
Demand Shifting across Flights and Airports in a Spatial Competition Model

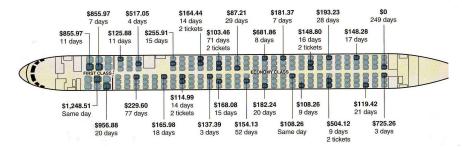
Diego Escobari Sang-Yeob Lee

November, 2010

Diego Escobari, Sang-Yeob Lee Spatial Competition in Airlines

Outline

< 17 ▶


3

Introduction

Dynamic Pricing in Airlines Data Empirical Model Results Conclusions

Motivation Contribution and Intuition

Price dispersion in airlines

33 customers paid 27 different fares (New York Times)

- Borenstein and Rose (JPE, 1994): 36% difference.
- We focus on the effect of competition between flights and airports.

(日) (同) (三) (三)

Motivation Contribution and Intuition

Contribution and Intuition

- Spatial competition similar to gas stations.
- Data collection and the econometrics control for other sources of price dispersion.
- Focus on the pricing interaction between flights and across airports.
- First empirical paper to analyze day-to-day pricing competition between flights.
- Estimates price reaction functions using spatial autoregressive models.
- The paper found that there is important demand shifting across flights.
- No demand shifting was found across New York City airports.

Motivation Contribution and Intuition

Some Related Literature

- Competition and price dispersion using DB1B:
 - Borenstein and Rose (1994)
 - Gerardi and Shapiro (2009)
- Day-to-day pricing using posted prices:
 - Stavins (2001)
 - Bilotkach (2006)
 - McAfee and te Velde (2007)
 - Escobari (2009)
 - Alderighi et al.(2011)

(日) (同) (日) (日) (日)

Dynamic pricing in airlines

Key characteristics:

- Perishable nature of airline tickets.
- Fixed capacity.
- Demand uncertainty.

Dynamic pricing in airlines

Airlines use dynamic pricing to:

- Price discriminate.
- Systematic and stochastic peak-load pricing.
- Cope with aggregate demand uncertainty and costly capacity.

Data

- Focus on one route: New York to Toronto.
- Three airports in New York: Newark Liberty International, John F. Kennedy and La Guardia.
- Lowest available fare and inventory levels from expedia.com
- A panel with 317 cross section observations and 15 time observations (collected every 3 days).
- One-way, non-stop, economy-class, departed between December 19 and December 24, 2008.
- American, Air Canada, Continental, Delta, Lan Chile and United.

Map of New York City airports

Diego Escobari, Sang-Yeob Lee

Spatial Competition in Airlines

< 1 →

SAR and Price Reaction Functions Market Definition and Spatial Weights Estimation and Interpretation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SAR and Price Reaction Functions

• SAR, across flights:

 $p_{it} = \lambda_1 W 1 p_{it} + \mathbf{X} \beta + \eta_i + \varepsilon_{it}$

- W1: Spatial weights of flights departing from the same airport.
- X: Matrix of controls:
 - DAYADV: Days to departure.
 - LOAD: Load factor; capacity utilization.
- λ_1 : SAR coefficient; demand shifting across flights.

SAR and Price Reaction Functions Market Definition and Spatial Weights Estimation and Interpretation

(日) (同) (三) (三)

SAR and Price Reaction Functions

• SAR, across airports:

$$p_{it} = \lambda_1 W 1 p_{it} + \lambda_2 W 2 p_{it} + \mathbf{X} \beta + \eta_i + \varepsilon_{it}$$

- W2: Spatial weights of flights departing from a different airport.
- λ_2 : SAR coefficient; demand shifting across airports.

SAR and Price Reaction Functions Market Definition and Spatial Weights Estimation and Interpretation

Market Definition and Spatial Weights

- Use matrices W1 and W2 to obtain weighted average prices of competing flights.
- Use the time difference between flights.
- Within a critical distance, each element in the matrix is defined as:

$$w_{ij} = \omega_{ij} / \sum_{j=1}^{N} \omega_{ij},$$

 $\omega_{ij} = 1/(1 + d_{ij}),$

• *d_{ij}*: Distance between flight *i* and flight *j*.

SAR and Price Reaction Functions Market Definition and Spatial Weights Estimation and Interpretation

Estimation and Interpretation

- IV following Lee (2003). Use instruments based on X.
- First interpretation: Usual.
- Second interpretation: Diversion ratio explained in Pinske et.al (2002) and used in Lee (2009).
- Assumptions:
 - Firms compete in a Bertrand-Nash simultaneous game.
- The price reaction function for each flight *i*:

$$p_i = \mathbf{X}_i \beta + \lambda \sum_{j \neq i}^n w_{ij} p_j + \mu_i$$

where, $w_{ij} = d_{ij} / \sum_{j \neq i}^n d_{ij}$ and $\lambda = 1/2 \sum_{j \neq i}^n d_{ij}$.

2 × λ: measures the fraction of sales lost by flight *i* when increasing its price.

SAR and Price Reaction Functions Market Definition and Spatial Weights Estimation and Interpretation

Estimation

- Estimate via Kelejian and Prucha (1998) and Lee (2003).
- Two-step method.
- First step:
 - Estimate the SAR equation via 2SLS using $H = [X, WX, W^2X] \text{ as instruments}.$
 - The estimator is $\hat{\theta}^{2SLS} = (\tilde{X}'S\tilde{X})^{-1}\tilde{X}'SP$, where P is the vector of prices, $\tilde{X} = [WP, X]$ is the matrix of explanatory variables, and $S = H(H'H)^{-1}H'$ is the weighting matrix.
- Second step:
 - Estimates an IV regression using instruments $\hat{Z} = [X, W(I \hat{\lambda}^{2SLS})^{-1}X\hat{\beta}^{2SLS}].$
 - That is, $\hat{\theta}^{IV} = (\hat{Z}'\tilde{X})^{-1}\hat{Z}'P$.
 - This uses $\hat{\lambda}^{2SLS}$ and $\hat{\beta}^{2SLS}$ that are part of the vector $\hat{\theta}^{2SLS}$.

