Asymmetric Price Adjustments in Airlines

Diego Escobari

Department of Economics \& Finance
The University of Texas-Pan American

University of Alabama
December 3, 2010

Outline

(1) Introduction

- Motivation
- Dynamic pricing in airlines
- Contribution
(2) Data
- Construction
- Realized demand
(3) Empirical strategy
- Decomposition of PRICE_{t}
- Transitory component PricE_{t}^{T}
- Markov-switching with FTP and TVTP
- Asymmetries specifications: $\mathrm{Sign}_{t}, \mathrm{SizE}_{t}, \mathrm{WKND}_{t}$, and Summ_{t}

4 Results

- Significance of the regime-switch
- Maximum Likelihood Estimation
- Transitory component of price: PRICE_{t}^{T}
- State dependent Impulse Response Functions
- Transition probabilities
(5) Conclusions

Motivation

- Large price dispersion in airlines. Borenstein and Rose (JPE 1994), Gerardi and Shapiro (JPE 2009).
- Positive demand shifts drive prices up:
- Basic prediction of economic theory.
- Common view among travelers and the media:
"The inevitable outcome of limited seats and stronger demand will be higher fares."

New York Times, May 31, 2010

- Do prices fall as a response to negative demand shifts?

Motivation

- Potential explanations for the asymmetric response:
- Simple convex supply curve.
- Models with costly capacity and demand uncertainty: Prescott (JPE 1976), Eden (JPE 1990), Dana (Rand 1999)
- Menu costs. Mankiw (QJE 1985), Ball and Mankiw (1994)
- 'Asymmetric pricing.' (changes in costs) Peltzman (JPE 2000)
- Collusion / Market power.
- Uninformed consumers. Tappata (Rand 2009)
- Inventories. Borenstein and Shepard (Rand 2002)

Motivation: Dynamic pricing in airlines

- Key characteristics:
- Fixed capacity.
- Perishable good.
- Aggregate demand uncertainty.
- Advance sales.
- Carriers exploit 'fences' such as:
- Saturday-night-stayover.
- Advance purchase discounts.
- Minimum- and maximum-stay.
- Refundable tickets.
- Frequent flier miles.
- Blackouts.
- Volume discounts.
- Fare classes (e.g. coach, first class)
- Airlines have the most sophisticated pricing systems in the world.

Contribution of the current paper

- First to explain price variation over different departure dates.
- Finds strong evidence of an asymmetric response.
- Combines different sources of asymmetries.
- Positive cost shifts have a positive effect, but negative demand shifts have no effect on prices.
- Cost shifts have larger effect on prices during summer travel.
- Less evidence that the shifts are related to the size of the demand shift or weekend and holiday travel.
- Importance of capacity constraints as a source of asymmetric pricing.
- Importance of asymmetric pricing to stabilize demand fluctuations.

Construction of the Data

- Minimum available non-refundable fare from expedia.com.
- Controls for more expensive refundable fares.
- 126 days (18 weeks) for 48 flights departing between Tuesday June 9 and Monday October 12, 2009. Keeping the same flight-number.
- Controls for time-invariant specific characteristics.
- One-way, non-stop, economy-class.
- Connecting passengers / sophisticated itineraries / legs.
- Uncertainty in the return portion of the ticket.
- Saturday-night-stayover / min- and max-stay.
- Fare classes (e.g. coach, first class).
- American, Alaska, Continental, Delta, United and US Airways.

Data

Figure: Realized demand. Shaded areas: Weekends and holidays

Introduction

Decomposition of PrICE_{t}

Transitory component Price ${ }_{t}^{T}$
Markov-switching with FTP and TVTP
Asymmetries specifications: $\mathrm{SiGN}_{t}, \mathrm{Size}_{t}, \mathrm{WKND}_{t}$, and Summ_{t}

Decomposition of PrICE_{t}

Decompose Price_{t} into:

$$
\operatorname{PrICE}_{t}=\operatorname{PrICE}_{t}^{P}+\operatorname{PrICE}_{t}^{T} .
$$

Permanent component as a random walk with time-varying drift:

$$
\operatorname{PrICE}_{t}^{P}=\mu+\operatorname{PRICE}_{t-1}^{P}+\nu_{t}
$$

ν_{t} is a normally distributed i.i.d. r.v.

