
Professional Programmer's Guide to Fortran77Clive G. Page, University of Leicester, UK22nd February 1995Copyright c1988, 2001 Clive G. PagePermission is granted to copy, distribute and/or modify this document under the terms ofthe GNU Free Documentation License, Version 1.1 or any later version published by the FreeSoftware Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free DocumentationLicense".This �le contains the text of Professional Programmer's Guide to Fortran77 published byPitman in 1988. The book is now long out of print, so it seemed sensible to make the text freelyavailable over the Internet. The ISO Standard for Fortran77 is, of course, now obsolete, sinceFortran90 and Fortran95 have replaced it. I strongly recommend using Fortran95 as a multitudeof features have been added to Fortran which make programming easier and programs morereliable.One of the attractions of Fortran77 is that a good free compiler exists in the form of GNUFortran, g77. At present I don't know of any free compilers for full Fortran95, but you candownload a compiler for a subset language called F, which seems an excellent way to learnmodern Fortran. Unfortunately this book will not be much help with F or Fortran95. Perhapssome day I may get time to revise it completely.For more information on Fortran (and F) see these web-sites, which have links to many others:http://www.star.le.ac.uk/~cgp My home pagehttp://www.fortran.com/ Fortran Market and F home page.http://www.ifremer.fr/ditigo/molagnon/fortran90/engfaq.html Excellent FAQhttp://dsm.dsm.fordham.edu/~ftnchek/ FTNCHEK static analyzerWhether you write your own programs in Fortran77, or merely use code written by others, Istrongly urge you to use FTNCHEK syntax checker to �nd mistakes. You can download versionsfor many platforms from the web-site listed above.I wrote the book originally using WordPerfect, but later translated it into LATEXto make iteasier to produce on-line versions in HTML and Postscript. The text here is very similar tothe published version but I took the opportunity to correct a few mistakes and make some veryminor updates. If you �nd more errors, please let me know (email to cgp@le.ac.uk).The book was intentionally kept as short as possible so it could be sold at a modest price, butI managed to cover the entire Fortran77 language as de�ned in the ANSI and ISO Standards,including several topics which are often omitted from much larger textbooks because they aredeemed to be too \advanced".In order to encourage the writing of clear, reliable, portable, robust, and well structured1

2code, short sections appear throughout the book o�ering speci�c guidance on the the practicaluse of Fortran. Obsolete or superuous features of the language, mainly those which have beenretained for compatibility with earlier versions of Fortran, are omitted from the main text butare covered in the section 13. This is provided solely for the assistance of those who have tocope with existing poorly-written programs or ones which pre-date the Fortran77 standard.

CONTENTS 3Contents1 What Is Fortran? 61.1 Early Development . 61.2 Standardization . 61.3 Strengths and Weaknesses . 71.4 Precautions . 82 Basic Fortran Concepts 92.1 Statements . 92.2 Expressions and Assignments . 102.3 Integer and Real Data Types . 112.4 DO Loops . 122.5 Formatted Output . 132.6 Functions . 132.7 IF-blocks . 142.8 Arrays . 153 Fortran in Practice 173.1 The Fortran System . 173.2 Creating the Source Code . 183.3 Compiling . 193.4 Linking . 203.5 Program Development . 204 Program Structure and Layout 224.1 The Fortran Character Set . 224.2 Statements and Lines . 234.3 Program Units . 264.4 Statement Types and Order . 264.5 Symbolic Names . 274.6 PROGRAM Statement . 294.7 END Statement . 295 Constants, Variables, and Arrays 295.1 Data Types . 295.2 Constants . 335.3 Specifying Data Type . 345.4 Named Constants . 375.5 Variables . 395.6 Arrays . 39

CONTENTS 46 Arithmetic 416.1 Arithmetic Expressions . 426.2 Arithmetic Intrinsic Functions . 466.3 Arithmetic Assignment Statements . 487 Character Handling and Logic 497.1 Character Facilities . 497.2 Character Substrings . 507.3 Character Expressions . 517.4 Character Assignment Statements . 517.5 Character Intrinsic Functions . 527.6 Relational Expressions . 537.7 Logical Expressions . 557.8 Logical Assignment Statements . 578 Control Statements 578.1 Control Structures . 578.2 IF-Blocks . 588.3 DO-Loops . 598.4 Logical-IF Statement . 618.5 Unconditional GO TO Statement . 628.6 Computed GO TO Statement . 628.7 STOP Statement . 639 Procedures 649.1 Intrinsic Functions . 649.2 Statement Functions . 659.3 External Procedures . 669.4 Arguments of External Procedures . 699.5 Variables as Dummy Arguments . 719.6 Arrays as Arguments . 729.7 Procedures as Arguments . 769.8 Subroutine and Call Statements . 779.9 RETURN Statement . 779.10 FUNCTION Statement . 789.11 SAVE Statement . 809.12 EXTERNAL and INTRINSIC Statements . 8010 Input/Output Facilities 8110.1 Files, I/O Units, and Records . 8110.2 External Files . 84

CONTENTS 510.3 Internal Files . 8610.4 Pre-Connected Files . 8810.5 Error and End-Of-File Conditions . 8810.6 Format Speci�cations . 9010.7 Format Edit Descriptors . 9110.8 Format Data Descriptors A, E, F, G, I, L . 9210.9 Format Control Descriptors . 9410.10List-Directed Formatting . 9710.11Carriage-Control and Printing . 9810.12Input/Output Statements and Keywords . 9910.13OPEN Statement . 10010.14CLOSE Statement . 10110.15INQUIRE Statement . 10110.16READ and WRITE Statements . 10310.17REWIND and BACKSPACE Statements . 10511 DATA Statement 10511.1 De�ned and Unde�ned Values . 10611.2 Initialising Variables . 10711.3 Initialising Arrays . 10711.4 DATA Statements in Procedures . 10811.5 General Rules . 10912 Common Blocks 10912.1 Using Common Blocks . 11012.2 Blank Common Blocks . 11312.3 COMMON Statement . 11412.4 BLOCK DATA Program Units . 11413 Obsolete and Deprecated Features 11513.1 Storage of Character Strings in Non-character Items 11513.2 Arithmetic IF Statement . 11513.3 ASSIGN and assigned GO TO Statements . 11513.4 PAUSE Statement . 11613.5 Alternate RETURN . 11613.6 ENTRY Statement . 11713.7 EQUIVALENCE Statement . 11713.8 Speci�c Names of Intrinsic Functions . 11713.9 PRINT Statement and simpli�ed READ . 11813.10END FILE Statement . 11813.11Obsolete Format Descriptors . 118

CONTENTS 614 Common Extensions to the Fortran Standard 11914.1 MIL-STD-1753 Extensions . 11915 Appendix A { List of Intrinsic Functions 12016 Appendix B { Speci�c Names of Generic Functions 12217 GNU Free Documentation Licence 122

1 WHAT IS FORTRAN? 71 What Is Fortran?Fortran is the most widely used programming language in the world for numerical applications.It has achieved this position partly by being on the scene earlier than any of the other majorlanguages and partly because it seems gradually to have evolved the features which its users,especially scientists and engineers, found most useful. In order to retain compatibility with oldprograms, Fortran has advanced mainly by adding new features rather than by removing oldones. The net result is, of course, that some parts of the language are, by present standards,rather archaic: some of these can be avoided easily, others can still be a nuisance.This section gives a brief history of the language, outlines its future prospects, and summarisesits strengths and weaknesses.1.1 Early DevelopmentFortran was invented by a team of programmers working for IBM in the early nineteen-�fties.This group, led by John Backus, produced the �rst compiler, for an IBM 704 computer, in 1957.They used the name Fortran because one of their principal aims was \formula translation". ButFortran was in fact one of the very �rst high-level language: it came complete with controlstructures and facilities for input/output. Fortran became popular quite rapidly and compilerswere soon produced for other IBM machines. Before long other manufacturers were forced todesign Fortran compilers for their own hardware. By 1963 all the major manufacturers hadjoined in and there were dozens of di�erent Fortran compilers in existence, many of them rathermore powerful than the original.All this resulted in a chaos of incompatible dialects. Some order was restored in 1966 whenan American national standard was de�ned for Fortran. This was the �rst time that a standardhad ever been produced for a computer programming language. Although it was very valuable,it hardly checked the growth of the language. Quite deliberately the Fortran66 standard onlyspeci�ed a set of language features which had to be present: it did not prevent other featuresbeing added. As time went on these extensions proliferated and the need for a further stan-dardization exercise became apparent. This eventually resulted in the current version of thelanguage: Fortran77.1.2 StandardizationOne of the most important features of Fortran programs is their portability, that is the easewith which they can be moved from one computer system to another. Now that each generationof hardware succeeds the previous one every few years, while good software often lasts for muchlonger, more and more programs need to be portable. The growth in computer networks is alsoencouraging the development of portable programs.The �rst step in achieving portability is to ensure that a standard form of programminglanguage is acceptable everywhere. This need is now widely recognised and has resulted in thedevelopment of standards for all the major programming languages. In practice, however, manyof the new standards have been ignored and standard-conforming systems for languages likeBasic and Pascal are still very rare.Fortunately Fortran is in much better shape: almost all current Fortran systems are designedto conform to the standard usually called Fortran77. This was produced in 1977 by a committeeof the American National Standards Institute (ANSI) and was subsequently adopted by the

1 WHAT IS FORTRAN? 8International Standards Organisation (ISO). The de�nition was published as ANSI X3.9-1978and ISO 1539-1980. The term \Standard Fortran" will be used in the rest of this book to referto mean Fortran77 according to this de�nition.Fortran is now one of the most widely used computer languages in the world with compilersavailable for almost every type of computer on the market. Since Fortran77 is quite good at han-dling character strings as well as numbers and also has powerful �le-handling and input/outputfacilities, it is suitable for a much wider range of applications than before.Full and Subset FortranThe ANSI Standard actually de�nes two di�erent levels for Fortran77. The simpler form, subsetFortran, was intended for use on computers which were too small to handle the full language.Now that even personal computers are powerful enough to handle full Fortran77, subset Fortranis practically obsolete. This book, therefore, only describes full Fortran77.Fortran90The ISO Standard for Fortran90 has, o�cially, replaced that for Fortran77. It introduces awealth of new features many of them already in use in other high-level languages, which willmake programming easier, and facilitate the construction of portable and robust programs.The whole of the Fortran77 Standard is included as a proper subset, so existing (standard-conforming) Fortran programs will automatically conform also to the new Standard. Untilwell-tested compilers for Fortran90 are widespread, however, most programmers are still usingFortran77, with perhaps a few minor extensions.1.3 Strengths and WeaknessesFortran has become popular and widespread because of its unique combination of properties. Itsnumerical and input/output facilities are almost unrivalled while those for logic and characterhandling are as good as most other languages. Fortran is simple enough that you do not need tobe a computer specialist to become familiar with it fairly quickly, yet it has features, such as theindependent compilation of program units, which allow it to be used on very large applications.Programs written in Fortran are also more portable than those in other major languages. Thee�ciency of compiled code also tends to be quite high because the language is straight-forwardto compile and techniques for handling Fortran have reached a considerable degree of re�nement.Finally, the ease with which existing procedures can be incorporated into new software makesit especially easy to develop new programs out of old ones.It cannot be denied, however, that Fortran has more than its fair share of weaknesses anddrawbacks. Many of these have existed in Fortran since it was �rst invented and ought to havebeen eliminated long ago: examples include the 6-character limit on symbolic names, the �xedstatement layout, and the need to use statement labels.Fortran also has rather liberal rules and an extensive system of default values: while thisreduces programming e�ort it also makes it harder for the system to detect the programmer'smistakes. In many other programming languages, for example, the data type of every variablehas to be declared in advance. Fortran does not insist on this but, in consequence, if you makea spelling mistake in a variable name the compiler is likely to use two variables when you onlyintended to use one. Such errors can be serious but are not always easy to detect.

1 WHAT IS FORTRAN? 9Fortran also lacks various control and data structures which simplify programming languageswith a more modern design. These limitations, and others, are all eliminated with the adventof Fortran90.1.4 PrecautionsExtensions and PortabilityComputer manufacturers have a natural tendency to compete with each other by providingFortran systems which are \better" than before, usually by providing extensions to the language.This does not conict with the Fortran Standard, provided that standard-conforming programsare still processed correctly. Indeed in the long term languages advance by the absorbtion of suchextensions. In the short term, however, their use is more problematical, since they necessarilymakes programs less portable.When the latest Fortran Standard was issued in 1977 there was fairly widespread disappoint-ment that it did not go just a little further in eliminating some of the tiresome restrictionsthat had persisted since the early days. The US Department of Defense issued a short list ofextensions which manufacturers were encouraged to add to their Fortran77 systems. The mostimportant of these were the following:� the END DO statement� the DO WHILE loop� the INCLUDE statement� the IMPLICIT NONE facility� intrinsic functions for bit-wise operations on integers.Many Fortran systems, especially those produced in the United States, now support theseextensions but they are by no means universal and should not be used in portable programs.One of the most irksome restrictions of Fortran77 is that symbolic names cannot be more thansix characters long. This forces programmers to devise all manner of contractions, abbreviations,and acronyms in place of meaningful symbolic names. It is very tempting to take advantage ofsystems which relax this rule but this can have serious repercussions. Consider a program whichmakes use of variables called TEMPERATURE and TEMPERED. Many compilers will be quitehappy with these, though a few will reject both names on grounds of length. Unfortunately thereare also one or two compilers in existence which will simply ignore all letters after the sixth sothat both names will be taken as references to the same variable, TEMPER. Such behaviour,while deplorable, is quite in accordance with the Standard which only requires systems to compileprograms correctly if they conform to its rules.The only way to be certain of avoiding problems like this is to ignore such temptations entirelyand just use Standard Fortran. Many compilers provide a switch or option which can be set tocause all non-standard syntax to be agged. Everything covered in this book is part of StandardFortran unless clearly marked to the contrary.