ロト (得) (手) (手)

Flights by Carrier and Date

Table: Flights by Carrier and Date

	Fri	Sat	Sun	Mon	Tue	Wed		—
	Dec 19	Dec 20	Dec 21	Dec 22	Dec 23	Dec 24	Total	
American	12	8	11	12	13	11	67	
Air Canada	19	9	13	20	20	16	97	
Continental	8	5	7	8	8	6	42	
Delta	4	4	4	4	4	3	23	
Lan Chile	1	1	0	1	0	1	4	
United	17	10	10	18	16	13	84	
Total	61	37	45	63	61	50	317	

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

э

Summary Statistics

Table: Summary statistics

Variables	Mean	Std. Dev.	Min.	Max.	Obs.	_
FARE	175.999	139.153	89.000	1265.000	4408	
W1p	168.582	64.290	89.023	631.944	4408	
W2p	170.826	59.690	35.277	479.224	4408	
Location	3.462	2.241	0.267	5.861	4408	
DAYADV	24.688	13.120	1.000	48.000	4408	
LOAD	0.584	0.204	0.060	1.000	4408	

Diego Escobari, Sang-Yeob Lee Spatial Competition in Airlines

・ロト ・回ト ・ヨト ・ヨト

æ

Results, same airport and linear controls

	-		
Variables	3 hours	6 hours	12 hours
W1p	0.309	0.407	0.557
	(13.53)	(15.52)	(18.00)
LOAD	92.916	89.553	88.352
	(4.08)	(3.91)	(3.90)
DAYADV	-2.847	-2.565	-2.346
	(-8.99)	(-8.51)	(-7.38)
Within R-squared	0.199	0.211	0.226
Observations	4398	4398	4398

Table: Results, same airport and linear controls

Notes: Numbers in parentheses are t-statistics based on heteroskedasticity robust standard errors. All specifications include flight-specific effects.

Results, IV same airport and linear controls

Variables	3 hours	6 hours	12 hours	
W1p	0.546	0.580	0.934	
	(6.81)	(7.60)	(15.93)	
LOAD	157.336	170.642	176.890	
	(8.92)	(10.42)	(14.06)	
DAYADV	-2.304	-2.808	-3.650	
	(-1.55)	(-1.98)	(-3.52)	
Within R-squared	0.186	0.204	0.211	
Observations	4398	4398	4398	

Table: Results IV, same airport and linear controls

Notes: Numbers in parentheses are t-statistics based on heteroskedasticity robust standard errors. All specifications control for flight-specific characteristics.

イロン 不同 とくほう イロン

Results, IV same airport and nonlinear controls

Variables	3 hours	6 hours	12 hours
W1p	0.518	0.550	0.834
	(6.78)	(7.92)	(7.47)
LOAD	567.733	563.195	474.242
	(3.64)	(3.640	(3.00)
LOADSQ	-1431.52	-1414.62	-1174.66
	(-4.84)	(-4.80)	(-3.89)
LOADCU	1056.71	1158.10	972.18
	(6.59)	(6.62)	(5.34)
DAYADV	-9.257	-11.841	-12.085
	(-2.28)	(-2.95)	(-2.98)
DAYADVSQ	0.340	0.416	0.359
	(2.01)	(2.45)	(2.14)
DAYADVCU	-0.004	-0.005	-0.004
	(-1.86)	(-2.18)	(-1.75)
Within R-squared	0.229	0.249	0.250
Observations	4398	4398	4398

Table: Results IV, same airport and nonlinear controls

Diego Escobari, Sang-Yeob Lee S

Spatial Competition in Airlines

ヘロン 人間 とくほと 人ほとう

э

Results, across airports and nonlinear controls

Variables	3 hours	6 hours	12 hours
W1p	0.245	0.338	0.464
	(10.37)	(12.10)	(14.13)
W2p	0.018	0.005	-0.018
	(0.72)	(0.15)	(-0.63)
LOAD	300.562	288.778	234.743
	(1.75)	(1.69)	(1.38)
LOADSQ	-1292.45	-1288.24	-1143.76
	(-4.15)	(-4.12)	(-3.67)
LOADCU	1177.05	1177.98	1072.60
	(6.49)	(6.45)	(5.90)
DAYADV	-10.597	-13.043	-11.756
	(-2.93)	(-3.60)	(-3.27)
DAYADVSQ	0.348	0.437	0.381
	(2.14)	(2.68)	(2.35)
DAYADVCU	-0.004	-0.005	-0.004
	(-1.94)	(-2.31)	(-1.98)
Within R-squared	0.251	0.263	0.271
Observations	4398	4398	4398

Table: Results, across airports and nonlinear controls

Diego Escobari, Sang-Yeob Lee Spatial Competition in Airlines

э

Summary and Conclusions

- We investigate the nature of day-to-day competition between flights.
- We use instrumental variables methods and several spatial autoregressive models to estimate price reaction functions.
- The primary source of product differentiation is departure time.
- Controlling for other sources of price dispersion we find:
 - Flights respond to prices of competing flights.
 - Almost the entire demand shifting occurs within 3 hours of the departing flight.
 - No demand shifting was found across New York City airports.

イロト 不得 とくほ とくほ とうほう