Transitory component Price $_{t}^{T}$

Transitory component as an autoregressive process:

$$
\begin{aligned}
& \phi(L) \cdot \operatorname{PRICE}_{t}^{T}=\gamma_{0}(L) \cdot \operatorname{CosT}_{t}+\gamma_{1}(L) \cdot \operatorname{CosT}_{t} \cdot S_{t}+\varepsilon_{t}, \\
& \phi(L)=\sum_{k=0}^{K} \phi_{k} \cdot L^{k} ; \quad \phi_{0}=1 ; \quad \gamma_{i}(L)=\sum_{j=0}^{J} \gamma_{j, i} \cdot L^{j} .
\end{aligned}
$$

S_{t} indicator variable equal to 0 or 1 to capture the regime switches in the response.
ε_{t} normally distributed i.i.d. r.v.
Lo and Piger (2005)

Fixed transition probabilities (FTP)

First-order Markov-switching fixed transitions probabilities:

$$
\begin{aligned}
& P\left(S_{t}=0 \mid S_{t-1}=0\right)=\frac{\exp \left(c_{0}\right)}{\left(1+\exp \left(c_{0}\right)\right)} \\
& P\left(S_{t}=1 \mid S_{t-1}=0\right)=1-P\left(S_{t}=0 \mid S_{t-1}=0\right) \\
& P\left(S_{t}=1 \mid S_{t-1}=1\right)=\frac{\exp \left(c_{1}\right)}{\left(1+\exp \left(c_{1}\right)\right)} \\
& P\left(S_{t}=0 \mid S_{t-1}=1\right)=1-P\left(S_{t}=1 \mid S_{t-1}=1\right)
\end{aligned}
$$

Time-varying transition probabilities (TVTP)

First-order Markov-switching time-varying transitions probabilities:

$$
\begin{aligned}
& P\left(S_{t}=0 \mid S_{t-1}=0\right)=\frac{\exp \left(c_{0}+z_{t}^{\prime} \cdot a_{0}\right)}{\left(1+\exp \left(c_{0}+z_{t}^{\prime} \cdot a_{0}\right)\right)} \\
& P\left(S_{t}=1 \mid S_{t-1}=1\right)=\frac{\exp \left(c_{1}+z_{t}^{\prime} \cdot a_{1}\right)}{\left(1+\exp \left(c_{1}+z_{t}^{\prime} \cdot a_{1}\right)\right)}
\end{aligned}
$$

Four specifications for the vector z_{t} :

- $z_{t}=\left(z_{1 t}, z_{2 t}, \ldots, z_{q t}\right)^{\prime}:$ Vector of state variables.
- $a_{0}=\left(a_{01}, a_{02}, \ldots, a_{0 q}\right)^{\prime}:$ Vector of coefficients. ('low' response)
- $a_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 q}\right)^{\prime}:$ Vector of coefficients. ('high' response)

Asymmetries specifications

Four specifications for the vector z_{t} :

- $\operatorname{SigN}_{t}=1$, if the demand shift is positive.
- $\operatorname{Size}_{t}=1$, if the demand shift is more than one standard deviation away from its mean.
- $\mathrm{WKND}_{t}=1$, if the departure date is during a weekend or holiday.
- $\operatorname{Summ}_{t}=1$, if the departure date is during the summer.

Significance of the regime-switch

- Markov-switching state-space representation:
- Kim (1994) filter.
- Significance of the regime-switch.
- Hansen (1992): $H_{0}: \gamma_{j, 0}=\gamma_{j, 1}$ for all j
- p -value of 0.01 .

