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Motivation: Price dispersion in airlines

Figure: Price dispersion in airlines
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@ 33 passengers paid 27 different fares, United flight from Chicago to
Los Angeles (New York Times)

@ Borenstein and Rose (JPE, 1994): 36% difference.
e Gerardi and Shapiro (JPE 2009).
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Motivation: Price discrimination in Airlines

@ Carriers exploit ‘fences’ such as:
o Saturday-night-stayover.
e Advance purchase discounts.
o Minimum- and maximum-stay.
o Refundable tickets.
Frequent flier miles.
Blackouts.

Volume discounts.

Fare classes (e.g. coach, first class)
o Hour-of-day purchase.

@ Airlines have the most sophisticated pricing systems in the world.

Diego Escobari and Manuel A. Hernandez Screening and Price Discrimination with Unobserved Consumer Types



Introduction
Data

Empirical Model
Empirical Results
Conclusion

Motivation
Contribution and Intuition

Motivation: Asymmetric Information

@ Consumers hold private information (types are unknown to the
seller).
@ Mechanism design makes buyers reveal information:

o Differentiated products (menu of prices)
o Quantity discounts

@ Propose using incomplete information to identify unobserved
consumer types:

o Consumers have unit demands.
e Product is homogeneous.
@ Well suited for airlines:

o No arbitrage opportunities.
e Price dispersion and consumer heterogeneity.
o Data on a large number of markets.
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Contribution and Intuition

@ Use mixtures to identify consumer types.

High types (business travelers) have:

o Less price-sensitive demand.
e Have higher valuations.
o Pay higher prices.

Larger within-type sales dispersion in low types (greater consumer
heterogeneity)

Probability of high-types increases with:

o Higher capacity utilization.

o Closer to departure (when fares are low).
e Income.

o At hub airports.

e Market concentration.
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Construction of the Data

Posted prices from expedia.com
Pick a single day: Thursday, June 22, 2006.
o Controls for systematic peak load pricing.

@ One-way, non-stop, economy-class.
o Connecting passengers / sophisticated itineraries / legs.
e Uncertainty in the return portion of the ticket.
o Saturday-night-stayover / min- and max-stay.
o Fare classes (e.g. coach, first class).

Panel with 228 cross sectional observations (city pairs).

°
@ Collected every 3 days with 35 observations in time.
@ American, Alaska, Continental, Delta, United and US Airways.
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Summary Statistics

Table: Summary Statistics

VARIABLE mean sd min max

Monopolies:
FARE (P) 3226 171.7 64 914
Davs 50.8 29.3 1 100
LoAD 0.544 0.245 0.013 1
SALES (Q) 0.017 0.038 -0.392 0.485
T np>Fams 0.349 0.477 0 1
Loap>ToAD 0.427 0.495 0 1

Full sample:
FARE (P) 292.2 172.3 54 1,224
DAvs 50.8 29.3 1 100
LoAD 0.513 0.250 0.013 1
SALES (Q) 0.017 0.042 -0.408 0.485
INCOME 35,580.0 4619.4 25,198  53,430.0
LEISURE 0.070 0.256 0 1
SLot 0.298 0.458 0 1
Hus 0.737 0.440 0 1
DISTANCE 1104.4 620.7 91 2,604
HHI 0.679 0.289 0.253 1
Tpsnp>Fams 0.340 0.474 0 1

0.416 0.493 0 1

Loap>LoaD

Note: The number of observations is 3,243 for the monopolies and
7,705 for the full sample.



Summary Statistics

Average

@ Prices as the flight date nears
500
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Average Fares
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Average and Standard Deviation of Fares
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Figure: Average and standard deviation of fares
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Demand Equations
N different consumer types:
ay + B1Pje + Xo1 + ki1 + €jje 1 if =1,

0 a2 + BaPjjr + X62 + Ki2 + €jjt 2 if =2,
ijt — . o

O‘N+BNPUt+X(5N+/<V,'7N+E,'jt7N if =N,

i flight; j: route; t: time.
Unobserved types: 6 =1,..., N
Q: Sales.

P: Posted price.

e 6 66 o6 o

X: Other factors (days in advance).
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Maximum Likelihood

@ Eiito ~ N(0,0’?vg), 0 =1,...,N, the log-likelihood for the kth
flight-time period is:

N 2

k.0
exp

nh=1n|> —"
nig =1n >
o—1 O=,0V 2T 202

@ where ry is the mixing parameter defined as the probability of being
in a regime dominated by type 6 consumers.

