Price Discrimination through Refund Contracts in Airlines

Diego Escobari[†] Paan Jindapon[‡]

[†]Department of Economics and Finance The University of Texas - Pan American

[‡]Department of Economics, Finance and Legal Studies University of Alabama

California State University, Fullerton February, 2012

Outline

Introduction

- Motivation
- Contribution and intuition of the current paper

2 Theoretical Analysis

- The Consumer's Problem
- The Airline's Problem
- Equilibrium Prices
- Empirical Implications

3 Empirical Analysis

- Data
- Empirical Model
- Results

4 Conclusions

★ Ξ ►

Motivation Contribution and intuition of the current paper

Motivation: Price dispersion in airlines

Figure: Price dispersion in airlines

- 33 passengers paid 27 different fares, United flight from Chicago to Los Angeles (*New York Times*)
- Gerardi and Shapiro (JPE, 2009) Borenstein and Rose (JPE, 1994): 36% difference.

< 🗇 🕨

Motivation Contribution and intuition of the current paper

Motivation: Dynamic pricing in airlines

- Key characteristics:
 - Fixed capacity.
 - Perishable good.
 - Aggregate demand uncertainty.
 - Advance sales.
- Carriers exploit 'fences' such as:
 - Saturday-night-stayover.
 - Advance purchase discounts.
 - Minimum- and maximum-stay.
 - Refundable tickets.
 - Frequent flier miles.
 - Blackouts.
 - Volume discounts.
 - Fare classes (e.g. coach, first class)
- Airlines have the most sophisticated pricing systems in the world.

マロト イヨト イヨト

Contribution and intuition of the current paper

- Explains how a seller offers refundable/non-refundable tickets in advance to differentiate buyers.
- Can include risk averse consumers [Courty and Li (REStud, 2000), Akan *et at.* (2008) only risk neutral].
- The difference in fares = refundability value + price discrimination.
- First empirical paper in airlines that perfectly controls for observed and unobserved sources of costs.
- First empirical paper that explains the use of non-refundable prices.
- First empirical paper that shows individual demand learning.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Consumer's Problem

Consumer's type, i = H (high) or L (low), is not observable by the airline.

Period 1:

• Each consumer *i* decides to buy or not.

Period 2:

- State-dependent utility function:
- State *T* (Travel):
 Demand = 1, with probability π_i.
- State *NT* (Not Travel): Demand = 0, with probability $1 - \pi_i$.

- 4 @ ト 4 ヨト 4 ヨト

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Consumer's Problem

- The valuation of traveling is $v_i > 0$.
- u is the utility of traveling, with u' > 0, u'' < 0, and u(0) = 0.
- Expected utility from buying a refundable ticket at price *p*:

$$U_i^r(p) = \pi_i u(v_i - p)$$

• Expected utility from buying a non-refundable ticket at price p

$$U_i^{nr}(p) = \pi_i u(v_i - p) + (1 - \pi_i)u(-p)$$

Utility is zero in both states if not buying any ticket.

・ロト ・周ト ・ヨト ・ヨト

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Consumer's Problem

Type i's reservation price for a non-refundable ticket is c_i, such that U^{nr}_i(c_i) = 0; i.e.,

$$\pi_i u(v_i - c_i) + (1 - \pi_i)u(-c_i) = 0$$

Example 1:

- $u(x) = \ln(1 + x/1000)$.
- $v_L = 500$.
- *π*_L = 0.6.
- We find that: $c_L = 268$.
- The reservation price for a non-refundable ticket is lower.

イロト イポト イラト イラト

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Consumer's Problem

- Let the airline offer the menu (p^{nr}, p^r) .
- Consumer can buy a refundable ticket, a non-refundable ticket, or not buy any ticket.
- Consumer's best response is illustrated in Figure 1.