Table: Model Selection

Elements of z_{t}	SIC	AIC	Log likelihood	LR test ${ }^{2}$
FTP	-2.5543	-2.8374	155.7086	
None				
TVTP	-2.5205	-2.8551	158.6084	0.0550
SIGN	-2.4816	-2.8161	156.6226	0.4009
SIZE	-2.4947	-2.8293	157.2945	0.2048
WKND	-2.5256	-2.8601	158.8659	0.0425
SUMM				

Note: ${ }^{a}$ p-value for a test of the null of the FTP.

Table: MLE Parameter Estimates

Parameter	FTP	SIGN	SIZE	WKND	SUMM
σ_{ν}	0.0039	0.0061	0.0046	0.0008	0.0051
	(0.0005)	(0.0037)	(0.0064)	(0.0038)	(0.0049)
σ_{ϵ}	0.0472	0.0462	0.0460	0.0478	0.0455
	(0.0041)	(0.0038)	(0.0039)	(0.0039)	(0.0037)
ϕ_{1}	0.1995	0.1235	0.1911	0.2190	0.1856
	(0.1173)	(0.0935)	(0.1228)	(0.0137)	(0.0858)
ϕ_{2}	-0.0100	-0.0038	-0.0091	-0.0120	-0.0086
	(0.0117)	(0.0058)	(0.0117)	(0.0598)	(0.0080)
$\gamma_{0,0}$	0.0995	0.1518	0.0908	0.0861	0.0862
	(0.1150)	(0.0966)	(0.1073)	(0.0882)	(0.0971)
$\gamma_{1,0}$	-0.1122	-0.1390	-0.1288	-0.1098	-0.1404
	(0.0954)	(0.0879)	(0.0948)	(0.0929)	(0.0913)
$\gamma_{0,1}$	2.4106	2.0317	2.3063	2.5431	2.2110
	(0.5238)	(0.5869)	(0.6688)	(0.4653)	(0.5563)
$\gamma_{1,1}$	0.8779	1.5148	0.9326	0.7594	0.8841
	(0.4517)	(0.6347)	(0.4614)	(0.4390)	(0.3893)
c_{0}	2.2963	21.3711	1.3803	1.7558	3.4565
	(0.5620)	$(-b)$	(0.8459)	(0.5647)	(1.0222)
c_{1}	0.0434	-0.3268	-0.0754	0.1339	0.8511
	(0.4481)	(0.9417)	(1.9404)	(0.9612)	(0.7516)
a_{01}		-9.6909	1.0691	4.6457	-8.0797
		(0.5538)	(1.2950)	(1.6140)	(1.2852)
a_{02}		-10.7071	1.0616	19.8223	5.2679
	$(-b)$	(1.2449)	$(-b)$	$(-b)$	
Log likelihood	155.7086	158.6084	156.6226	157.2945	158.8659

Note: The ML estimate of c_{0} appears on the boundary, violating regularity conditions. Hence, to calculate the standard errors, $c_{0}=0$ was imposed to calculate the second derivatives of the log likelihood.

Significance of the regime-switch

$\operatorname{Price}_{t}^{T}$

- Positively skewed $\operatorname{PricE}_{t}^{T}$

Figure: $\operatorname{Price}_{t}^{T}$. Shaded areas: $\operatorname{Sign}_{t}=1$

State dependent Impulse Response Functions

- Simulate the path of $\operatorname{PricE}_{t+j}^{T}$ as captured by: $\hat{\gamma}_{0,0}, \hat{\gamma}_{1,0}, \hat{\gamma}_{0,1}$, and $\hat{\gamma}_{1,1}$.
- $\operatorname{Price}_{t-1}^{T}=\operatorname{Price}_{t-2}^{T}=0, \varepsilon_{t+j}=0, \forall j$ and $\operatorname{Cost}_{t-j}=0, j \neq 0$.
- $\operatorname{Cost}_{t}=5.5 \%$