("] Z(,fvzl rp = 1
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Maximum Likelihood

@ Each kth observation can be associated to a particular demand
regime 6, § =1, ..., N, with probability ry.
@ We can model the probability of being in a type-6 demand as,

exp (Gdg)

N—1
1+ Y exp(Gds)
s=1

rpg =

@ G: Observables that can help us identify the type.
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Maximum Likelihood Estimates: Price Discrimination

Table: Maximum Likelihood Estimates: Price Discrimination

Model: (1) 2)
Type 6: Pooled H L

Demand Equations:
CONSTANT 1.6840* 0.0737 3.7413*
(0.1496)  (0.0955)  (0.3788)

LNFARE -2.3664%  -1.4578%  -2.6381*
(0.3400)  (0.1581)  (0.9031)
Davs -0.0332%  -0.0175%  -0.0491*
(0.0027)  (0.0014)  (0.0065)
0. 3.7172%  1.1275%  5.5012%

(0.0485)  (0.0380)  (0.1361)

Probability of Type H, ry = Prob(6 = H):

Iw.m:>m 0.7376*
(0.1138)
Average Fare 322.6 381.6 290.9
Observations 3,243 3,243
Log likelihood 6,075.1 7,106.9
SBIC? -3.737 -4.360

Note: The dependent variable is SALES x 100. Standard errors in parentheses.
All regressions control for flight fixed effects. 1 significant at 10%; 1 significant
at 5%; * significant at 1%. ? Schwarz Bayesian Information criterion.



Pooling Across Types and Price Discrimination
Determining the Number of Types N

Recovering Valuations

Role of Capacity, Competition, and Route Characteristics

Probability of type-H demand _

Figure: Number of observations by type and days in advance
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Determining the Number of Types N and Recovering
Valuations

Determining the Number of Types N

Table: Determining the Number of Types N

Number of types N SBIC? Log likelihood LR test’

1 -3.737 6075.057

2 -4.360 7106.864 0.000
3 -4.351 7111.356 0.110
4 -4.340 7114.844 0.222
5 -4.331 7119.636 0.088

Note: ? Schwarz Bayesian Information criterion. ° p-value of likelihood
ratio (LR) test reported.
Recovering Valuations

@ Reservation values are uniformly distributed [0, vg].
e Demand is: Q@ = Ny — Np/VpP.
@ The number of consumers of each type is Ny = ap + Xy.

v ag + Xog
p=—————.
Bo




Maximum Likelihood Estimates: Reservation Values

Table: Maximum Likelihood Estimates: Reservation Values

Model: (1) 2)
Type 6: Pooled H L
Demand Equations:
CONSTANT 1.6529* 0.0787 3.6683*
(0.1425) (0.0917) (0.3607)
FARE -0.0074*  -0.0046*  -0.0076*
(0.0010) (0.0005) (0.0025)
DAys -0.0326*%  -0.0174*  -0.0475*
(0.0025) (0.0014) (0.0063)
oe 3.7190* 1.1356* 5.6126*
(0.0475) (0.0365) (0.1326)
Probability of Type H, ry = Prob(8 = H):
Imm;>m 0.7602*
(0.1096)
Reservation Values: 554.3 692.8 546.4
Average Fare 322.6 381.6 290.9
Observations 3,243 3,243
Log likelihood 6,073.5 7,106.3
SBIC? -3.736 -4.360

Note: The dependent variable is SALES x 100. Standard errors in parentheses.
All regressions control for flight fixed effects. i significant at 10%; T significant
at 5%; * significant at 1%. ? Schwarz Bayesian Information criterion.



Maximum Likehood Estimates: Role of Capacity

Table: Maximum Likelihood Estimates: Role of Capacity

Model: (1) (2)
Type 6: H L H L
Demand Equations:
CONSTANT 0.0838 3.4119* 0.1491 3.5532*
(0.1080) (0.3692) (0.1003) (0.4205)
LNFARE -1.4496%  -3.4422*%  -1.4359*  -2.8008*
(0.1972) (0.9093) (0.1878) (1.0884)
DAys -0.0170*  -0.0431*  -0.0172*  -0.0436*
(0.0016) (0.0072) (0.0015) (0.0082)
o 1.1453* 5.7486* 1.2375* 6.0606*

(0.0523)  (0.1687)  (0.0457)  (0.1901)

Probability of Type H, ry = Prob(6 = H):

IF-\nu>m 1.1533*
(0.1450)
- 0.9974* 0.6630*
(0.1930) (0.1687)
DAYs — DAYs 0.0261* 0.0303*
(0.0031) (0.0032)
Observations 3,243 3,243
Log likelihood 7,137.0 7,180.3
SBIC? -4.377 -4.401

Note: The dependent variable is SALES x 100. Standard errors in parentheses.
All regressions control for flight fixed effects. 1 significant at 10%; 1 significant
at 5%; * significant at 1%. ? Schwarz Bayesian Information criterion.
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Recovering Valuations

Role of Capacity, Competition, and Route Characteristics

Figure: Probability of type-H demand
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Maximum Likehood Estimates: Role of Competition