イロト イポト イヨト イヨト

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Consumer's Problem

Figure: Type *i* consumer's best response in (p^{nr}, p^r) space

 $\overline{U}_i \equiv \max\{U_i^{nr}(p^{nr}), U_i^r(p^r)\} = 0$

< 🗇 🕨

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Airline's Problem

- Let the number of type *L* consumers be N_L . Then $n_L = \pi_L N_L$.
- Let the number of type H consumers be N_H . Then $n_H = \pi_H N_H$.
- The airline announces p^{nr} and p^r at the beginning of period 1.
- Consumers strategies could be either pooling or separating.
- We are interested in a separating equilibria.
- Assume $v_H > v_L$ and $\pi_H < \pi_L$.

イロト イボト イラト イラト

-

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Airline's Problem

s.t.

• The airline's optimization problem is:

$$\begin{split} \max_{p^{nr},p^r} N_L p^{nr} + n_H p^r \\ U_H^r(p^r) &\geq U_H^{nr}(p^{nr}) \\ U_L^{nr}(p^{nr}) &\geq U_L^{nr}(p^r) \\ U_H^r(p^r) &\geq 0 \\ U_L^{nr}(p^{nr}) &\geq 0. \end{split}$$

- First two are the incentive-compatibility constraints.
- Last two are the participation constraints. Figure 2 illustrates two cases for the solutions.

イロト イボト イラト イラト

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Airline's Problem

Figure: H buy refundable tickets and L buy non-refundable.

< 🗇 🕨

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Airline's Problem

Example 2: Panel (a)

- $u(x) = \ln(1 + x/1000)$.
- $v_L = 500$ and $\pi_L = 0.6$, then we find that: $c_L = 268$.
- $v_H = 800$ and $\pi_H = 0.3$, then we find that: $c_H = 185$.
- Since $c_L \ge c_H$, the airline sets $(p^{nr}, p^r) = (268, 800)$.

Example 3: Panel (b)

- $u(x) = \ln(1 + x/1000)$.
- $v_L = 500$ and $\pi_L = 0.6$, then we find that: $c_L = 268$.
- $v_H = 800$ and $\pi_H = 0.5$, then we find that: $c_H = 185$.
- Since $c_L < c_H$, the airline sets $(p^{nr}, p^r) = (268, 678)$.

イロト イボト イラト イラト

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

The Airline's Problem

Proposition 1 The airline's optimal price menu so that type L consumers buy non-refundable tickets and type H consumers buy refundable tickets is

(a)
$$(p^{nr}, p^r) = (c_L, v_H)$$
 if $c_L \ge c_H$ or
(b) $(p^{nr}, p^r) = (c_L, m)$ if $c_L < c_H$.

Proof See paper.

イロト イポト イラト イラト

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

Equilibrium Prices

• Necessary and sufficient conditions for the airline to find the separating response most profitable.

Proposition 2 Necessary and sufficient conditions for the existence of an equilibrium where the airline sets prices so that type L consumers buy non-refundable tickets and type H consumers buy refundable tickets are

$$\frac{N_H}{N_L} \geq \frac{\pi_L v_L - c_L}{\pi_H (v_H - v_L)}$$

if $c_L \ge c_H$ and

$$\frac{\pi_L v_L - c_L}{\pi_H (m - v_L)} \le \frac{N_H}{N_L} \le \frac{c_L}{\pi_H (v_H - m)}$$

if $c_L < c_H$. **Proof** See Appendix in the paper.

イロト イポト イヨト イヨト

The Consumer's Problem The Airline's Problem Equilibrium Prices Empirical Implications

Empirical Implications

- Let π_H and π_L be dependent on τ (time to departure).
- π_L increases as τ decreases.
- We move from case (a) to case (b).
- The gap between refundable and non-refundable prices diminishes as the flight date nears and the consumers are more certain about their travel plans.
- Only one price prevails at departure (au=0)

・ロト ・周ト ・ヨト ・ヨト

Data Empirical Model Results

Construction of the Data

- Refundable and non-refundable fares from expedia.com
- Pick a single day: Thursday, June 22, 2006.
 - Controls for systematic peak load pricing.
- One-way, non-stop, economy-class..
 - Connecting passengers / sophisticated itineraries / legs.
 - Uncertainty in the return portion of the ticket.
 - Saturday-night-stayover / min- and max-stay.
 - Fare classes (e.g. coach, first class).
- Monopoly routes.
- Panel with 96 cross sectional observations (city pairs).
- Collected every 3 days with 28 observations over time.
- American, Alaska, Continental, Delta, United and US Airways.