Figure: State dependent IRF of Priceet $_{t}^{T}$. TVTP: SIgN

Transition Probabilities

- Determine the transition probabilities as captured by:

$$
\hat{c}_{0}, \hat{c}_{1}, \hat{a}_{01} \text { and } \hat{a}_{02}
$$

- When $\operatorname{SigN}_{t-1}=\operatorname{SigN}_{t}=0$:

$$
\begin{aligned}
& P\left(S_{t}=0 \mid S_{t-1}=0\right)=\exp \left(\hat{c}_{0}\right) /\left(1+\exp \left(\hat{c}_{0}\right)\right)=1 \\
& P\left(S_{t}=1 \mid S_{t-1}=0\right)=0
\end{aligned}
$$

- When $\operatorname{SigN}_{t-1}=\operatorname{Sign}_{t}=1$:

$$
\begin{aligned}
& P\left(S_{t}=0 \mid S_{t-1}=0\right)=\exp \left(\hat{c}_{0}+\hat{a}_{01}+\hat{a}_{02}\right) /\left(1+\exp \left(\hat{c}_{0}+\hat{a}_{01}+\hat{a}_{02}\right)\right) \\
& =0.726 \\
& P\left(S_{t}=1 \mid S_{t-1}=0\right)=0.274
\end{aligned}
$$

- Positive demand shifts are more likely to have a large effect on prices than negative demand shifts.

Significance of the regime-switch

Filtered probability, $P\left(S_{t}=1 \mid t\right)$. TVTP: Sign

Figure: Filtered probability, $P\left(S_{t}=1 \mid t\right)$. TVTP: Sign. Shaded areas: Sign $_{t}=1$

Significance of the regime-switch
Maximum Likelihood Estimation
Transitory component of price: PRICE t
State dependent Impulse Response Functions Transition probabilities

Filtered probability, $P\left(S_{t}=1 \mid t\right)$. TVTP: Summ

Figure: Filtered probability, $P\left(S_{t}=1 \mid t\right)$. TVTP: Summ. Shaded areas: $\operatorname{Summ}_{t}=1$

Combined Asymmetries

- Combined asymmetries.
- Robustness of the Summ specification.
- Variation within the summer departure dates.

Table: Model Selection

Elements of z_{t}	SIC	AIC	Log likelihood	LR test ${ }^{a}$	LR test b
TVTP					
SUMM, SIGN	-2.4805	-2.8665	161.1919	0.0269	0.0977
SUMM, SIZE	-2.4356	-2.8216	158.9030	0.1719	0.9636
Summ, WKND	-2.4678	-2.8538	160.5428	0.0464	0.1870
SUMM, SUMM \times SIGN	-2.4953	-2.8814	161.9495	0.0141	0.0458
SUMM, SUMM \times SiZE	-2.4629	-2.8489	160.2956	0.0569	0.2394
Summ, SUMM \times WKND	-2.4648	-2.8509	160.3938	0.0525	0.2170

Note: ${ }^{a} \mathrm{p}$-value for a test of the null of the FTP model. ${ }^{b} \mathrm{p}$-value for a test of the null of the Summ model.

Introduction
Data
Empirical strategy

Significance of the regime-switch
Maximum Likelihood Estimation

State Dependent Impulse Response Functions

- State dependent IRF.

Figure: State dependent IRF of Price $_{t}^{T}$. TVTP: Summ, $\operatorname{Sign} \times$ Summ

Significance of the regime-switch

Filtered probability, $P\left(S_{t}=1 \mid t\right)$

Figure: Filtered probability, $P\left(S_{t}=1 \mid t\right)$. TVTP: Summ, Sign \times Summ. Shaded areas: $\operatorname{SiGN}_{t} \times \operatorname{Summ}_{t}=1$

Conclusions

- Strong evidence of response asymmetries.
- Prices are more sensitive to demand fluctuations during summer.
- Positive demand shifts are more likely to have a positive effect.
- Importance of capacity constraints as a source of 'asymmetric pricing.'
- Importance of pricing to stabilize demand fluctuations.
- Results are consistent with:
- Simple convex supply curve.
- Models with costly capacity and demand uncertainty: Prescott (1976), Eden (1990), Dana (1999)
- Menu cost models. Ball and Mankiw (1994)
- 'Asymmetric pricing.' Peltzman (2000)