2 BASIC FORTRAN CONCEPTS 10GuidelinesComputer programming always requires a very high standard of care and accuracy if it is to besuccessful. This is even more vital when using Fortran than with some other languages, because,as explained above, the liberal rules of Fortran make it harder for the system to detect mistakes.To program successfully it is not enough just to conform to the rules of the language, it is alsoimportant to defend yourself against known pitfalls.There is a useful lesson to be learned from the failure of one of the earliest planetary probeslaunched by NASA. The cause of the failure was eventually traced to a statement in its controlsoftware similar to this:DO 15 I = 1.100when what should have been written was:DO 15 I = 1,100but somehow a dot had replaced the comma. Because Fortran ignores spaces, this was seen bythe compiler as:DO15I = 1.100which is a perfectly valid assignment to a variable called DO15I and not at all what was intended.Fortran77 permits an additional comma to be inserted after the label in a DO statement, soit could now be written as:DO 15,I = 1,100which has the great advantage that it is no longer as vulnerable to a single-point failure.There are many hazards of this sort in Fortran, but the risk of falling victim to them canbe minimised by adopting the programming practices of more experienced users. To help you,various recommendations and guidelines are given throughout this book. Some of the mostoutdated and unsatisfactory features of Fortran are not described in the main part of the bookat all but have been relegated to section 13.There is not room in a book of this size to go further into the techniques of program designand software engineering. As far as possible everything recommended here is consistent withthe methods of modular design and structured programming, but you should study these topicsin more detail before embarking on any large-scale programming projects.2 Basic Fortran ConceptsThis section presents some of the basic ideas of Fortran by showing some complete examples. Inthe interests of simplicity, the problems which these solve are hardly beyond the range of a goodpocket calculator, and the programs shown here do not include various re�nements that wouldusually be present in professional software. They are, however, complete working programswhich you can try out for yourself if you have access to a Fortran system. If not, it is stillworth reading through them to see how the basic elements of Fortran can be put together intocomplete programs.2.1 StatementsTo start with, here is one of the simplest program that can be devised:PROGRAM TINYWRITE(UNIT=*, FMT=*) 'Hello, world'

2 BASIC FORTRAN CONCEPTS 11ENDAs you can probably guess, all this program does is to send a rather trite message \Hello, world"to your terminal. Even so its layout and structure deserve some explanation.The program consists of three lines, each containing one statement. Each Fortran statementmust have a line to itself (or more than one line if necessary), but the �rst six character positionson each line are reserved for statement labels and continuation markers. Since the statementsin this example need neither of these features, the �rst six columns of each line have been leftblank.The PROGRAM statement gives a name to the program unit and declares that it is a mainprogram unit. Other types of program unit will be covered later on. The program can becalled anything you like provided the name conforms to the Fortran rules; the �rst characterof a Fortran symbolic name must be a letter but, unfortunately, they cannot be more than sixcharacters long in total. It is generally sensible to give the same name to the program and tothe �le which holds the Fortran source code (the original text).The WRITE statement produces output: the parentheses enclose a list of control items whichdetermine where and in what form the output appears. UNIT=* selects the standard output �lewhich is normally your own terminal; FMT=* selects a default output layout (technically knownas list-directed format). Asterisks are used here, as in many places in Fortran, to select a defaultor standard option. This program could, in fact, have been made slightly shorter by using anabbreviated form of the WRITE statements:WRITE(*,*) 'Hello, world'Although the keywords UNIT= and FMT= are optional, they help to make the program morereadable. The items in the control list, like those in all lists in Fortran, are separated bycommas.The control information in the WRITE statement is followed by a list of the data items to beoutput: here there is just one item, a character constant which is enclosed in a pair of apostrophe(single quote) characters.An END statement is required at the end of every program unit. When the program is compiled(translated into machine code) it tells the compiler that the program unit is complete; whenencountered at run-time the END statement stops the program running and returns control tothe operating system.The Standard Fortran character set does not contain any lower-case letters so statementsgenerally have to be written all in upper case. But Fortran programs can process as dataany characters supported by the machine; character constants (such as the message in the lastexample) are not subject to this constraint.2.2 Expressions and AssignmentsThe next example solves a somewhat more realistic problem: it computes the repayments ona �xed-term loan (such as a home mortgage loan). The �xed payments cover the interest andrepay part of the capital sum; the annual payment can be calculated by the following formula:payment = rate:amount(1� (1 + rate)�nyears)

2 BASIC FORTRAN CONCEPTS 12In this formula, rate is the annual interest rate expressed as a fraction; since it is moreconventional to quote interest rates as a percentage the program does this conversion for us.PROGRAM LOANWRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARSRATE = PCRATE / 100.0REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAYENDThis example introduces two new forms of statement: the READ and assignment statements,both of which can be used to assign new values to variables.The READ statement has a similar form to WRITE: here it reads in three numbers entered onthe terminal in response to the prompt and assigns their values to the three named variables.FMT=* again selects list-directed (or free-format) input which allows the numbers to be given inany convenient form: they can be separated by spaces or commas or even given one on eachline.The fourth statement is an assignment statement which divides PCRATE by 100 and assignsthe result to another variable called RATE. The next assignment statement evaluates the loanrepayment formula and assigns the result to a variable called REPAY.Several arithmetic operators are used in these expressions: as in most programming languages\/" represents division and *" represents multiplication; in Fortran **" is used for exponen-tiation, i.e. raising one number to the power of another. Note that two operators cannot appearin succession as this could be ambiguous, so that instead of **-N" the form **(-N)" has tobe used.Another general point concerning program layout: spaces (blanks) are not signi�cant inFortran statements so they can be inserted freely to improve the legibility of the program.When the program is run, the terminal dialogue will look something like this:Enter amount, % rate, years20000, 9.5, 15Annual repayments are 2554.873The answer given by your system may not be exactly the same as this because the number ofdigits provided by list-directed formatting depends on the accuracy of the arithmetic, whichvaries from one computer to another.2.3 Integer and Real Data TypesThe LOAN program would have been more complicated if it had not taken advantage of someimplicit rules of Fortran concerning data types: this requires a little more explanation.Computers can store numbers in several di�erent ways: the most common numerical datatypes are those called integer and real. Integer variables store numbers exactly and are mainlyused to count discrete objects. Real variables are useful many other circumstances as they storenumbers using a oating-point representation which can handle numbers with a fractional partas well as whole numbers. The disadvantage of the real data type is that oating-point numbersare not stored exactly: typically only the �rst six or seven decimal digits will be correct. It is

2 BASIC FORTRAN CONCEPTS 13important to select the correct type for every data item in the program. In the last example,the number of years was an integer, but all of the other variables were of real type.The data type of a constant is always evident from its form: character constants, for example,are enclosed in a pair of apostrophes. In numerical constants the presence of a decimal pointindicates that they are real and not integer constants: this is why the value one was representedas \1.0" and not just \1".There are several ways to specify the data type of a variable. One is to use explicit typestatements at the beginning of the program. For example, the previous program could havebegun like this:PROGRAM LOANINTEGER NYEARSREAL AMOUNT, PCRATE, RATE, REPAYAlthough many programming languages require declarations of this sort for every symbolicname used in the program, Fortran does not. Depending on your point of view, this makesFortran programs easier to write, or allows Fortran programmers to become lazy. The reasonthat these declarations can often be omitted in Fortran is that, in the absence of an explicitdeclaration, the data type of any item is determined by the �rst letter of its name. The generalrule is:initial letters I-N integer typeinitial letters A-H and O-Z real type.In the preceding program, because the period of the loan was called NYEARS (and not simplyYEARS) it automatically became an integer, while all the other variables were of real type.2.4 DO LoopsAlthough the annual repayments on a home loan are usually �xed, the outstanding balance doesnot decline linearly with time. The next program demonstrates this with the aid of a DO-loop.PROGRAM REDUCEWRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARSRATE = PCRATE / 100.0REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAYWRITE(UNIT=*, FMT=*)'End of Year Balance'DO 15,IYEAR = 1,NYEARSAMOUNT = AMOUNT + (AMOUNT * RATE) - REPAYWRITE(UNIT=*, FMT=*) IYEAR, AMOUNT15 CONTINUEENDThe �rst part of the program is similar to the earlier one. It continues with another WRITEstatement which produces headings for the two columns of output which will be produced lateron.The DO statement then de�nes the start of a loop: the statements in the loop are executedrepeatedly with the loop-control variable IYEAR taking successive values from 1 to NYEARS. The

2 BASIC FORTRAN CONCEPTS 14�rst statement in the loop updates the value of AMOUNT by adding the annual interest to it andsubtracting the actual repayment. This results in AMOUNT storing the amount of the loan stillowing at the end of the year. The next statement outputs the year number and the latest valueof AMOUNT. After this there is a CONTINUE statement which actually does nothing but act as aplace-marker. The loop ends at the CONTINUE statement because it is attached to the label, 15,that was speci�ed in the DO statement at the start of the loop.The active statements in the loop have been indented a little to the right of those outside it:this is not required but is very common practice among Fortran programmers because it makesthe structure of the program more conspicuous.The program REDUCE produces a table of values which, while mathematically correct, isnot very easy to read:Enter amount, % rate, years2000, 9.5, 5Annual repayments are 520.8728End of Year Balance1 1669.1272 1306.8223 910.09684 475.68325 2.9800416E-042.5 Formatted OutputThe table of values would have a better appearance if the decimal points were properly alignedand if there were only two digits after them. The last �gure in the table is actually less than athirtieth of a penny, which is e�ectively zero to within the accuracy of the machine. A betterlayout can be produced easily enough by using an explicit format speci�cation instead of thelist-directed output used up to now. To do this, the last WRITE statement in the program shouldbe replaced with one like this:WRITE(UNIT=*, FMT='(1X,I9,F11.2)') IYEAR, AMOUNTThe amended program will then produce a neater tabulation:Enter amount, % rate, years2000, 9.5, 5Annual repayments are 520.8728End of Year Balance1 1669.132 1306.823 910.104 475.685 .00The format speci�cation has to be enclosed in parentheses and, as it is actually a characterconstant, in a pair of apostrophes as well. The �rst item in the format list, 1X, is needed tocope with the carriage-control convention: it provides an additional blank at the start of eachline which is later removed by the Fortran system. There is no logical explanation for this:it is there for compatibility with very early Fortran system. The remaining items specify the

2 BASIC FORTRAN CONCEPTS 15layout of each number: I10 speci�es that the �rst number, an integer, should be occupy a �eld10 columns wide; similarly F11.2 puts the second number, a real (oating-point) value, into a�eld 11 characters wide with exactly 2 digits after the decimal point. Numbers are always right-justi�ed in each �eld. The �eld widths in this example have been chosen so that the columns of�gures line up satisfactorily with the headings.2.6 FunctionsFortran provides a useful selection of intrinsic functions to carry out various mathematicaloperations such as square root, maximum and minimum, sine, cosine, etc., as well as variousdata type conversions. You can also write your own functions. The next example, whichcomputes the area of a triangle, shows both forms of function in action.The formulae for the area of a triangle with sides of length a, b, and c is:s = (a+ b+ c)=2area = q[s:(s� a):(s� b):(s� c)]PROGRAM TRIANGWRITE(UNIT=*,FMT=*)'Enter lengths of three sides:'READ(UNIT=*,FMT=*) SIDEA, SIDEB, SIDECWRITE(UNIT=*,FMT=*)'Area is ', AREA3(SIDEA,SIDEB,SIDEC)ENDFUNCTION AREA3(A, B, C)*Computes the area of a triangle from lengths of sidesS = (A + B + C)/2.0AREA3 = SQRT(S * (S-A) * (S-B) * (S-C))ENDThis program consists of two program units. The �rst is the main program, and it has as similarform to those seen earlier. The only novel feature is that the list of items output by the WRITEstatement includes a call to a function called AREA3. This computes the area of the triangle. Itis an external function which is speci�ed by means of a separate program unit technically knownas a function subprogram.The external function starts with a FUNCTION statement which names the function and spec-i�es its set of dummy arguments. This function has three dummy arguments called A, B, andC. The values of the actual arguments, SIDEA, SIDEB, and SIDEC, are transferred to the corre-sponding dummy arguments when the function is called. Variable names used in the externalfunction have no connection with those of the main program: the actual and dummy argumentvalues are connected only by their relative position in each list. Thus SIDEA transfers its valueto A, and so on. The name of the function can be used as a variable within the subprogram unit;this variable must be assigned a value before the function returns control, as this is the valuereturned to the calling program.Within the function the dummy arguments can also be used as variables. The �rst assignmentstatement computes the sum, divides it by two, and assigns it to a local variable, S; the secondassignment statement uses the intrinsic function SQRT which computes the square-root of itsargument. The result is returned to the calling program by assigning it to the variable whichhas the same name as the function.

2 BASIC FORTRAN CONCEPTS 16The END statement in a procedure does not cause the program to stop but just returns controlto the calling program unit.There is one other novelty: a comment line describing the action of the function. Any lineof text can be inserted as a comment anywhere except after an END statement. Comment lineshave an asterisk in the �rst column.These two program units could be held on separate source �les and even compiled separately.An additional stage, usually called linking, is needed to construct the complete executableprogram out of these separately compiled object modules. This seems an unnecessary overheadfor such simple programs but, as described in the next section, it has advantages when buildinglarge programs.In this very simple example it was not really necessary to separate the calculation from theinput/output operations but in more complicated cases this is usually a sensible practice. Forone thing it allows the same calculation to be executed anywhere else that it is required. Foranother, it reduces the complexity of the program by dividing the work up into small independentunits which are easier to manage.2.7 IF-blocksAnother important control structure in Fortran is the IF statement which allows a block ofstatements to be executed conditionally, or allows a choice to be made between di�erent coursesof action.One obvious defect of the function AREA3 is that has no protection against incorrect input.Many sets of three real numbers could not possibly form the sides of a triangle, for example1.0, 2.0, and 7.0. A little analysis shows that in all such impossible cases the argument of thesquare root function will be negative, which is illegal. Fortran systems should detect errors likethis at run-time but will vary in their response. Even so, a message like "negative argument forsquare-root" may not be enough to suggest to the user what is wrong. The next version of thefunction is slightly more user-friendly:REAL FUNCTION AREA3(A, B, C)*Computes the area of a triangle from lengths of its sides.*If arguments are invalid issues error message and returns zero.REAL A, B, CS = (A + B + C)/2.0FACTOR = S * (S-A) * (S-B) * (S-C)IF(FACTOR .LE. 0.0) THENWRITE(UNIT=*, FMT=*)'Impossible triangle', A, B, CAREA3 = 0.0ELSEAREA3 = SQRT(FACTOR)END IFENDThe IF statement works with the ELSE and END IF statements to enclose two blocks of code.The statements in the �rst block are only executed if the expression in the IF statement istrue, those in the second block only if it is false. The statements in each block are indented forvisibility, but this is, again, just a sensible programming practice.