Expedia

・ロト ・周ト ・ヨト ・ヨト

Data Empirical Model Results

Data

Figure: Average p^r and p^{nr} with 95% confidence intervals

(日)、

ъ

э

Data Empirical Model Results

Controlling for Costs

Costs that change from seat to seat:

- Borenstein and Rose (JPE, 1994)
 - Systematic peak-load pricing.
 - Stochastic peak-load pricing.
- Dana (RAND, 1999)
 - Operational marginal cost.
 - Effective cost of capacity.

Both prices are set for the same seat.

3 N

Data Empirical Model Results

Nonparametric Panel Regression

$$\ln(p_{ijt}^{r} - p_{ijt}^{nr}) = g(\tau_{ijt}, LOAD_{ijt}) + \nu_{ij} + \varepsilon_{ijt}$$

- *i*: flight; *j*: route; *t*: time. Controls for:
 - Time-invariant flight-, route-, and carrier-specific characteristics.
 - e.g. systematic peak-load pricing, distance, aircraft type, airport characteristics, managerial capacity.
 - Time-variant seat-specific characteristics.
 - e.g. stochastic peak-load pricing, capacity constraints, aggregate demand uncertainty (π_l = π_h).

・ロト ・ 『 ト ・ ヨ ト ・

Data Empirical Model Results

Nonparametric Panel Regression

$$\ln(p_{ijt}^{r} - p_{ijt}^{nr}) = g(\tau_{ijt}, LOAD_{ijt}) + \nu_{ij} + \varepsilon_{ijt}$$

- $g(\cdot)$: Unknown smooth function.
- Flight-specific effects are outside to avoid the curse of dimensionality.
- Estimated using kernel methods for mixed data types [Racine and Li (J. Econometrics, 2004) and Li and Racine (2007)].
- Better finite sample properties than other kernel estimators.
- Under $\pi_L \neq \pi_H$, include capacity utilization, *LOAD*.
- Allows for interactions among τ and *LOAD* as well as nonlinearities in and among both variables.
- Smoothing parameters will be estimated with least-squared cross-validation.

イロト イボト イラト イラト

Data Empirical Model Results

Dynamic Panels

$$\ln(p_{ijt}^{r} - p_{ijt}^{nr}) = \alpha \ln(p_{ij,t-1}^{r} - p_{ij,t-1}^{nr}) + \beta_{1}\tau_{ijt} + \beta_{2}\tau_{ijt}^{2}$$

$$+ \beta_{3}\tau_{ijt}^{3} + \beta_{4}LOAD_{ijt} + \nu_{ij} + \varepsilon_{ijt},$$
(1)

- Nonlinearities in time are modeled parametrically.
- Potential endogeneity of LOAD.
 - Estimate using GMM dynamic panels to assume only weak exogeneity of *LOAD*.
 - Rational passengers are allowed to behave dynamically.
 - Controls for potentially serially correlated demand shocks.

A (1) > A (2) > A

Data Empirical Model Results

Dynamic Panels

- To allow for correlation between carrier effects. (airline specific shocks)
 - Cluster robust standard errors, clustered by airline.
- Difference GMM. Weak instruments when series are persistent.
 - Standard weak instrument test do not work. Use known biases if weak instruments are present.
 - System GMM.
- Moment conditions assume the error term is not serially correlated.
 - Include a second order serial correlation test.
- Test for validity of the instruments.
 - Sargan and Difference Sargan.

