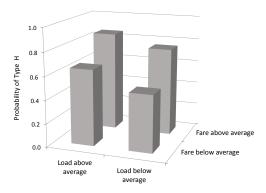
Table: Maximum Likelihood Estimates: Reservation Values

Note: The dependent variable is $S_{\rm ALES} \times 100$. Standard errors in parentheses. All regressions control for flight fixed effects. \ddagger significant at 10%; \ddagger significant at 5%; * significant at 1%. ^a Schwarz Bayesian Information criterion.

Maximum Likehood Estimates: Role of Capacity

Т

Model:	(1	1)	(1	2)
Type θ :	Н	H L		L
Demand Equation	s.			
CONSTANT	0.0838	3.4119*	0.1491	3.5532*
CONSTANT	(0.1080)	(0.3692)	(0.1003)	(0.4205)
LNFARE	-1.4496*	-3.4422*	-1.4359*	-2.8008*
LNFARE				
Direct	(0.1972)	(0.9093)	(0.1878)	(1.0884)
Days	-0.0170*	-0.0431*	-0.0172*	-0.0436*
	(0.0016)	(0.0072)	(0.0015)	(0.0082)
σ_{ε}	1.1453*	5.7486*	1.2375*	6.0606*
	(0.0523)	(0.1687)	(0.0457)	(0.1901)
Probability of Typ	е <i>Н</i> , <i>r_H</i> = Р	$rob(\theta = H)$:		
I _{FARE > FARE}	, , , , , , , , , , , , , , , , , , ,			533*
FARE > FARE			(0.1	450)
ILOAD>LOAD	0.90	974*		530*
*LOAD>LOAD	(0.1930)			687)
$Days - \overline{Days}$	()			303*
DAYS - DAYS	0.0261*			
	(0.0031)		(0.0	032)
	2.0			
Observations	,	243		243
Log likelihood		37.0		80.3
SBIC ^a	-4.	377	-4.	401


Table: Maximum Likelihood E	Stimates: Role	of	Capacity
-----------------------------	----------------	----	----------

Note: The dependent variable is $SALES \times 100$. Standard errors in parentheses. All regressions control for flight fixed effects. \ddagger significant at 10%; \ddagger significant at 5%; * significant at 1%. ^a Schwarz Bayesian Information criterion.

Pooling Across Types and Price Discrimination Determining the Number of Types N Recovering Valuations Role of Capacity, Competition, and Route Characteristics

Probability of type-H demand

Figure: Probability of type-*H* demand

-

Maximum Likehood Estimates: Role of Competition

Model:	(1)	(2)		(3)
Type θ :	Pooled	Н	L	Н	L
Demand Equation	15:				
Constant	1.8369*	0.0322	3.8670*	0.0632	3.5123*
	(0.1071)	(0.0664)	(0.2842)	(0.0733)	(0.2773)
LNFARE	-1.7219*	-1.0358*	-2.0037*	-0.9848*	-2.0272*
	(0.2048)	(0.1055)	(0.6350)	(0.1136)	(0.6096)
Days	-0.0362*	-0.0177*	-0.0522*	-0.0170*	-0.0443*
	(0.0018)	(0.0010)	(0.0050)	(0.0010)	(0.0057)
σ_{ε}	4.0316*	1.1038*	6.0516*	1.1661*	6.4194*
	(0.0343)	(0.0267)	(0.1003)	(0.0308)	(0.1381)
Probability of Typ	be H . $r_H = P$	$rob(\theta = H)$			
I _{FARE}			266*	0.98	872*
TARE / TARE		(0.0750)			836)
ILOAD > LOAD			,	0.54	196*́
10/10 / 10/10				(0.1	112)
$DAYS - \overline{DAYS}$				0.03	327*
				(0.0	020)
Observations	7,705		705		705
Log likelihood	13,807.7		71.5		13.5
SBIC ^a	-3.579	-4.	265	-4.	326

Table: Maximum Likelihood Estimates: Role of Competition

Note: The dependent variable is $SALES \times 100$. Standard errors in parentheses. All regressions control for flight fixed effects. \ddagger significant at 10%; \ddagger significant at 5%; \ast significant at 1%. a Schwarz Bayesian Information criterion.