2 BASIC FORTRAN CONCEPTS 17With this modi�cation, the value of FACTOR is tested and if it is negative or zero then anerror message is produced; AREA3 is also set to an impossible value (zero) to ag the mistake.Note that the form \.LE." is used because the less-than-or-equals character, \<", is not presentin the Fortran character set. If S is positive the calculation proceeds as before.2.8 ArraysFortran has good facilities for handling arrays. They can have up to seven dimensions. Theprogram STATS reads a set of real numbers from a data �le and puts them into a one-dimensional array. It then computes their mean and standard deviation. Given an array ofvalues x1; x2; x3; :::xN , the mean � standard deviation � are given by:� = P xiN�2 = (P(xi � �)2)(N � 1) = (Px2i �N�)(N � 1)To simplify this program, it will be assumed that the �rst number in the �le is an integerwhich tells the program how many real data points follow.PROGRAM STATSCHARACTER FNAME*50REAL X(1000)WRITE(UNIT=*, FMT=*) 'Enter data file name:'READ(UNIT=*, FMT='(A)') FNAMEOPEN(UNIT=1, FILE=FNAME, STATUS='OLD')*Read number of data points NPTSREAD(UNIT=1, FMT=*) NPTSWRITE(UNIT=*, FMT=*) NPTS, ' data points'IF(NPTS .GT. 1000) STOP 'Too many data points'READ(UNIT=1, FMT=*) (X(I), I = 1,NPTS)CALL MEANSD(X, NPTS, AVG, SD)WRITE(UNIT=*, FMT=*) 'Mean =', AVG, ' Std Deviation =', SDENDSUBROUTINE MEANSD(X, NPTS, AVG, SD)INTEGER NPTSREAL X(NPTS), AVG, SDSUM = 0.0SUMSQ = 0.0DO 15, I = 1,NPTSSUM = SUM + X(I)SUMSQ = SUMSQ + X(I)**215 CONTINUEAVG = SUM / NPTSSD = SQRT(SUMSQ - NPTS * AVG)/(NPTS-1)END

3 FORTRAN IN PRACTICE 18This program has several new statement forms.The CHARACTER statement declares that the variable FNAME is to hold a string of 50 characters:this should be long enough for the �le-names used by most operating systems.The REAL statement declares an array X with 1000 elements numbered from X(1) to X(1000).The READ statement uses a format item A which is needed to read in a character string: Aoriginally stood for \alpha-numeric".The OPEN statement then assigns I/O unit number one (any small integer could have beenused) to the �le. This unit number is needed in subsequent input/output statements. The itemSTATUS='OLD' is used to specify that the �le already exists.The IF statement is a special form which can replace an IF-block where it would only containone statement: its e�ect is to stop the program running if the array would not be large enough.The READ statement which follows it has a special form known as an implied-DO-loop: thisreads all the numbers from the �le in to successive elements of the array X in one operation.The CALL statement corresponds to the SUBROUTINE statement in the same way that a functionreference corresponded to a FUNCTION statement. The di�erence is that the arguments X andNPTS transfer information into the subroutine, whereas AVG and SD return information from it.The direction of transfer is determined only by the way the dummy arguments are used withinthe subroutine. An argument can be used to pass information in either direction, or both.The INTEGER statement is, as before, not really essential but it is good practice to indicateclearly the data type of every procedure argument.The REAL statement declares that X is an array but uses a special option available only todummy arguments: it uses another argument, NPTS, to specify its size and makes it an adjustablearray. Normally in Fortran array bounds must be speci�ed by constants, but the rules are relaxedfor arrays passed into procedures because the actual storage space is already allocated in thecalling program unit; the REAL statement here merely speci�es how many of the 1000 elementsalready allocated are actually to be used within the subroutine.The rest of the subroutine uses a loop to accumulate the sum of the elements in SUM, andthe sum of their squares in SUMSQ. It then computes the mean and standard deviation usingthe usual formulae, and returns these values to the main program, where they are printed out.3 Fortran in PracticeThis section describes the steps required to turn a Fortran program from a piece of text intoexecutable form. The main operation is that of translating the original Fortran source code intothe appropriate machine code. On a typical Fortran system this is carried out in two separatestages. This section explains how this works in more detail.These descriptions di�er from those in the rest of the book in two ways. Firstly, it is notessential to understand how a Fortran system works in order to use it, just as you do not haveto know how an internal combustion engine works in order to drive a car. But, in both cases,those who have some basic understanding of the way in which the machine works �nd it easierto get the best results. This is especially true when things start to go wrong { and most people�nd that things go wrong all too easily when they start to use a new programming language.Secondly the contents of this section are much more system-dependent than all the othersin the book. The Fortran Standard only speci�es what a Fortran program should do when itis executed, it has nothing directly to say about the translation process. In practice, however,

3 FORTRAN IN PRACTICE 19nearly all Fortran systems work in much the same way, so there should not be too many dif-ferences between the \typical" system described here and the one that you are actually using.Regrettably the underlying similarities are sometimes obscured by di�erences in the terminologythat di�erent manufacturers use.3.1 The Fortran SystemThe two main ways of translating a program into machine code are to use an interpreter or acompiler.An interpreter is a program which stays in control all the while the program is running. Ittranslates the source code into machine code one line at a time and then executes that lineimmediately. It then goes on to translate the next, and so on. If an error occurs it is usuallypossible to correct the mistake and continue running the program from the point at which it lefto�. This can speed up program development considerably. The main snag is that all non-trivialprograms involve forms of repetition, such as loops or procedure calls. In all these cases the samelines of source code are translated into machine code over and over again. Some interpreters areclever enough to avoid doing all the work again but the overhead cannot be eliminated entirely.The compiler works in an entirely di�erent way. It is an independent program which translatesthe entire source code into machine code at once. The machine code is usually saved on a �le,often called an executable image, which can then be run whenever it is needed. Because eachstatement is only translated once, but can be executed as many times as you like, the time takeby the translation process is less important. Many systems provide what is called an optimisingcompiler which takes even more trouble and generates highly e�cient machine code; optimisedcode will try to make the best possible use of fast internal registers and the compiler will analysethe source program in blocks rather than one line at a time. As a result, compiled programsusually run an order of magnitude faster than interpreted ones. The main disadvantage is thatif the program fails in any way, it is necessary to edit the source code and recompile the wholething before starting again from the beginning. The error messages from a compiled programmay also be less informative than those from an interpreter because the original symbolic namesand line numbers may not be retained by the compiler.Interpreters, being more \user-friendly", are especially suitable for highly interactive useand for running small programs produced by beginners. Thus languages like APL, Basic, andLogo are usually handled by an interpreter. Fortran, on the other hand, is often used for jobswhich consume signi�cant amounts of computer time: in some applications, such as weatherforecasting, the results would simply be of no use if they were produced more slowly. Thespeed advantage of compilers is therefore of great importance and in practice almost all Fortransystems use a compiler to carry out the translation.Separate CompilationThe principal disadvantage of a compiler is the necessity of re-compiling the whole program aftermaking any alteration to it, no matter how small. Fortran has partly overcome this limitationby allowing program units to be compiled separately; these compiled units or modules are linkedtogether afterwards into an executable program.A Fortran compiler turns the source code into what is usually called object code: this con-tains the appropriate machine-code instructions but with relative memory addresses rather thanabsolute ones. All the program units can be compiled together, or each one can be compiled

3 FORTRAN IN PRACTICE 20separately. Either way a set of object modules is produced, one from each program unit. Thesecond stage, which joins all the object modules together, is usually known as linking, but otherterms such as loading, link-editing, and task-building are also in use. The job of the linker isto collect up all these object modules, allocate absolute addresses to each one, and produce acomplete executable program, also called an executable image.The advantage of this two-stage system is that if changes are made to just one programunit then only that one has to be re-compiled. It is, of course, necessary to re-link the wholeprogram. The operations which the linker performs are relatively simple so that linkers oughtto be fast. Unfortunately this is not always so, and on some systems it can take longer to linka small program than to compile it.3.2 Creating the Source CodeThe �rst step after writing a program is to enter it into the computer: these �les are known asthe source code. Fortran systems do not usually come with an editor of their own: the source�les can be generated using any convenient text editor or word processor.Many text editors have options which ease the drudgery of entering Fortran statements. Onsome you can de�ne a single key-stroke to skip directly to the start of the statement �eld atcolumn 7 (but if the source �les are to conform to the standard this should work by inserting asuitable number of spaces and not a tab character). An even more useful feature is a warningwhen you cross the right-margin of the statement �eld at column 72. Most text editors make iteasy to delete and insert whole words, where a word is anything delimited by spaces. It helpswith later editing, therefore, to put spaces between items in Fortran statements. This also makesthe program more readable.Most programs will consist of several program units: these may go on separate �les, all onone �le, or any combination. On most systems it is not necessary for the main program unit tocome �rst. When �rst keying in the program it may seem simpler to put the whole program onone �le, but during program development it is usually more convenient to have each programunit on a separate �le so that they can be edited and compiled independently. It minimisesconfusion if each source �le has the same name as the (�rst) program unit that it contains.INCLUDE StatementsMany systems provide a pseudo-statement called INCLUDE (or sometimes INSERT which insertsthe entire contents of a separate text �le into the source code in place of the INCLUDE statement.This feature can be particularly useful when the same set of statements, usually speci�cationstatements, has to be used in several di�erent program units. Such is often the case whende�ning a set of constants using PARAMETER statements, or when declaring common blocks witha set of COMMON statements. INCLUDE statements reduce the key-punching e�ort and the riskof error. Although non-standard, INCLUDE statements do not seriously compromise portabilitybecause they merely manipulate the source �les and do not alter the source code which thecompiler translates.3.3 CompilingThe main function of a Fortran compiler is to read a set of source �les and write the correspondingset of object modules to the object �le.

3 FORTRAN IN PRACTICE 21Most compilers have a number of switches or options which can be set to control how thecompiler works and what additional output it produces. Some of the more useful ones, foundon many systems, are described below.� Almost all compilers can produce a listing �le: a text �le containing a copy of the sourcecode, with the lines numbered, and with error messages and other useful informationattached. A list of all the symbolic names and labels used in the program unit is oftenprovided: this should be checked for unexpected entries as they may be the result ofspelling mistakes.� An even more useful addition to the listing is a cross-reference table: this lists every placethat each symbolic name has been used. Good compilers indicate which names have onlybeen used once as these often indicate a programming mistake.� Another widely available option is the detection of syntax which does not conform to theFortran Standard: this helps to ensure program portability.� Often it is possible to choose the optimization level. During program development a lowlevel of optimization should be selected if this makes the compiler run faster; it mayimprove the error detection. Highly optimised machine code may execute faster but if thesource code lines are rearranged error messages may be less helpful.� Many systems allow additional code to be included which check for errors at run-time.Errors such as over-running the bounds of an array or a character string, or arithmeticover-ow can usually be trapped. Such errors are not uncommon, so this assistance is veryvaluable. Some programming manuals suggest that these options should only be selectedduring program development and switched-o� thereafter in the interests of speed. This israther like wearing seat-belts in the car only while you are learning to drive and ignoringthem as soon as you are allowed out on the motorway. Run-time checks do not usuallyreduce the execution speed noticeably.3.4 LinkingAt its simplest, the linker just takes the set of object modules produced by the compiler and linksthem all together into an executable image. One of these modules must correspond to the mainprogram unit, the other modules will correspond to procedures and to block data subprogramunits.It often happens that a number of di�erent programs require some of the same computationsto be carried out. If these calculations can be turned into procedures and linked into eachprogram it can save a great deal of programming e�ort, especially in the long run. This \buildingblock" approach is particularly bene�cial for large programs. Many organisations graduallybuild up collections of procedures which become an important software resource. Procedurescollected in this way tend to be fairly reliable and free from bugs, if only because they have beenextensively tested and de-bugged in earlier applications.Object LibrariesIt obviously saves on compilation time if these commonly-used procedures can be kept in com-piled form as object modules. Almost all operating systems allow a collection of object modules

3 FORTRAN IN PRACTICE 22to be stored in an object library (sometimes known as a pre-compiled or relocatable-code li-brary). This is a �le containing a collection of object modules together with an index whichallows them to be extracted easily. Object libraries are not only more e�cient but also easierto use as there is only one �le-name to specify to the linker. The linker can then work out foritself which modules are needed to satisfy the various CALL statements and function referencesencountered in the preceding object modules. Object libraries also simplify the managementof a procedure collection and may reduce the amount of disc space needed. There are usuallysimple ways of listing the contents of an object library, deleting modules from it, and replacingmodules with new versions.All Fortran systems come with a system library which contains the object modules for variousintrinsic functions such as SIN, COS, and SQRT. This is automatically scanned by the linker anddoes not have to be speci�ed explicitly.Software is often available commercially in the form of procedure libraries containing moduleswhich may be linked into any Fortran program. Those commonly used cover �elds such asstatistics, signal processing, graphics, and numerical analysis.Linker OptionsThe order of the object modules supplied to the linker does not usually matter although somesystems require the main program to be speci�ed �rst. The order in which the library �lesare searched may be important, however, so that some care has to be exercised when severaldi�erent libraries are in use at the same time.The principal output of the linker is a single �le usually called the executable image. Mostlinkers can also produce a storage map showing the location of the various modules in memory.Sometimes other information is provided such as symbol tables which may be useful in debuggingthe program.3.5 Program DevelopmentThe program development process consists of a number of stages some of which may have to berepeated several times until the end product is correct:1. Designing the program and writing the source-code text.2. Keying in the text to produce a set of Fortran source �les.3. Compiling the source code to produce a set of object modules.4. Linking the object modules and any object libraries into a complete executable image.5. Running the executable program on some test data and checking the results.The main parts of the process are shown in the diagram below.Handling ErrorsThings can go wrong at almost every stage of the program development process for a varietyof reasons, most of them the fault of the programmer. Naturally the Fortran system cannotpossibly detect all the mistakes that it is possible for human programmers to make. Errors in