- **A PERSON A DE N**

Data Empirical Model Results

Summary Statistics

Table: Summary statistics

Variables	Mean	Std. Dev.	Min.	Max.	Obs.	
p ^r						
overall	494.486	169.181	144.000	1715.310	2628	
between		156.974	144.000	735.497	96	
within		64.167	141.262	1474.299	27.375 ^ª	
p ^{nr}						
overall	327.749	171.588	64.000	914.000	2628	
between		156.654	74.107	665.786	96	
within		70.204	164.642	852.249	27.375 ^ª	
au	41.500	24.238	1.000	82.000	2688	
LOAD	0.591	0.241	0.038	1.000	2688	

Notes: ^a Number of observations in time, with one observation every three days.

イロト イポト イヨト イヨト

-

	(1))	(2)			
4 days	0.527	(1.575)	0.510	(1.518)		
7 days	2.106***	(5.375)	2.067***	(5.361)		
10 days	2.614***	(5.290)	2.523***	(5.502)		
13 days	2.565***	(4.141)	2.451***	(4.297)		
16 days	2.977***	(4.306)	2.800***	(4.613)		
19 days	3.013***	(4.190)	2.803***	(4.505)		
22 days	2.999***	(5.066)	2.737***	(5.800)		
25 days	2.963***	(4.708)	2.674***	(5.423)		
28 days	3.036***	(4.751)	2.727***	(5.623)		
31 days	3.092***	(4.903)	2.737***	(6.072)		
34 days	3.124***	(5.081)	2.733***	(6.471)		
37 days	3.187***	(5.081)	2.757***	(6.465)		
40 days	3.069***	(4.980)	2.609***	(6.587)		
43 days	3.418***	(6.369)	2.927***	(9.515)		
46 days	3.325***	(6.522)	2.809***	(10.095)		
49 days	3.331***	(6.698)	2.796***	(10.948)		
52 days	3.442***	(7.401)	2.878***	(12.559)		
55 days	3.439***	(7.441)	2.863***	(12.935)		
58 days	3.392***	(7.049)	2.795***	(12.379)		
61 days	3.429***	(7.006)	2.818***	(11.960)		
64 days	3.291***	(5.722)	2.665***	(8.860)		
67 days	3.249***	(5.028)	2.601***	(7.173)		
70 days	3.257***	(4.891)	2.600***	(6.902)		
73 days	2.993***	(3.390)	2.315***	(3.978)		
76 days	3.003***	(3.425)	2.315***	(4.053)		
79 days	2.861***	(3.194)	2.161***	(3.686)		
82 days	3.177***	(4.309)	2.469***	(5.897)		
LOAD			-1.350**	(-2.138)		
Within R-squared	0.312		0.319			

Table: Regression estimates, separate day dummies

Notes: The dependent variable is $\ln(p'_{ijt} - p''_{ijt})$ and the number of observations is 2628. t-statistics in parentheses based on cluster-robust standard errors, clustered by airline; ***p-value<0.01, ** p-value<0.05, *p-value<0.1. Both specifications estimated with flight fixed effects. The 1 day in advance dummy variable excluded.

Data Empirical Model Results

Table: Regression estimates

	(1)	(2)	(3)	(4)	(5)	(6)		
	ÓĽS	Within	GMM Dif	GMM Dif	GMM Sys	GMM Sys		
	levels	groups	t - 2	t - 3	t - 2	t - 3		
$\ln(p_{ii,t-1}^r - p_{ii,t-1}^{nr})$	0.854***	0.530***	0.572***	0.554***	0.566***	0.560***		
5,7	(22.736)	(10.772)	(6.221)	(6.073)	(6.679)	(6.168)		
$\tau_{iit}/10^2$	7.970**	11.578**	10.349***	12.423***	11.782***	12.043***		
5-	(2.222)	(2.537)	(2.610)	(3.860)	(6.475)	(5.411)		
$\tau_{iit}^2 / 10^4$	-17.228*	-24.928*	-21.435***	-25.486***	-25.525***	-26.080***		
	(-1.865)	(-1.891)	(-4.211)	(-4.782)	(-5.019)	(-5.183)		
$\tau_{iit}^3 / 10^6$	11.236	15.898	13.680***	16.220***	16.783***	17.152***		
ije.	(1.608)	(1.501)	(4.077)	(4.389)	(4.136)	(4.353)		
LOAD _{iit}	-0.434***	-0.828**	-0.068	0.102	-0.317	-0.289		
	(-5.578)	(-2.156)	(-0.026)	(0.064)	(-0.129)	(-0.124)		
Serial correlation test ^a (p-value)			0.605	0.619	0.604	0.609		
Sargan test ^b (p-value)			0.004	0.066	0.689	0.988		
Difference Sargan test ^C (p-v				1.000	1.000			