Table: Maximum Likelihood Estimates: Role of Competition

Model: (1) (2) 3)
Type 6: Pooled H L H L
Demand Equations:
CONSTANT 1.8369* 0.0322 3.8670* 0.0632 3.5123*
(0.1071) (0.0664) (0.2842) (0.0733) (0.2773)
LNFARE -1.7219*%  -1.0358*  -2.0037*  -0.9848*  -2.0272*
(0.2048) (0.1055) (0.6350) (0.1136) (0.6096)
DaAvs -0.0362*  -0.0177*  -0.0522*  -0.0170*  -0.0443*
(0.0018) (0.0010) (0.0050) (0.0010) (0.0057)
o 4.0316* 1.1038* 6.0516* 1.1661* 6.4194*

(0.0343)  (0.0267)  (0.1003)  (0.0308)  (0.1381)

Probability of Type H, ry = Prob(6 = H):

Lianos Foms 0.5266* 0.9872*
(0.0750) (0.0836)
ILO.-\D>m 0.5496*
(0.1112)
DAYs — DAYs 0.0327*
(0.0020)
Observations 7,705 7,705 7,705
Log likelihood 13,807.7 16,471.5 16,713.5
SBIC? -3.579 -4.265 -4.326

Note: The dependent variable is SALEs x 100. Standard errors in parentheses. All
regressions control for flight fixed effects. 1 significant at 10%; 1 significant at 5%;
* significant at 1%. ? Schwarz Bayesian Information criterion.



Role of Route Characteristics

Table: Maximum Likelihood Estimates: Role of Route Characteristics

Model: (1) 2) 3)
Type 6: H L H L H L
Demand Equations:
CONSTANT 0.7170* 5.9771* 0.7208* 6.0161* 0.7209* 6.0107*
(0.0670)  (0.5449)  (0.0712)  (0.6588)  (0.0680)  (0.6936)
LNFARE -1.3195%  -2.8756*%  -1.3209*  -2.8989*  -1.3235%  -2.89857
(0.1133)  (1.0855)  (0.1132)  (1.0175)  (0.1139)  (1.1793)
Davs -0.0239*  -0.0749*  -0.0239*  -0.0754*  -0.0239*  -0.0754*
(0.0011)  (0.0103)  (0.0012)  (0.0109)  (0.0011)  (0.0124)
oc 1.6183* 8.6465* 1.6228* 8.6719* 1.6220* 8.6680*
(0.0343)  (0.2396)  (0.0325)  (0.2531)  (0.0319)  (0.2706)
Probability of Type H, ry = Prob(6 = H):
LNINCOME 0.1521* 0.1354* 0.1253t
(0.0062) (0.0096) (0.0589)
LEISURE -0.0695 -0.0004 -0.0855
(0.1742) (0.1649) (0.2126)
sLor -0.0447 0.0569
(0.0928) (0.1301)
Hus 0.2679* 0.2663t
(0.0963) (0.1095)
LNDISTANCE -0.0292
(0.0839)
HHI 0.4188t
(0.1717)
Observations 7,705 7,705 7,705
Log likelihood 16,875.4 16,880.2 16,883.8
SBIC? -4.369 -4.368 -4.366

Note: The dependent variable is SALES x 100. Standard errors in parentheses. All regressions control
for flight fixed effects. i significant at 10%; 1 significant at 5%; * significant at 1%. ? Schwarz

Bayesian Information criterion.
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Potential Endogeneity of Fares

Table: Hausman Test for Potential Endogeneity of Fares

Dependent variable: LNFARE
First Stage Regressions:
LAG LNFARE -0.0329*
(0.0044)
DAYs -0.0008*
(0.0001)
CONSTANT 0.2413*
(0.0279)
Observations 3,145
Underidentification test:
Kleibergen-Paap rk LM statistic 53.189
x3(1) P-val 0.000
Weak identification test:
Kleibergen-Paap rk Wald F statistic 55.282
Hausman test. Hp: Fare is exogenous
F(1,3141) 0.349
Prob > F(1,3141) 0.559

Note: Standard errors in parentheses. All regressions control for flight fixed
effects. § significant at 10%,; T significant at 5%; * significant at 1%.
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Conclusion

@ Consumers hold information that is unknown to the seller.

@ Present mixtures to separate consumer types.

@ Does not rely on particular product attributes as a screening device
@ Use partial information: capacity utilization and days to departure.

@ Evidence of two types of consumers: Low types more closely
resemble “tourists” and high types are business travelers.

@ We find that high types are less price sensitive, have higher
valuations and pay higher prices.

@ The proportion of high types increases as the departure date nears.

@ High types are more likely to make a purchase when most travelers
already booked.

Diego Escobari and Manuel A. Hernandez Screening and Price Discrimination with Unobserved Consumer Types
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Table: Hausman Test to Evaluate the Model Identification

Excluded variables from type Hy: Difference in coefficients of demand

equation equation between benchmark model and
alternative models not systematic
N T 11.5929
(0.1148)
It oan>Toap & DAYS — DAvs 9.4537
(0.2217)

Note:. Benchmark model includes I‘F.uy:.>FAm-:r L oan>Tomm anc.i DAYs — DAYS in the type
equation. Hausman Chi-squared statistic reported and p-value in parentheses.
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