4 PROGRAM STRUCTURE AND LAYOUT 23the syntax of Fortran statements can usually be detected by the compiler, which will issue errormessages indicating what is wrong and, if possible, where.Other mistakes will only come to light at the linking stage. If, for example, you misspellthe name of a subroutine or function the compiler will not be able to detect this as it onlyworks on one program unit at a time, but the linker will say something like \unsatis�ed externalreference". This sort of message will sometimes appear if you misspell the name of an arraysince array and function references can have the same form.Most errors that occur at run-time are the result of programmer error, or at least failureto anticipate some failure mode. Even things like division by zero or attempting to accessan array element which is beyond its declared bounds can be prevented by su�ciently carefulprogramming.There is, however, a second category of run-time error which no amount of forethought canavoid: these nearly all involve the input/output system. Examples include trying to open a�le which no longer exists, or �nding corrupted data on an input �le. For this reason mostinput/output errors can be trapped, using the IOSTAT= or ERR= keywords in any I/O statement.There is no way of trapping run-time errors in any other types of statement in Standard Fortran.But, just because a program compiles, links, and runs without apparent error, it is not safe toassume that all bugs have been eliminated. There are some types of mistake which will simplygive you the wrong answer. The only way to become con�dent that a program is correct is togive it some test data, preferably for a case where the results can be calculated independently.When a program is too elaborate for its results to be predictable it should be split into sectionswhich can be checked separately.4 Program Structure and LayoutThis section explains the rules for program construction and text layout. A complete Fortranprogram is composed of a number of separate program units. Each of these can contain bothstatements and comment lines. Statements are formed from items such as keywords and symbolicnames. These in turn consist of characters.4.1 The Fortran Character SetThe only characters needed to write Fortran programs, and the only ones that should be usedin portable software, are those in the Fortran character set:the 26 upper-case letters A B C ... X Y Zthe 10 digits 0 1 2 3 4 5 6 7 8 9and 13 special characters:+ plus - minus* asterisk / slashblank = equals(left parenthesis) right parenthesis. decimal point , comma' apostrophe : colon$ currency symbol

4 PROGRAM STRUCTURE AND LAYOUT 24Although this character set is somewhat limited, it is at least universally available, which helpsto make programs portable. What su�ers is program legibility: lower-case letters are absentand it is necessary to resort to ugly constructions like .LT. and .GT. to represent operators like< and >. Some of the special characters, such as the asterisk and parentheses, are also ratheroverloaded with duties.BlanksThe blank, or space, character is ignored everywhere in Fortran statements (except withincharacter constants, which are enclosed in a pair of apostrophes). Although you do not needto separate items in Fortran statements with blanks, it is good practice to include a liberalhelping of them since they improve legibility and often simplify editing. The only limitation (asexplained below) is that statement lines must not extend beyond column 72.Currency SymbolThe currency symbol has no �xed graphic representation: it appears on most systems as thedollar \$", but other forms such as \$" equally valid. This variability does not matter muchbecause the currency symbol is not actually needed in Standard Fortran syntax.Other CharactersMost computers have a character set which includes many other printable characters, for examplelower-case letters, square brackets, ampersands and per-cent signs. Any printable characterssupported by the machine may be used in comment lines and within character constants.The Fortran character set does not include any carriage-control characters such as tab,carriage-return, or form-feed, but formatted WRITE statements can be used to produce pagi-nated and tabulated output �les.Fortran programs can process as data any characters supported by the local hardware. TheFortran Standard is not based on the use of any particular character code but it requires itscharacter comparison functions to use the collating sequence of the American Standard Codefor Information Interchange (ASCII). Further details are given in section 7.6.4.2 Statements and LinesThe statement is the smallest unit of a Fortran program, corresponding to what is called aninstruction or command in some programming languages. Most types of statement start with akeyword which consists of one (or sometimes two) English words describing the main action ofthat statement, for example: READ, DO, ELSE IF, GO TO. Since blanks are ignored, compoundkeywords can be written either as one word or two: ELSEIF or ELSE IF (but the latter seemseasier to read).The rules for statement layout are an unfortunate relic of punched-card days. Every statementmust start on a new line and each line is divided into three �xed �elds:� columns 1 to 5 form the label �eld,� column 6 forms the continuation marker �eld,

4 PROGRAM STRUCTURE AND LAYOUT 25� columns 7 to 72 form the statement �eld.Since labels and continuation markers are only needed on a few statements, the �rst sixcolumns of most lines are left blank.Any characters in column 73 or beyond are likely to be ignored (columns 73 to 80 were onceused to hold card sequence numbers). This invisible boundary after column 72 demands carefulattention as it can have very pernicious e�ects: it is possible for a statement to be truncatedat the boundary but still be syntactically correct, so that the compiler will not detect anythingwrong.Continuation LinesStatements do not have to �t on a single line. The initial line of each statement should have ablank in column 6, and all subsequent lines, called continuation lines, must have some characterother than blank (or the digit zero) in column 6. Up to 19 continuation lines are allowed, i.e.20 in total. The column layout needed with continuation lines is illustrated here:columns123456789...IF(REPLY .EQ. 'Y' .OR. REPLY .EQ. 'y' .OR.$ REPLY .EQ. 'T' .OR. REPLY .EQ. 't') THENThe currency symbol makes a good continuation marker since if accidentally misplaced into anadjacent column it would be almost certain to produce an error during compilation.The END statement is an exception to the continuation rule: it may not be followed bycontinuation lines and no other statement may have an initial line which just contains theletters \END". Neither rule causes many problems in practice.Programs which make excessive use of continuation lines can be hard to read and to modify:it is generally better, if possible, to divide a long statement into several shorter ones.Comment LinesComments form an important part of any computer program even though they are completelyignored by the compiler: their purpose is to help any human who has to read and understandthe program (such as the original programmer six months later).Comments in Fortran always occupy a separate line of text; they are marked by an asteriskin the �rst column. For example:*Calculate the atmospheric refraction at PRESS mbar.REF = PRESS * (0.1594 + 1.96E-2 * A + 2E-5 * A**2)*Correct for the temperature T (Celsius)TCOR = (273.0 + T) * (1.0 + 0.505 * A + 8.45E-2 * A**2)A comment may appear at any point in a program unit except after the END statement (unlessanother program unit follows, in which case it will form the �rst line of the next unit). Acompletely blank line is also allowed and is treated as a blank comment. This means that ablank line is not actually permitted after the last END statement of a program.

4 PROGRAM STRUCTURE AND LAYOUT 26There is no limit to the number of consecutive comment lines which may be used; commentsmay also appear in the middle of a sequence of continuation lines. To conform to the FortranStandard, comment lines should not be over 72 characters long, but this rule is rarely enforced.Comments may include characters which are not in the Fortran character set. It helps todistinguish comments from code if they are mainly written in lower-case letters (where available).It is also good practice for comments to precede the statements they describe rather than followthem.Some systems allow end-of-line comments, usually prefaced by an exclamation mark: this isnot permitted by the Fortran standard. For compatibility with Fortran66 comments can alsobe denoted by the letter C in column 1.Statement LabelsA label can be attached to any statement. There are three reasons for using labels:� the end of each DO-loop is speci�ed by a label given in the DO statement;� every FORMAT statement must have a label attached as that is how READ and WRITE state-ments refer to it;� any executable statement may have a label attached so that control may be transferred toit, for example by a GO TO statement.Example:*Read numbers from input file until it ends, add them up.SUM = 0.0100 READ(UNIT=IN, FMT=200, END=9999) VALUE200 FORMAT(F20.0)SUM = SUM + VALUEGO TO 1009999 WRITE(UNIT=*, FMT=*)'SUM of values is', SUMEach label has the form of an unsigned integer in the range 1 to 99999. Blanks and leading zerosare ignored. The numerical value is irrelevant and cannot be used in a calculation at all. Thelabel must appear in columns 1 to 5 of the initial line of the statement. In continuation linesthe label �eld must be blank.A label must be unique within a program unit but labels in di�erent program units are quiteindependent. Although any statement may be labelled, it only makes sense to attach a label toa FORMAT statement or an executable statement, since there is no way of using a label on anyother type of statement.Statement labels are unsatisfactory because nearly all of them mark a point to which controlcould be transferred from elsewhere in the program unit. This makes it much harder to un-derstand a program with many labelled statements. Unfortunately at present one cannot avoidusing labels altogether in Fortran. If labels are used at all they should appear in ascending orderand preferably in steps of 10 or 100 to allow for changes. Labels do not have to be right-justi�edin the label �eld.

4 PROGRAM STRUCTURE AND LAYOUT 274.3 Program UnitsA complete executable program consists of one or more program units. There is always one(and only one) main program unit: this starts with a PROGRAM statement. There may also beany number of subprogram units of any of the three varieties:� subroutine subprograms: these start with a SUBROUTINE statement� function subprograms, also known as external functions: these start with a FUNCTIONstatement� block data subprograms: these start with a BLOCK DATA statement.Subroutines and external functions are known collectively as external procedures; block datasubprograms are not procedures and are used only for the special purpose of initialising thecontents of named common blocks.Every program unit must end with an END statement.ProceduresSubroutines and external functions are collectively known as external procedures: they aredescribed in full in section 9. A procedure is a self-contained sequence of operations which canbe called into action on demand from elsewhere in the program. Fortran supplies a numberof intrinsic functions such as SIN, COS, TAN, MIN, MAX, etc. These are procedures which areautomatically available when you need to use them in expressions. External functions can beused in similar ways: there may be any number of arguments but only one value is returned viathe function name.The subroutine is a procedure of more general form: it can have any number of input andoutput arguments but it is executed only in response to an explicit CALL statement.Procedures may call other procedures and so on, but a procedure may not call itself directlyor indirectly; Fortran does not support recursive procedure calls.Most Fortran systems allow procedures to be written in other languages and linked withFortran modules into an executable program. If the procedure interface is similar to that of aFortran subroutine or function this presents no problem.The normal way to transfer information from one program unit to another is to use theargument list of the procedure as described in section 9, but it is also possible to use a commonblock: a shared area of memory. This facility, which is less modular, is described in section 12.4.4 Statement Types and OrderFortran statements are either executable or non-executable. The compiler translates executablestatements directly into a set of machine code instructions. Non-executable statements aremainly used to tell the compiler about the program; they are not directly translated into machinecode. The END statement is executable and so are all those in the lowest right-hand box of thetable below; all other statements are non-executable.The general order of statements in a program unit is:� Program unit header (PROGRAM, SUBROUTINE, FUNCTION, or BLOCK DATA statement)

4 PROGRAM STRUCTURE AND LAYOUT 28� Speci�cation statements� Executable statements� END statement.The table below shows shows the complete statement ordering rules: the statements listed ineach box can be intermixed with those in boxes on the same horizontal level (thus PARAMETERstatements can be intermixed with IMPLICIT statements) but those in boxes separated verticallymust appear in the proper order in each program unit (thus all statement functions must precedeall executable statements).PROGRAM, FUNCTION, SUBROUTINE, BLOCK DATAIMPLICITPARAMETER Type statements:INTEGER, REAL, DOUBLE PRECISION,COMPLEX, LOGICAL, CHARACTEROther speci�cation statements:COMMON, DIMENSION, EQUIVALENCE,EXTERNAL, INTRINSIC, SAVEFORMAT Statement function statementsDATA Executable statements:BACKSPACE, CALL, CLOSE, CONTINUE, DO,ELSE, ELSE IF, END IF, GO TO, IF,INQUIRE, OPEN, READ, RETURN, REWIND,STOP, WRITE, assignment statements.ENDExecution SequenceA program starts by executing the �rst executable statement of the main program unit. Exe-cution continues sequentially unless control is transferred elsewhere: an IF or GO TO statement,for example, may transfer control to another part of the same program unit, whereas a CALLstatement or function reference will transfer control temporarily to a procedure.A program continues executing until it reaches a STOP statement in any program unit, or theEND statement of the main program unit, or until a fatal error occurs. When a program termi-nates normally (at STOP or END) the Fortran system closes any �les still open before returningcontrol to the operating system. But when a program is terminated prematurely �les, especiallyoutput �les, may be left with incomplete or corrupted records.4.5 Symbolic NamesSymbolic names can be given to items such as variables, arrays, constants, functions, subroutines,and common blocks. All symbolic names must conform to the following simple rule: the �rstcharacter of each name must be a letter, this may be followed by up to �ve more letters or digits.Here are some examples of valid symbolic names:I MATRIX VOLTS PIBY4 OLDCHI TWOX R2D2 OUTPUT