Model:	(1)		((2)		(3)	
Type θ :	Н	L	Н	L	Н	L	
Demand Equatio	ns.						
CONSTANT	0.7170*	5.9771*	0.7208*	6.0161*	0.7209*	6.0107*	
CONSTANT	(0.0670)	(0.5449)	(0.0712)	(0.6588)	(0.0680)	(0.6936)	
LNFARE	-1.3195*	-2.8756*	-1.3209*	-2.8989*	-1.3235*	-2.8985†	
LINFARE	(0.1133)	(1.0855)	(0.1132)	(1.0175)	(0.1139)	(1.1793)	
DAYS	-0.0239*	-0.0749*	-0.0239*	-0.0754*	-0.0239*	-0.0754*	
DAID	(0.0011)	(0.0103)	(0.0012)	(0.0109)	(0.0011)	(0.0124)	
σ_{ε}	1.6183*	8.6465*	1.6228*	8.6719*	1.6220*	8.6680*	
σ_{ε}	(0.0343)	(0.2396)	(0.0325)	(0.2531)	(0.0319)	(0.2706)	
	(0.0343)	(0.2390)	(0.0323)	(0.2331)	(0.0319)	(0.2700)	
Probability of Ty	n H r = 1	$Prob(\theta - H)$).				
LNINCOME		521*		354*	0.17	253†	
LININCOME		062)		096)		589)	
Leisure		002) 0695		0004		0855	
LEISURE						126)	
SLOT	(0.1742)		(0.1649) -0.0447			569	
SLUI						301)	
Hub				(0.0928) 0.2679*		563†	
IIUB				963)		.095)	
LNDISTANCE			(0.0	903)		095) 0292	
LNDISTANCE						839)	
HHI						188†	
11111						.717)	
					(0.1	(1()	
Observations	7 7	705	7 -	705	7 7	705	
Log likelihood		75.4	7,705 16.880.2		7,705 16.883.8		
SBIC ^a		369			-4.366		
JDIC	-4.	209	-4.368		-4.300		

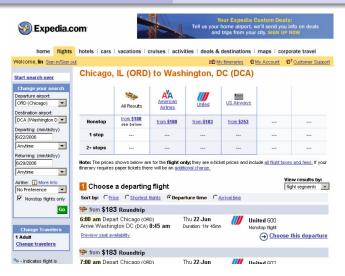
Table: Maximum Likelihood Estimates: Role of Route Characteristics

Note: The dependent variable is SALES \times 100. Standard errors in parentheses. All regressions control for flight fixed effects. \ddagger significant at 10%; \ddagger significant at 5%; \ast significant at 1%. a Schwarz Bayesian Information criterion.

Pooling Across Types and Price Discrimination Determining the Number of Types N Recovering Valuations Role of Capacity, Competition, and Route Characteristics

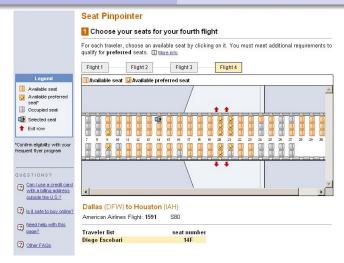
Potential Endogeneity of Fares

Table: Hausman Test for Potential Endogeneity of Fares


Dependent variable:	LNFARE
First Stage Regressions:	
Lag LnFare	-0.0329*
	(0.0044)
Days	-0.0008*́
	(0.0001)
Constant	0.2413*
	(0.0279)
Observations	`3,145´
Underidentification test:	
Kleibergen-Paap rk LM statistic	53.189
$\chi^2(1)$ P-val	0.000
Weak identification test:	
Kleibergen-Paap rk Wald F statistic	55.282
Hausman test. H ₀ : Fare is exogenous	
F(1,3141)	0.349
Prob > F(1,3141)	0.559

Note: Standard errors in parentheses. All regressions control for flight fixed effects. \ddagger significant at 10%; \ddagger significant at 5%; \ddagger significant at 1%.

イロト イポト イヨト イヨト


Conclusion

- Consumers hold information that is unknown to the seller.
- Present mixtures to separate consumer types.
- Does not rely on particular product attributes as a screening device
- Use partial information: capacity utilization and days to departure.
- Evidence of two types of consumers: Low types more closely resemble "tourists" and high types are business travelers.
- We find that high types are less price sensitive, have higher valuations and pay higher prices.
- The proportion of high types increases as the departure date nears.
- High types are more likely to make a purchase when most travelers already booked.

イロト イポト イヨト イヨト

-

Data

イロト イポト イヨト イヨト

Table: Hausman Test to Evaluate the Model Identification

Excluded variables from type equation	H ₀ : Difference in coefficients of demand equation between benchmark model and
	alternative models not systematic
I _{FARE>FARE}	11.5929
	(0.1148)
$I_{LOAD > \overline{LOAD}}$ & Days – \overline{DAYS}	9.4537
HOAD > HOAD	(0.2217)

Note: Benchmark model includes $I_{FARE>FARE}$, $I_{LOAD>LOAD}$ and $\mathrm{DAYS}-\overline{\mathrm{DAYS}}$ in the type equation. Hausman Chi-squared statistic reported and *p*-value in parentheses.

イロト イポト イヨト イヨト