Notes: The dependent variable is $\ln(\rho'_{ijt} - \rho''_{ijt})$. Columns 2 through 6 control for carrier-, route-, and flight-specific characteristic. t-statistics in parentheses for the OLS and the Within groups based on cluster-robust standard errors, clustered by airline. t-statistics in parentheses for the two-step system GMM based on Windmeiger WC-robust estimator; ***P-value<0.01, ** p-value<0.01, a "The null hypothesis is that the errors in the first-difference regression exhibit no second-order serial correlation (valid specification). b The null hypothesis is that the instruments are not correlated with the residuals (valid specification). C The null hypothesis is that the additional instruments t - 3are not correlated with the residuals (valid specification).

Data Empirical Model Results

Regression Estimates

Table: Regression estimates, robustness checks

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Within	Within	GMM Svs	GMM Svs	Within	Within	GMM Svs	GMM Svs	Within	Within
	groups	groups	t - 2	t - 3	groups	groups	t - 2	t - 3	groups	groups
$\ln(p_{ii}^{r} + 1 - p_{ii}^{nr} + 1)$			0.723	0.717			0.616	0.609		
9,1 1 9,1 1			(9.706)	(9.796)			(6.948)	(6.813)		
$\tau_{iit} / 10^2$	1.783	-0.084	-0.107	-0.104	9.421	8.200	5.600	5.630	18.210	17.004
	(3.916)	(-0.641)	(-0.233)	(-0.137)	(12.128)	(18.801)	(2.859)	(2.645)	(3.381)	(3.584)
$\tau_{iit}^2 / 10^4$					-9.117	-8.506	-5.360	-5.440	-35.358	-35.111
5-					(-16.462)	(-14.991)	(-5.914)	(-5.703)	(-2.404)	(-2.470)
$\tau_{iit}^3/10^6$									20.952	21.295
									(1.791)	(1.842)
LOAD _{iit}		-2.751	-1.633	-1.662		-1.044	0.239	0.162		-1.155
5		(-3.961)	(-1.988)	(-1.367)		(-1.734)	(0.102)	(0.062)		(-2.062)
Serial correlation test ^a (p-value)			0.503	0.504			0.577	0.581		
Sargan test ^D (p-value)			0.676	0.989			0.699	0.989		
Difference Sargan test ^c (p-value)			1.000	1.000			1.000	1.000		
Within R-squared	0.105	0.139			0.232	0.237			0.263	0.268
Notes: The dependent variable is $\ln(p_{iit}^r - p_{iit}^{nr})$. All specifications control for carrier-, route-, and flight-specific characteristic. See notes on										

Table 5.

< 🗇 🕨

3

Data Empirical Model Results

Nonparametric Estimation

Figure: Nonparametric partial regression plot and cubic specification

• Bivariate plot is holding LOAD in its median.

< 🗇 🕨

Conclusions

- Importance of offering a menu of prices.
- A seller can price discriminate when heterogeneous buyers are uncertain about their demand for travel.
- Buyers can use refund contracts to insure against uncertainty in consumption.
- The gap between fares is a function of individual's demand uncertainty.
- Nonparametric regression shows that most of the individual demand uncertainty is resolved during the last two weeks.
- The opportunity to price discriminate decreases closer to departure.

イロト イボト イラト イラト

Diego Escobari