4 PROGRAM STRUCTURE AND LAYOUT 29And here are some names which do not conform to the rules:COMPLEX (too many letters)MAX EL (underscore is not allowed)2PI (starts with a digit)Height (lower-case letters are not allowed).It is best to avoid using digits in names unless the meaning is clear, because they are oftenmisread. The digit 1 is easily confused with the letter I, similarly 0 looks much like the letterO on many devices.The six-character limit on the length of a symbolic name is one of the most unsatisfactoryfeatures of Fortran: programs are much harder to understand if the names are cryptic acronymsor abbreviations, but with only six characters there is little choice. Although many systemsdo not enforce the limit (and Fortran90 allows names up to 31 characters long), at present theonly way to ensure software portability is to keep to it strictly. There is a further problem withitems which have an associated data type (constants, variables, arrays, and functions). Unlessthe data type is declared explicitly in a type statement, it is determined by the initial letter ofthe name. This may further restrict the choice.Scope of Symbolic NamesSymbolic names which identify common blocks and program units of all types are global inscope, i.e. their name must be unique in the entire executable program. Names identifying allother items (variables, arrays, constants, statement functions, intrinsic functions, and all typesof dummy argument) are local to the program unit in which they are used so that the samename may be used independently in other program units.To see the e�ect of these rules here is a simple example. Suppose your program contains asubroutine called SUMMIT. This is a global name so it cannot be used as the name of globalitem (such as an external procedure or a common block) in the same executable program. In theSUMMIT subroutine and in any other program unit which calls it the name cannot be used for alocal item such as a variable or array. In all other program units, however, including those whichcall SUMMIT indirectly, the name SUMMIT can be used freely e.g. for a constant, variable, orarray.The names of global items need to be chosen more carefully because it is harder to alterthem at a later stage; it can be di�cult to avoid name clashes when writing a large programor building a library of procedures unless program unit names are allocated systematically. Itseems appropriate for procedures to have names which are verb-like. If you �nd it di�cult todevise sensible procedure names remember that the English language is well stocked with threeand four-letter verbs which form a good basis, for example: DO, ASK, GET, PUT, TRY, EDIT,FORM, LIST, LOAD, SAVE, PLOT. By combining a word like one of these with one or twoadditional letters it is possible to make up a whole range of procedure names.Reserved WordsIn most computer languages there is a long list of words which are reserved by the system andcannot be used as symbolic names: Cobol programmers, for example, have to try to remembernearly 500 of them. In Fortran there are no reserved words. Some Fortran keywords (for instance

5 CONSTANTS, VARIABLES, AND ARRAYS 30DATA, END, and OPEN) are short enough to be perfectly valid symbolic names. Although it isnot against the rules to do this, it can be somewhat confusing.The names of the intrinsic functions (such as SQRT, MIN, CHAR) are, technically, local namesand there is nothing to prevent you using them for your own purposes, but this is not generallya good idea either. For example, if you choose to use the name SQRT for a local variable you willhave more di�culty in computing square-roots in that program unit. It is even more unwise touse the name of an intrinsic function as that of an external procedure because in this case thename has to be declared in an EXTERNAL statement in every program unit in which it is used inthis way.4.6 PROGRAM StatementThe PROGRAM statement can only appear at the start of the main program unit. Its only functionis to indicate what type of program unit it is and to give it symbolic name. Although this namecannot be used anywhere else in the program, it may be used by the Fortran system to identifyerror messages etc. The general form is simply:PROGRAM nameWhere name is a symbolic name. This name is global in scope and may not be used elsewherein the main program nor as a global name in any other program unit. For compatibility withFortran66 the PROGRAM statement is optional. This can have unexpected e�ects: if you forgetuse a SUBROUTINE or FUNCTION statement at the start of a procedure the compiler will assumeit to be a (nameless) main program unit. Since this will normally result in two main programunits, the linker is likely to detect the mistake.4.7 END StatementThe END statement must appear as the last statement of every program unit. It simply consistsof the word:ENDwhich may not be followed by any continuation lines (or comments). The END statement isexecutable and may have a label attached. If an END statement is executed in a subprogramunit, i.e. a procedure, it returns control to the calling unit; if an END statement is executed inthe main program it closes any �les which are open, stops the program, and returns control tothe operating system.5 Constants, Variables, and ArraysThis section deals with the data-storage elements of Fortran: constants, variables, and arrays.These all possess an important property called data type. The data type of an item determineswhat sort of information it holds and the operations that can be performed on it.5.1 Data TypesAll the information processed by a digital computer is held internally in the form of binary digitsor bits. Suitable collections of bits can be used to represent many di�erent types of data includingnumbers and strings of characters. It is not necessary to know how the information is representedinternally in order to write Fortran programs, only that there is a di�erent representation for

5 CONSTANTS, VARIABLES, AND ARRAYS 31each type of data. The data type of each item also determines what operations can be carriedout on it: thus arithmetic operations can be carried out on numbers, whereas character stringscan be split up or joined together. The data type of each item is �xed when the program iswritten.Fortran, with its emphasis on numerical operations, has four data types just for numbers.These are collectively known as the arithmetic data types. Arithmetic expressions can includemixtures of data types and, in most cases, automatic type conversions are provided. In othercircumstances, however, especially in procedure calls, there is no provision for automatic typeconversion and it is essential for data types to match exactly.The range and precision of the arithmetic data types are not speci�ed by the Standard:typical values are indicated below, but the only way to be sure is to check the manuals providedwith your own Fortran system.Several intrinsic functions are available to convert from one data type to another. Conversionfrom character strings to numbers and vice-versa can be complicated; these are best carried outwith the internal �le READ and WRITE statements (see section 10.3).There are, as yet, no user-de�ned or structured data types in Fortran.Standard Data TypesThe table below summarises the properties of the six data types provided in Standard Fortran:Data type CharacteristicsInteger Whole numbers stored exactly.Real Numbers, which may have fractional parts, stored using a oating-point representation with limited precision.DoublePrecision Similar to real but with greater precision.Complex Complex numbers: stored as an ordered pair of real numbers.Logical A Boolean value, i.e. one which is either true or false.Character A string of characters of �xed length.The �rst four types (integer, real, double precision, and complex) all hold numerical infor-mation and are collectively known as arithmetic data types.Integer TypeThe integer data type can only represent whole numbers but they are stored exactly in allcircumstances. Integers are often used to count discrete objects such as elements of an array,characters in a string, or iterations of a loop.The range of numbers covered by the integer type is system-dependent. The majority ofcomputers use 32 bits for their integer arithmetic (1 bit for the sign and 31 for the magnitude)giving a number range of �2; 147; 483; 648 to +2; 147; 483; 647. Some systems have an evenlarger integer range but a few very small systems only allow 16-bit integer arithmetic so thattheir integer range is only �32; 768 to +32; 767.

5 CONSTANTS, VARIABLES, AND ARRAYS 32Real TypeMost scienti�c applications use the real data type more than anything else. Real values are storedinternally using a oating-point representation which gives a larger range than the integer typebut the values are not, in general, stored exactly. Both the range and precision are machinedependent.In practice most machines use at least 32 bits to store real numbers. Many systems nowuse the IEEE Standard representation: for 32-bit numbers this gives a precision of just over 7decimal digits and allows a number range from around 10�38 to just over 10+38. This can besomething of a limitation because there are many types of calculation, especially in physics andastronomy, which lead to numbers in excess of 1040. Some computers designed expressly forscienti�c work, sometimes called \super-computers", allocate 64 bits for real numbers so thatthe numerical precision is much larger; the range is often larger as well. On such machines it israrely necessary to use the double precision type.Double Precision TypeDouble precision is an alternative oating-point type. The Fortran Standard only speci�es thatit should have greater precision than the real type but in practice, since the double precisionstorage unit is twice the size, it is safe to assume that the precision is at least doubled. Thenumber range may, however, be the same as that for real type.Although double precision values occupy twice as much memory as real (or integer) values,computations on them do not necessarily take twice as long.Complex TypeThe complex data type stores two real values as a single entity. There is no double precisioncomplex type in Standard Fortran.Complex numbers arise naturally when extracting the roots of negative numbers and areused in many branches of mathematics, physics, and engineering. A complex number is oftenrepresented as (A + iB), where A and B are the real and imaginary parts respectively andi2 = �1. Electrical engineers, having used the letter i to represent current, use the notation(A+ jB) instead.Although the rules for manipulating complex numbers are straight-forward, it is convenientto have the Fortran system to do the work. It is usually more e�cient as well, because thecomputer can use its internal registers to store the intermediate products in complex arithmetic.Exponentiation and the four regular arithmetic operators can be used on complex values, andvarious intrinsic functions are also provided such as square-root, logarithms, and the trigono-metric functions.Logical TypeThe logical data type is mainly used in conjunction with IF statements which select a course ofaction according to whether some condition is true or false. A logical variable (or array element)may be used to store such a condition value for future use. Logical variables and arrays are alsouseful when dealing with two-valued data such as whether a person is male or female, a �le openor closed, power on or o�, etc.

5 CONSTANTS, VARIABLES, AND ARRAYS 33Some programmers seem reluctant to use logical variables and arrays because they feel thatit must be ine�cient to use an entire computer word of perhaps 32 bits to store just one bit ofinformation. In fact the extra code needed to implement a more e�cient data packing schemeusually wastes more memory than the logical variables would have occupied.Character TypeThe character type is unique in that each character item has a length de�ned for it: this is thenumber of characters that it holds. In general the length is �xed when the item is declaredand cannot be altered during execution. The only exception to this is for dummy arguments ofprocedures: here it is possible for the dummy argument to acquire the length of the correspondingactual argument. Using this facility, general-purpose procedures can be written to operate oncharacter strings irrespective of their length. In addition, the rules for character assignment takecare of mismatched lengths by truncating or padding with blanks on the right as necessary. Thismeans that the Fortran character type has many of the properties of a genuine variable-lengthcharacter-handling system.The maximum length of a character item is system-dependent: it is safe to assume that allsystems will allow strings of up to 255 characters, a length limit of 32767 (or even more) is quitecommon. The minimum length of a character item is one character; empty or null strings arenot permitted.Storage UnitsAlthough the Fortran Standard does not specify the absolute amount of memory to be allocatedto each data type, it does specify the relative amounts. This is not important very often, onlywhen constructing unformatted direct-access records or when using COMMON and EQUIVALENCEstatements. The rules are as follows:Data types Storage unitsinteger, real, logical 1 numerical storage unitcomplex, double precision 2 numerical storage unitscharacter*(N) N character storage unitsIn the case of an array the number of storage units must be multiplied by the total numberof elements in the array.The relationship between the numeric and character storage units is deliberately unde�nedbecause it is entirely system-dependent.GuidelinesIt is usually fairly clear which data type to choose for each item in a program, though there aresome borderline cases among the various arithmetic data types.When processing data which are inherently integers, such as the number of seeds whichgerminate in each plot, or the number of photons detected in each time interval, it is not alwaysclear whether to use integer or real arrays to store them. They both use the same memory spacebut on some machines additions and subtractions are faster on integers than on oating-pointnumbers. In practice, however, any savings can be swallowed up in the data type conversions

5 CONSTANTS, VARIABLES, AND ARRAYS 34that are usually necessary in subsequent processing. The main snag with integers is the limitedrange; on some machines integer overow is not detected whereas oating-point overows nearlyalways produce error messages.If your machine stores its real variables in 32-bit words then the precision of around 1 in 107is likely to be inadequate in some applications. This imprecision is equivalent to an error ofseveral pence in a million pounds, or around ten milliseconds in a day. If errors of this orderare signi�cant you should consider using the double precision type instead. This will normallyreduce the errors by at least another factor of 107. Mixing data types increases the risks ofmaking mistakes and it is often simpler and safer to use the double precision type instead of realthroughout the program, even though this may use slightly more memory and processor time.Although automatic type conversions are provided for the arithmetic types in expressions, inother cases such as procedure calls it is essential for each actual argument to have the same datatype as the corresponding dummy argument. Since program units are compiled independently,it is di�cult for either the compiler or the linker to detect type mismatches in calls to externalprocedures.Non-standard Data TypesAlthough Standard Fortran only provides the above six data types, many systems provide ad-ditional ones. You may come across data type names such as: LOGICAL*1, INTEGER*2, REAL*8,COMPLEX*16, etc. The number after the asterisk indicates the number of bytes of storage usedfor each datum (a byte being a group of 8 bits). This notation has a certain logic but is to-tally non-standard. The use of a term like REAL*8 when it is simply a synonym for DOUBLEPRECISION seems particularly pointless. There are, of course, circumstances when types such asCOMPLEX*16 are necessary but the price to be paid is the loss of portability.5.2 ConstantsA constant has a value which is �xed when the program is written. The data type of everyconstant is evident from its form. Arithmetic constants always use the decimal number base:Standard Fortran does not support other number bases such as octal or hexadecimal.Although arithmetic constants may in general have a leading sign (plus or minus) there aresome circumstances in Fortran when an unsigned constant is required. If the constant is zerothen any sign is ignored.Integer ConstantsThe general form of an integer constant is a sign (plus or minus) followed by a string of one ormore digits. All other characters (except blanks) are prohibited. If the number is positive theplus sign is optional. Here are some examples of valid integer constants:-100 42 0 +1048576It is easier to read a large number if its digits are marked o� in groups of three: traditionallythe comma (or in some countries the dot) is used for this purpose. The blank can be used inthe same way in Fortran programs (but not in data �les):-1 000 000 000Note that this number, although conforming to the rules of Fortran, may be too large in mag-nitude to be stored as an integer on some systems.

5 CONSTANTS, VARIABLES, AND ARRAYS 35Real ConstantsA real constant must contain a decimal point or an exponent (or both) to distinguish it fromone of integer type. The letter \E" is used in Fortran to represent \times 10 to the power of".For example, the constant 1:234� 10�5 is written as \1.234E-5".The most general form of a real constant is:sign digits . digits E sign digits{integer-part{ {decimal-part{ {exponent{|basic-real-constant| |exponent-section|Both signs are optional; a plus sign is assumed if no sign is present. Leading zeros in theinteger-part and in the exponent are ignored. Either the integer part or the decimal part maybe omitted if it is zero but one or the other must be present. If the value of the exponent is zerothe entire exponent section may be omitted provided a decimal point is present in the number.There is no harm in giving more decimal digits in a real (or double precision) constant thanthe computer can make use of: the value will be correctly rounded by the computer and theextra decimal places ignored.Here are a few examples of valid real constants:.5 -10. 1E3 +123.456E4 .000001Dangling decimal points, though permitted, are easily overlooked, and it is conventional to stan-dardize constants in exponential notation so that there is only one digit before the decimal point.Using this convention, these values would look like this:0.5 -10.0 1000.0 1.23456E6 1.0E-6Double Precision ConstantsA double precision constant has a similar form to a real constant but it must contain an expo-nent but using the letter \D" in place of "E" even if the exponent is zero. Some examples ofdouble precision constants are:3.14159265358987D0 1.0D-12 -3.652564D+02Complex ConstantsA complex constant has the form of two real or integer constants separated by a comma andenclosed in a pair of parentheses. The �rst number is the real component and the second theimaginary component. Some examples of valid complex constants are:(3.14,-5.67) (+1E5,0.125) (0,0) (-0.999,2.718E15)Logical ConstantsThere are only two possible logical constants, and they are expressed as: .TRUE. and .FALSE.The dots at each end are needed to distinguish these special forms from the words TRUE andFALSE, which could be used as symbolic names.

5 CONSTANTS, VARIABLES, AND ARRAYS 36Character ConstantsA character constant consists of a string of characters enclosed in a pair of apostrophes which actas quotation marks. Within the quoted string any characters available in the character set of themachine are permitted; the blank (or space) character is signi�cant within character constantsand counts as a single character just like any other. Examples of valid character constants are:'X'' 40 + 15%''This is a constant including spaces'The apostrophe character can be included in a character constant by representing it as twosuccessive apostrophes (with no intervening blanks). This pair of apostrophes only counts as asingle character for the purposes of computing the length of the string. For example: 'DON''T'is a constant of length 5.5.3 Specifying Data TypeThe preceding rules ensure that the data type of an literal constant is completely determinedby its form. Similarly the data type of an expression depends on the operands and operatorsinvolved. The intrinsic functions are also a special case, since their properties, including theirdata types, are known to the compiler. All other typed objects in a Fortran program are referredto by symbolic names. The rules given here apply to all of these named objects: variables, arrays,named constants, statement functions, and external functions.In many programming languages, especially those in the Algol family, the data type of almostevery item in the program has to be speci�ed explicitly. Many programmers regard it as a choreto have to provide all these type speci�cations, although their presence does make it rathereasier for the compiler to detect mistakes.In Fortran you can specify data types explicitly in a similar way by using type statements,but Fortran also makes life easier by having certain default types. The data type of any objectwhich has not been declared in a type statement depends on the �rst letter of its name. Thedefault rules are: First letter of the name Implicit typeA to H REALI to N INTEGERO to Z REALMost programs make extensive use of integer and real objects, so these default values reducethe number of type statements that are required, provided suitable initial letters are chosen forthe symbolic names.The �rst-letter rule can also be changed throughout a program unit by using an IMPLICITstatement, described below.Type StatementsThere are six di�erent type statements, one for each data type. In their simplest form they justconsist of the appropriate data-type keyword followed by a list of symbolic names. For example:

5 CONSTANTS, VARIABLES, AND ARRAYS 37INTEGER AGE, GRADELOGICAL SUPERREAL RATE, HOURS, PAY, TAX, INSUREIn this example the �rst four items declared to be real would have had that type anyway hadthe default rules been left to operate. Con�rmatory type speci�cation does no harm.There is no limit to the number of type statements that can be used but a name must not haveits type speci�ed explicitly more than once in a program unit. Type statements must precede allexecutable statements in the unit; it is good practice, though not essential, for them to precedeother speci�cation statements referring to the same name. Type statements can be used in asubprogram to specify the types of the dummy arguments and, in an external function, thetype of the function as well. Type statements by themselves have no e�ect on intrinsic functionnames but it is not a good idea to use them in this way.The CHARACTER statement is slightly di�erent from the others because it also speci�es thelength of each character item, i.e. the number of characters it holds. The length can be givenseparately for each item, thus:CHARACTER NAME*15, STREET*30, TOWN*20, PCODE*7Alternatively, if several items are to have the same length, a default length for the statementcan be given at the beginning:CHARACTER*20 STAR, GALAXY, COMET*4, PLANETThis declares the name COMET to have a length of 4 characters, whereas STAR, GALAXY, andPLANET are all 20 characters long. If the length is not speci�ed at all it defaults to one. The lengthcan also be speci�ed by means of a named integer constant or an integer constant expressionenclosed in parentheses. For example:PARAMETER (NEXT=15, LAST=80)CHARACTER TEXT*(NEXT+LAST)Note that the length of a character item is �xed at compilation time. The special form:CHARACTER NAME*(*)is permitted in two cases: for named constants the length of the literal constant in the PARAMETERstatement is used (section 5.4); for dummy arguments of procedures the length of the associatedactual argument is used (section 9.5). Type statements can also be used to declare the dimensionsof arrays: this is described in section 5.6.IMPLICIT StatementThe IMPLICIT statement can be used to change the �rst-letter default rule throughout a programunit. For example:IMPLICIT DOUBLE PRECISION (D,X-Z), INTEGER (N-P)would mean that all names starting with the letters D,X,Y, or Z would (unless declared otherwisein type statements) have the type double precision. Similarly the letters I through P, instead ofjust I through N, will imply integer type. The other letters (A-C,E-H, and Q-W) will still implyreal type.IMPLICIT can be used with character type to specify a default length as well, for example:IMPLICIT CHARACTER*100 (C,Z), CHARACTER*4 (S)But this is not usually of much practical value. As with type statements, the default characterlength is one.

5 CONSTANTS, VARIABLES, AND ARRAYS 38More than one IMPLICIT statement can be used in a program unit but the same letter mustnot have its implied type speci�ed more than once. The usual Fortran implied-type rules applyto all initial letters not listed in any IMPLICIT statements. The list of letters given after each typemust appear in alphabetical order. IMPLICIT statements normally precede all other speci�cationstatements in a program. There is one exception to this: PARAMETER statements may precedethem provided that the constants named in them are not a�ected by the IMPLICIT statement.Note that dummy arguments and function names may be a�ected by a subsequent IMPLICITstatement. IMPLICIT statements have no e�ect on intrinsic function names.GuidelinesThere are two diametrically opposed schools of thought on type speci�cation. The �rst holdsthat all names should have their types speci�ed explicitly. This certainly helps programmers toavoid mistakes, because they have to think more carefully about each item. It also helps thecompiler to diagnose errors more easily, especially if the it knows that all names are going to bedeclared in advance. Some Fortran compilers allow a statement of the form \IMPLICIT NONE"which makes all names typeless by default and so requiring every name to be explicitly typed.Others have a compile-time switch with the same e�ect. If yours does not you may be able toproduce a similar e�ect by using something like:IMPLICIT CHARACTER*1000000 (A-Z)near the beginning of each program unit which is likely to cause an error for anything notexplicitly typed. One disadvantage of the practice of declaring all names in advance is that theprogram may become so cluttered with speci�cation statements that it may obscure its structureand algorithm.The alternative way of working is to make maximum use of implicit types to reduce thenumber of statements. This means, of course, that the �rst letter of each name has to be chosento suit the type, leaving no more than �ve to be chosen freely: this makes it harder than everto devise meaningful symbolic names. As a result, Fortran programs often include names likeRIMAGE or ISIZE or KOUNT. Clearly type statements are still needed for character type becauseit is usually necessary to use items of a number of di�erent lengths.Experience suggests that either system can be satisfactory provided it is used consistently.However the wholesale reassignment of initial letters with IMPLICIT statements usually increasesthe chance of making a mistake. IMPLICIT, if used at all, should only reassign one or two rarely-used letters to the less common data types, for example:IMPLICIT DOUBLE PRECISION (Z), LOGICAL (Q),COMPLEX (X)It is also prudent to use an identical IMPLICIT statement in each program unit, otherwise typemismatches are more likely to be made in procedure calls.5.4 Named ConstantsThe PARAMETER statement can be used to give a symbolic name to any constant. This can beuseful in several rather di�erent circumstances.With constants of nature (such as �) and physical conversion factors (like the number ofpounds in a kilogram) it can save typing e�ort and reduce the risk of error if the actual numberis only given once in the program and the name used everywhere else:

5 CONSTANTS, VARIABLES, AND ARRAYS 39REAL PI, TWOPI, HALFPI, RTODPARAMETER (PI = 3.14159265, TWOPI = 2.0 * PI)PARAMETER (HALFPI = PI / 2.0, RTOD = 180.0 / PI)The names PI, TWOPI, etc. can then be used in place of the literal constants elsewhere in theprogram unit. It is much better to use named constants than variables in such cases as theyare given better protection against inadvertent corruption: constants are often protected byhardware. The use of symbolic names rather than numbers can also make the program a littlemore readable: it is probably harder to work out the signi�cance of a number like 1.570796325than to deduce the meaning of HALFPI.Another important application of named constants is for items which are not permanentconstants but parameters of a program, i.e. items �xed for the present but subject to alterationat some later date. Named constants are often used to specify array bounds, character-stringlengths, and so on. For example:INTEGER MAXR, MAXC, NPTSPARAMETER (MAXR = 100, MAXC = 500, NPTS = MAXR*MAXC)REAL MATRIX(MAXR,MAXC), COLUMN(MAXR), ROW(MAXC)The constants such as MAXR and MAXC can also be used in the executable part of the program,for instance to check that the array subscripts are in range:IF(NCOL .GT. MAXC .OR. NROW .GT. MAXR) THENSTOP 'Matrix is too small'ELSEMATRIX(NROW,NCOL) = ROW(NCOL)END IFIf, at some point, the matrix turns out to be too small for your needs then you only have to alterthis one PARAMETER statement: everything else will change automatically when the program isrecompiled.The rules for character assignment apply to PARAMETER statements: see section 7.4. Inaddition a special length speci�cation of *(*) is permitted which means that the length ofitem is set to that of the literal constant. The type speci�cation must precede the PARAMETERstatement.CHARACTER*(*) LETTER, DIGIT, ALPNUMPARAMETER (LETTER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',$ DIGIT = '0123456789', ALPNUM = LETTER // DIGIT)CHARACTER WARN*(*)PARAMETER (WARN = 'This matrix is nearly singular')The constant ALPNUM will be 36 characters long and contain all the alpha-numeric characters(letters and digits).Named logical constants also exist, but useful applications for them are somewhat harder to�nd: PARAMETER (NX = 100, NY = 200, NZ = 300, NTOT = NX*NY*NZ)LOGICAL LARGEPARAMETER (LARGE = (NTOT .GT. 1000000) .OR. (NZ .GT. 1000))

5 CONSTANTS, VARIABLES, AND ARRAYS 40PARAMETER StatementThe general form of the PARAMETER statement is:PARAMETER (cname = cexp, cname = cexp, ...)where each cname is a symbolic name which becomes the name of a constant, and each cexp isa constant expression of a suitable data type.The terms in a constant expression can only be literal constants or named constants de�nedearlier in the same program unit. Variables, array elements, and function references are notpermitted at all. Otherwise the usual rules for expressions apply: parentheses can be usedaround sub-expressions, and the arithmetic types can be intermixed. There is one restrictionon exponentiation: it can only be used to raise a number to an integer power. The normalrules for assignment statements apply: for arithmetic types suitable conversions will be appliedif necessary; character strings will be truncated or padded to the required length. Note thatsubstring references are not permitted in character constant expressions.PARAMETER statements are speci�cation statements and may precede or follow type state-ments. But any type (or IMPLICIT) statement which a�ects the data type or length of a namedconstant must precede it. Subject to these rules, PARAMETER statements are permitted to precedeIMPLICIT statements. This makes it possible for a named constant to set the default length forthe character type for certain ranges of initial letters. For example:PROGRAM CLEVERPARAMETER (LENCD = 40, LENE = 2 * LENCD)IMPLICIT CHARACTER*(LENCD)(C-D), CHARACTER*(LENE)(E)PARAMETER (DEMO = 'This is exactly 40 chars long')Once de�ned, a named constant can be used in any expression, including a dimension-boundexpression, or in a DATA statement. A named constant cannot be used just as part of anotherconstant (for example one component of a complex constant) and named constants are notpermitted at all within format speci�cations.GuidelinesOne of the limitations of Standard Fortran at present is that there is no way of allocatingmemory dynamically. One of the best ways around this is to use named constants to specifyarray bounds; this makes it much easier to alter programs to suit new requirements.Names should also be given to all mathematical and physical constants that your programsrequire. If the same constants are needed in several program units then it may be sensible tocompose a suitable set of PARAMETER statements for all of them and bring them in where evernecessary using INCLUDE statements.If you de�ne double precision constants in a PARAMETER statement do not forget that eachliteral constant value must include an exponent using the letter D.There are no constant arrays in Fortran: the only way to overcome this limitation is todeclare an ordinary array in a type statement and initialise its elements with a DATA statement(described in section 11).

5 CONSTANTS, VARIABLES, AND ARRAYS 415.5 VariablesA variable is simply a named memory location with a �xed data type. As explained earlier,variables do not have to be declared in advance if the data type implied by the �rst letter of thename is appropriate. Otherwise a type statement is required.At the start of execution the value of each variable is unde�ned unless a suitable DATAstatement appears in the program unit (see section 11). Unde�ned values must not be usedin expressions. Local variables in procedures do not necessarily retain their values from oneinvocation of the procedure to another unless a suitable SAVE statement is provided (section9.11).5.6 ArraysAn array is a group of memory locations given a single name. The elements of the array all havethe same data type.In mathematics the elements of an array a would be denoted by a1, a2, a3, and so on. InFortran a particular array element is identi�ed by providing a subscript expression in parenthesesafter the array name: A(1), A(2), A(3), etc. Subscripts must have integer type but they maybe speci�ed by expressions of arbitrary complexity, including function calls.An array element can be used in the same way as a variable in almost all executable state-ments. Array elements are most often used within loops: typically an integer loop counter selectseach element of the array in turn.*Add array OLD to array NEW making array TOTALPARAMETER (NDATA = 1024)REAL OLD(NDATA), NEW(NDATA), TOTAL(NDATA)*......DO 100, I = 1,NDATATOTAL(I) = OLD(I) + NEW(I)100 CONTINUEDeclaring ArraysArrays can have up to seven dimensions; the lower bound of each dimension is one unless declaredotherwise. There is no limit on the upper bound provided it is not less than the lower bound.Arrays which are dummy arguments of a procedure may have their dimension bounds speci�edby integer variables which are arguments of the procedure; in all other cases each dimensionbound must be an integer constant expression. This �xes the size of the array at compile-time.Type, DIMENSION, and COMMON statements may all be used to declare arrays, but COMMONstatements have a specialised use (described in section 12). The DIMENSION statement has asimilar form to a type statement but only declares the bounds of an array without determiningits data type. It is usually simpler and neater to use a type statement which speci�es both atonce: CHARACTER COLUMN(5)*25, TITLE*80Note that when declaring character arrays the string length follows the list of array bounds.The character array COLUMN has 5 elements each of which is 25 characters long; TITLE is,of course, just a variable 80 characters long. Although a default string length can be set for anentire type statement, it is not possible to set a default array size in a similar way.

5 CONSTANTS, VARIABLES, AND ARRAYS 42It is generally good practice to use named constants to specify array bounds as this facilitateslater modi�cations:PARAMETER (MAXIM = 15)INTEGER POINTS(MAXIM)COMPLEX SERIES(2**MAXIM)These arrays all have a lower bound of one. A di�erent lower bound can be speci�ed for anydimension as shown below. The lower and upper bounds are separated by a colon:REAL TAX(1985:1990), PAY(12,1985:1990)LOGICAL TRIPLE(-1:1, -1:1, -1:1, -1:1)TAX has 6 elements from TAX(1985) to TAX(1990).PAY has 72 elements from PAY(1,1985) to PAY(12,1990).TRIPLE has 81 elements from BIN(-1,-1.-1.-1) to BIN(1,1,1,1).Although Fortran itself sets no limits to the sizes of arrays that can be de�ned, the �nitecapacity of the hardware is likely to do so. In virtual memory operating systems it is possibleto use arrays larger than physical memory: those parts of the array not in active use are heldon backing store such as a disc �le.Using ArraysAn array element reference must always use the same number of subscripts as the number ofdimensions declared for the array. Each subscript can be an integer expression of any complexity,but there are restrictions on functions with side e�ects (see section 9.3).An array element reference is only valid if all of the subscript expressions are de�ned and ifeach one is in the range declared for it. An array element can only be used in an expression ifa value for it has been de�ned. A DATA statement (section 12) can be used to de�ne an initialvalue for an entire array or any set of elements.An array can be used without subscripts:� in a speci�cation statement such as a type, DIMENSION, or SAVE statement;� in a function reference or CALL statement: this transfers the whole of the array to theassociated dummy argument (which must have a compatible array declaration);� in the data transfer list of a READ or WRITE statement: this causes the whole array to beinput or output. This is not permitted for an assumed size dummy argument array.� as a unit identi�er in a READ or WRITE statement: a character array is then an internal �lewith one record per element.� as a format identi�er in a READ or WRITE statement: the format speci�cation is containedin the character array with its elements taken in sequence.

6 ARITHMETIC 43Storage SequenceArrays are always stored in a contiguous set of memory locations. In the case of multi-dimensional arrays, the order of the elements is that the �rst subscript varies most rapidly,then the second subscript, and so on. For example in the following 2-dimensional array (forsimplicity one of only six elements):X(2; 3) = " x1;1 x1;2 x1;3x2;1 x2;2 x2;3 # (1)The elements are stored in the following sequence:X(1,1), X(2,1), X(1,2), X(2,2), X(1,3), X(2,3)i.e. the sequence moves down each column �rst, then across to the next row. This column orderis di�erent from that used in some other programming languages.The storage order may be important if you use large multi-dimensional arrays and wish tocarry out some operation on all the elements of the array. It is then likely to be faster to accessthe array in storage order, i.e. by columns rather than rows. This means arranging loop indiceswith the last subscript indexed by the outer loop, and so on inwards. For example:DOUBLE PRECISION ARRAY(100,100), SUMSUM = 0.0D0DO 250,L = 1,100DO 150,K = 1,100SUM = SUM + ARRAY(K,L)150 CONTINUE250 CONTINUEWith the loops arranged this way around the memory locations are accessed in consecutiveorder, which minimises the processor overhead in subscript calculations.6 ArithmeticFortran has good facilities for processing numbers. Arithmetic expressions and assignmentstatements can include integer, real, double precision, or complex items. Data type conversionsare provided automatically when necessary; type conversions can also be performed explicitlyusing intrinsic functions. Other intrinsic functions are available for trigonometry, logarithms,and other useful operations.For example, the well-known cosine formula for the third side of a triangle, given the othertwo sides and the angle between them is:qb2 + c2 � 2:b:c:cos(A)Translated into a Fortran expression it looks like this:SQRT(B**2 + C**2 - 2.0 * B * C * COS(ANGLEA))which makes use of the intrinsic functions SQRT and COS. Although SQRT(X) produces the sameresult as X**0.5, the square-root function is simpler, faster, and probably more accurate thanraising to the power of one half, which would actually be carried out using both the EXP andLOG functions.

6 ARITHMETIC 44Assignment statements evaluate an expression and assign its value to a variable (or arrayelement). Unlike almost all other Fortran statements, they do not start with a keyword. Forexample:A = SQRT(B**2 + C**2 - 2.0 * B * C * COS(ANGLEA))TOTAL(N/2+1) = 0.0FLUX = FLUX + 1.06.1 Arithmetic ExpressionsAn expression in its simplest form is just a single operand, such as a constant or variable. Morecomplicated expressions combine various operands with operators, which specify the computa-tions to be performed. For example:RATE * HOURS + BONUSThe rules of Fortran have been designed to resemble those of mathematics as far as possible,especially in determining the order in which the expression is evaluated. In this example themultiplication would always be carried out before the addition, not because if comes �rst, butbecause it has a higher precedence. When in doubt, or to over-ride the precedence rules, paren-theses can be used:(ROOM + DINNER) * 1.15Sub-expressions enclosed in parentheses are always evaluated �rst; they can be nested to anyreasonable depth. If in doubt, there is no harm in adding parentheses to determine the order ofevaluation or to make a complicated expression easier to understand.Arithmetic expressions can contain any of the �ve arithmetical operators + - * / ** .The double asterisk represents exponentiation, i.e. raising a number to a power. Thus themathematical expression: (1 +RATE=100)yearscould be represented in Fortran as:(1.0 + RATE/100.0)**YEARS(note the explicit decimal points in the constants to make them real values).Arithmetic expressions can involve operands of di�erent data types: the data type of theresult is determined by some simple rules explained below.General RulesArithmetic expressions can contain arithmetic operands, arithmetic operators, and parentheses.There must always be at least one operand. The operands can belong to any of the four arith-metic data types (integer, real, double precision, or complex); the result also has an arithmeticdata type. Operands can be any of the following:� unsigned literal constants� named constants� variables� array elements

6 ARITHMETIC 45� function references� complete expressions enclosed in parentheses.The rules for forming more complicated arithmetic expressions are as follows. An arithmeticexpression can have any of the following forms:operand+operand-operandarithmetic-expression arith-op operandwhere the arith-op can be any of these operators:+ addition- subtraction* multiplication/ division** exponentiationThe e�ect of these rules is that an expression consists of a string of operands separated byoperators and, optionally, a plus or minus at the start. A leading plus sign has no e�ect; aleading minus sign negates the value of the expression.All literal arithmetical constants used in expressions must be unsigned: this is to prevent theuse of two consecutive operators which is confusing and possibly ambiguous:4 / -3.0**-1 (illegal).The way around this is to use parentheses, for example:4 / (-3.0)**(-1)which makes the order of evaluation explicit.The order of evaluation of an expression is:1. sub-expressions in parentheses2. function references3. exponentiation, i.e. raising to a power4. multiplication and division5. addition, subtraction, or negation.Within each of these groups evaluation proceeds from left to right, except that exponentia-tions are evaluated from right to left. Thus: A / B / C is equivalent to (A / B) / C whereasX ** Y ** Z is equivalent to X ** (Y ** Z).An expression does not have to be evaluated fully if its value can be determined otherwise:for example the result of:X * FUNC(G)can be determined without calling the function FUNC if X happens to be zero. This will notcause problems if you only use functions that have no side e�ects.

6 ARITHMETIC 46Data Type ConversionsIf an operator has two operands of the same data type then the result has the same type. If theoperands have di�erent data types then an implicit type conversion is applied to one of them tobring it to the type of the other. These conversions always go in the direction which minimisesloss of information: integer =) real =) complex or double precisionSince there is no way of converting a complex number to double precision type, or vice-versa, without losing signi�cant information, both these conversions are prohibited: an operatorcannot have one complex operand and one of double precision type. All other combinations arepermitted. These implicit type conversions have the same result as if the appropriate intrinsicfunction (REAL, DBLE, or CMPLX) had been used. These are described in detail below. Notethat the data type of any operation just depends on the two operands involved; the rest of theexpression has no inuence on it whatever.Exponentiation is an exception to the type conversion rule: when the exponent is an integerit does not have to be converted to the type of the other operand and the result is evaluatedas if by repeated multiplication. But if the exponent has any other data type the calculation isperformed by implicit use of the LOG and EXP functions, thus:2.0**3 =) 2.0 * 2.0 * 2.0 =) 8.02.0**3.0 =) EXP(3.0 * LOG(2.0)) =) 8.0The �rst result will, of course, be computed more rapidly and accurately than the second.If the exponent has a negative value the result is simply the reciprocal of the correspondingpositive power, thus: 2.0**(-3) =) 1.0/2.0**3 =) 1.0/8.0 =) 0.125Note that conversion from real to double precision cannot produce any information not presentoriginally. Thus with a real variable R and a double precision variable D:R = 1.0 / 3.0D = RD may end up with a value such as 0.3333333432674408... which is no closer to the value of onethird than R was originally.Integer DivisionInteger division always produces a result which is another integer value: any fractional part istruncated, i.e. rounded towards zero. This makes it especially important to provide a decimalpoint at the end of a real constant even if the fractional part is zero. For example:8 / 3 =) 2 -8 / 3 =) -2 2**(-3) =) 1/(2**3) =) 1/8 =) 0The combination of the two preceding rules may have unexpected e�ects, for example:(-2)**3 =) -2 * -2 * -2 =) -8whereas (-2)**3.0 is an invalid expression as the computer would try to evaluate the logarithmof -2.0, which does not exist. Similarly, the expression:3 / 4 * 5.0 =) REAL(3/4) * 5.0 =) 0.0whereas 5.0 * 3 / 4 =) 15.0 / REAL(4) =) 3.75

6 ARITHMETIC 47RestrictionsCertain arithmetical operations are prohibited because their results are not mathematicallyde�ned. For example dividing by zero, raising a negative value to a real power, and raising zeroto a negative power. The Fortran Standard does not specify exactly what is to happen if one ofthese errors occurs: most systems issue an error message and abort the program.Errors can also occur because numbers are stored on a computer with �nite range and preci-sion. The results of adding or multiplying two very large numbers may be outside the numberrange: this is called overow. A similar e�ect on very large negative integers is called under-ow. Most systems will issue a warning message for overow or underow, and may abort theprogram, but some processors cannot detect errors of this sort involving integer arithmetic.Every operand (variable, array element, or function reference) used in an expression musthave a de�ned value at the time the expression is evaluated. Note that variables and arraysare initially unde�ned unless a suitable DATA statement is used. Expressions must not includereferences to any external functions with side e�ects on other operands of the expression: seesection 9.3 for more details.Arithmetic Constant ExpressionsArithmetic constant expressions can be used in PARAMETER statements and to specify implied-DO parameters in DATA statements. All the operands in a constant expression must be literalconstants or previously de�ned named constants. Variables, array elements, and function ref-erences are all prohibited. Exponentiation is only allowed if the number is raised to an integerpower.The same rules apply to integer constant expressions but in addition the operands must allbe integer constants: such expressions can be used to specify array bounds in type, COMMON,and DIMENSION statements, and to specify string lengths in CHARACTER statements.Bit-wise Logical Operations on IntegersWhen Fortran programs communicate directly with digital hardware it may be necessary to carryout bit-wise logical operations on bit-patterns. Standard Fortran does not provide any directway of doing this, since logical variables essentially only store one bit of information and integervariables can only be used for arithmetic. Many systems provide, as an extension, intrinsicfunctions to perform bit-wise operations on integers. The function names vary: typically theyare IAND, IOR, ISHIFT. A few systems provide allow the normal logical operators such as .AND.and .OR. to be used with integer arguments: this is a much more radical extension and much lesssatisfactory, not only because it reduces portability, but also reduces the ability of the compilerto detect errors in normal arithmetic expressions.Many systems also provide format descriptors to transfer integers using octal and hexadecimalnumber bases: these are also non-standard.GuidelinesExpressions with mixed data types should be examined carefully to ensure that the type-conversion rules have the desired e�ect. It does no harm to use the type conversion functionsexplicitly and it may make the working clearer.

6 ARITHMETIC 48Particular care is needed with the data types of literal constants. It is bad practice to usean integer constant where you really need a real constant. Although this will work in mostexpressions it is a serious mistake to use the wrong form of constant in the argument list of aprocedure.Long and complicated expressions which spread over several lines can be rather trying toread o�er more scope for programming errors. Sometimes it is better to split the computationinto several shorter equations at the expense of one or two temporary variables.It is often tempting to try to write programs that are as e�cient as possible. With moderncompilers there is little point in trying to rearrange expressions to optimise speed. One of thefew exceptions is that if an intrinsic function is provided it is always best to use it; thus SQRT(X)is likely to be faster and more accurate than X**0.5.You may �nd that your system actually sets the whole of memory to zero initially, except foritems de�ned with DATA statements, but it is very bad programming practice to rely on this.6.2 Arithmetic Intrinsic FunctionsIntrinsic functions are supplied automatically by the system and can be used in expressions inany program unit. A description of their special properties appears in section 9.1.Many of the arithmetic intrinsic functions have generic names: that is they can be used withseveral di�erent types of arguments. The SQRT function, for example, can be used with a real,double precision, or complex argument. The Fortran system automatically selects the correctspeci�c function for the job: SQRT, DSQRT, or CSQRT. These speci�c names can be ignoredin almost all circumstances, and are listed only in the appendix. In most cases the data type ofthe function is the same as that of its argument but there are a few obvious exceptions such asthe type conversion functions.In the descriptions below, the number and data type of the arguments of each intrinsicfunction are indicated by a letter: I = integer, R = real, D = double precision, X = complex.An asterisk on the left indicates that the result has the same data type as the arguments.Note that if multiple arguments are permitted they must all have the same data type. Thus I =NINT(RD) indicates that the NINT function can take a single real or double precision argumentbut its result is always integer, whereas * = ANINT(RD) indicates that the result has the sametype (real or double precision) as the argument.Trignometric FunctionsThe functions in this group can all be used on real or double precision arguments, and SIN andCOS can also be used on complex numbers. In every case the result has the same data type asthe argument.

6 ARITHMETIC 49* = SIN(RDX) sine of the angle in radians.* = COS(RDX) cosine of the angle in radians.* = TAN(RD) tangent of the angle in radians.* = ASIN(RD) arc-sine; the result is in the range ��=2 to +�=2.* = ACOS(RD) arc-cosine; the result is in the range 0 to +� .* = ATAN(RD) arc-tangent; the result is in the range ��=2 to +�=2.* = ATAN2(RD,RD) arc-tangent of arg1/arg2; the result is in the range �� to +�.Both arguments must not be zero.* = SINH(RD) hyperbolic sine.* = COSH(RD) hyperbolic cosine.* = TANH(RD) hyperbolic tangent.Note that the arguments of SIN, COS, and TAN must be angles measured in radians (notdegrees). They can be used on angles of any size, positive or negative, but if the magnitudeis very large the accuracy of the result will be reduced. Similarly all the inverse trigonometricfunctions deliver a result in radians; the argument of ASIN and ACOS must be in the range -1to +1. The ATAN2 function can be useful in resolving a result into the correct quadrant of thecircle, thus:ATAN(0.5) = 0.4636476ATAN2(2.0,4.0) = 0.4636476ATAN2(-2.0,-4.0) = -2.677945 (= 0.4636476 - �).Other Transcendental Functions* = SQRT(RDX) square root.* = LOG(RDX) natural logarithm, i.e. log to base e (where e = 2.718281828...).* = EXP(RDX) returns the exponential, i.e. e to the power of the argument. Thisis the inverse of the natural logarithm.* = LOG10(RD) logarithm to base 10.Note that LOG10, which may be useful to compute decibel ratios etc., is the only one of thisgroup which cannot be used on a complex argument.Type Conversion FunctionsThese functions can be used to convert from any of the four arithmetic data types to any of theothers. They are used automatically whenever mixed data types are encountered in arithmeticexpressions and assignments.I = INT(IRDX) converts to integer by truncation.R = REAL(IRDX) converts to real.D = DBLE(IRDX) converts to double precision.X = CMPLX(IRDX) converts to complex.X = CMPLX(IRD,IRD) converts to complex.The integer conversion of INT rounds towards zero; if you need to round to the nearest integeruse the NINT function (described below). The CMPLX function produces a value with a zeroimaginary component unless it is used with two arguments (or one which is already complex). Itis important to realise that many conversions lose information: in particular a double precisionvalue is likely to lose signi�cant digits if converted to any other data type.

6 ARITHMETIC 50Minimum and MaximumThe MIN and MAX functions are unique in being able to take any number of arguments fromtwo upwards; the result has the same data type as the arguments.* = MIN(IRD,IRD,...) returns the smallest of its arguments.* = MAX(IRD,IRD,...) returns the largest of its arguments.These two functions can, of course, be combined to limit a value to a certain range. Forexample, to limit a value TEMPER to the range 32 to 212 you can use an expression such as:MAX(32.0, MIN(TEMPER, 212.0))Note that the minimum of the range is an argument of the MAX function and vice-versa.To �nd the largest (or smallest) element of a large array it is necessary use a loop.*Find largest value in array T of N elements:TOP = T(1)DO 25,I = 2,NTOP = MAX(T(I), TOP)25 CONTINUE*TOP now contains the largest element of T.Other Functions* = AINT(RD) Truncates the fractional part (i.e. as INT) but preserves the datatype.* = ANINT(RD) Rounds to the nearest whole number.I = NINT(RD) Converts to integer by rounding to the nearest whole number.* = ABS(IRD) Returns the absolute value of a number (i.e. it changes the sign ifnegative).R = ABS(X) Computes the modulus of a complex number (i.e. the square-rootof the sum of the squares of the two components).* = MOD(IRD,IRD) returns A1 modulo A2, i.e. the remainder after dividing A1 byA2.* = SIGN(IRD,IRD) performs sign transfer: if A2 is negative the result is -A1, if A2 iszero or positive the result is A1.* = DIM(IRD,IRD) returns the positive di�erence of A1 and A2, i.e. if A1 > A2 itreturns (A1-A2), otherwise zero.D = DPROD(R,R) Computes the double precision product of two real values.R = AIMAG(X) Extracts the imaginary component of a complex number. Notethat the real component can be obtained by using the REALfunction.X = CONJG(X) Computes the complex conjugate of a complex number.The NINT and ANINT functions round upwards if the fractional part of the argument is 0.5or more, whereas INT and AINT always round towards zero. Thus:INT(+3.5) = 3 NINT(+3.5) = 4INT(-3.5) = -3 NINT(-3.5) = -4The fractional part of a oating point number, X, can easily be found either by:X - AINT(X)or MOD(X, 1.0)

7 CHARACTER HANDLING AND LOGIC 51In either case, if X is negative the result will also be negative. The ABS function can always beused to alter the sign if required.The MOD function has other uses. For example it can �nd the day of the week from anabsolute day count such as Modi�ed Julian Date (MJD):MOD(MJD,7)has a value between 0 and 6 for days from Wednesday to Tuesday. Similarly if you use theATAN2 function but want the result to lie in the range 0 to 2 (rather than - to +) then, assum-ing the value of TWOPI is suitably de�ned, the required expression is:MOD(ATAN2(X,Y) + TWOPI, TWOPI)6.3 Arithmetic Assignment StatementsAn arithmetic assignment statement has the form:arithmetic-var = arithmetic-expressionwhere arithmetic-var can be an arithmetic variable or array element. For example, the followingassignment statement is valid provided that N, K, and ANGLE are all de�ned values:IMAGE(N/2+1,3*K-1) = SIN(ANGLE)**2 + 1.0If the object on the left has a di�erent data type from that of the expression on the right thena data type conversion is applied automatically. The type conversion function (INT, REAL,DBLE, or CMPLX) is selected to match the object on the left. Note that many type con-versions lose information. If the object on the left is an array element, its subscripts can bearbitrary integer expressions, but all the operands in these expressions must be de�ned beforethe statement is executed and each must be in the range declared for the corresponding subscriptof the array.Remember with an integer item on the left and an expression of one of the oating-pointtypes, the INT function is invoked: if the NINT function is really needed then it must be usedexplicitly to convert the value of the expression.7 Character Handling and LogicThis section describes the facilities for handling non-numerical data in Fortran. Character dataare actually present in almost all programs, if only in the form of �le names and error messages,but the facilities for character manipulation are now quite powerful. The logical data type iseven more indispensible since a logical expression is used in every IF statement.7.1 Character FacilitiesThe character data type di�ers from all the others in one important respect: every characteritem has a �xed length. This speci�es the number of characters it holds.The length of a literal character constant is just the number of characters between the en-closing apostrophes (except that two consecutive apostrophe within the string count as one).Thus: 'it''s'is a character constant of length four. Because the length of every character variable, array, andfunction has to be speci�ed in advance it is nearly always necessary to use CHARACTER statements

7 CHARACTER HANDLING AND LOGIC 52to declare them, for example:CHARACTER NAME*20, ADDRSS(3)*40, ZIP*7The same applies to named character constants but for these a special notation sets the lengthto that of the attached constant, which saves the trouble of counting characters:CHARACTER TITLE*(*)PARAMETER (TITLE = 'Latest mailing list')The �xed length of character objects makes it easy to output data in a �xed format as whenprinting a table with neatly aligned columns, but sometimes it would be more convenient to havea variable length string type as some other languages do. The rules for character assignment gosome way towards this: if an expression is too short then blanks are appended to it; if it is toolong then characters are removed from the right-hand end. For many purposes, therefore, it isonly necessary to ensure that character variables are at least as long as the longest string youneed to store in them.When transferring character information to procedures the length of the dummy argumentcan be set automatically to that of the corresponding actual argument. With this passed lengthnotation it is easy to write general-purpose character handling procedures. This is describedfurther in section 9.5.The most common operations carried out on character strings are splitting them up andjoining them together. Any section of a character variable or array element can be extractedby using the substring notation. Strings (and substrings) can be joined end to end by using theconcatenation operator in a character expression. These are described in the next two sections.Another fairly common requirement is to search for a particular sequence of characters withina longer string: this can be done with the intrinsic function INDEX.Other intrinsic functions ICHAR and CHAR are provided to convert a single character to aninteger or vice-versa according to its position within the native character set. More complicatedconversions from a numerical data type to character form and vice-versa are best carried out us-ing the internal �le READ and WRITE statements which allow the power of the format speci�cationto applied to the task. This mechanism is described in section 10.3.Character strings can be compared to each other using relational operators or intrinsic func-tions. The latter use the ASCII collating sequence irrespective of the native character code.Further details are given in section 7.6.7.2 Character SubstringsThe substring notation can be used to select any contiguous section of any character variableor array element. The characters in any string are numbered starting from one on the left: thelower bound cannot be altered as it can in arrays. A substring is selected simply by giving the�rst and last character positions of the extract. For example, with:CHARACTER METAL*10METAL = 'CADMIUM'then METAL(1:3) has the value 'CAD' while METAL(8:8) has the value blank because the valueis padded out with blanks to its declared length.Substrings must be at least one character long. They can be used in general in the sameways as character variables. Continuing with the last example, the assignment statement:

7 CHARACTER HANDLING AND LOGIC 53METAL(3:4) = 'ES'will change the value of METAL to 'CAESIUM ' (with three blanks at the end, since the totallength stays at 10).Substring RulesThe parentheses denoting a substring must contain a colon: there may be an integer expressionon either side of the colon. The �rst expression denotes the initial character position, the secondone the last character position. Both values must be within the range 1 to LEN, where LEN isthe length of the parent string, and the length of the resulting substring must not be less thanone.Although the colon must always be present, the two integer expressions are optional. Thedefault value for the �rst one is one, the default for the second is the position of the last characterof the parent string. Thus, staying with the last example: METAL(:2) has the value 'CA' whileMETAL(7:) has the value 'M' with three blanks.With array elements the substring expression follows the sub-script expression, for example:CHARACTER PLAY(30)*80PLAY(10) = 'AS YOU LIKE IT'Then the substring PLAY(10)(4:11) has the value 'YOU LIKE'. Substrings can be used in ex-pressions anywhere except in the de�nition of a statement function; they can also be used onthe left-hand side of an assignment statement, and can be also be de�ned by input/outputstatements.7.3 Character ExpressionsThe character operator // is used to concatenate, or join, two character strings. It is, in fact,the only character operator that Fortran provides. Thus:'CUP' // 'BOARD' =) 'CUPBOARD'The length of the result is just the sum of the lengths of the operands. Parentheses may beused in character expressions but make no di�erence to the result. Note that any embedded ortrailing blanks (spaces) will be reproduced exactly in the resulting string.The general form of a character-expression is thus:character-operandor character-expression // character-operandwhere character-operand can be any of the following:� character constant (literal or named),� character variable,� character array element,� character substring,� character function reference.

7 CHARACTER HANDLING AND LOGIC 54There is one special restriction on character concatenation in procedures: a passed-lengthdummy argument can only be an operand of the concatenation operator in an assignment state-ment. This seemingly arbitrary rule allows the compiler to determine how much work-space isrequired.7.4 Character Assignment StatementsThe character assignment statement has the general form:char-var = character-expressionwhere char-var can be a character variable, array element, or substring.There is one important restriction on character assignment statements: none of the charactersbeing referenced in the expression on the right may be de�ned in char-var on the left, that is tosay there can be no overlap. Thus the assignment statement:STRING(1:N) = STRING(10:)is valid only as long as N is no higher than 9. It is, of course, easy to get around this restrictionby using a temporary character variable with a suitable length.Note when a value is assigned to a substring (as in the last example) the other characters inthe parent string are not a�ected at all. If the string was previously unde�ned then the othercharacter positions will still be unde�ned; otherwise they will retain their previous contents.The expression and the character object to which its value is assigned may have di�erentlengths: if the expression is longer then the excess characters on the right are lost; if it is shorterthen blanks are appended. Care is needed to declare adequate lengths or else the results can beunexpected:CHARACTER AUTHOR*30, SHORT*5, EXPAND*10AUTHOR = 'SHAKESPEARE, WILLIAM'SHORT = AUTHOREXPAND = SHORTThe resulting value of EXPAND will be 'SHAKE ' where the last �ve characters are blanks.7.5 Character Intrinsic FunctionsThe four main character intrinsic functions are described in this section. There another fourfunctions provided to compare character strings with each other using the ASCII collating se-quence: these are described in section 7.6.CHAR and ICHARThese two functions perform integer to character conversion and vice-versa using the internalcode of the machine. Although most computers now use the ASCII character code, it is by nomeans universal, so these functions can only be used in a very limited way in portable software.CHAR(I) returns the character at position I in the code table. For example, on a machineusing ASCII code, CHAR(74) = 'J', since "J" is the character number 74 in the ASCII codetable.ICHAR(STRING) returns the integer position in the code table of the �rst character of theargument STRING. For example, on a machine using ASCII code,

7 CHARACTER HANDLING AND LOGIC 55ICHAR('JOHN') =) 74ICHAR('john') =) 106INDEXINDEX is a search function; it takes two character arguments and returns an integer result.INDEX(S1, S2) searches for the character-string S2 in another string S1, which is usually longer.If S2 is present in S1 the function returns the character position at which it �nds starts. If thereis no match (or S1 is shorter than S2) then it returns the value zero. For example:CHARACTER*20 SPELLSPELL = 'ABRACADABRA'K = INDEX(SPELL, 'RA')Here K will be set to 3 because this is the position of the �rst occurrence of the string 'RA'.To �nd the second occurrence it is necessary to restart the search at the next character in themain string, for example:L = INDEX(SPELL(K+1:), 'RA')This will return the value 7 because the �rst occurrence of 'RA' in the substring 'ACADABRA' isat position 7. To �nd its position in the parent string the o�set, K, must be added, making 10.The INDEX function is often useful when manipulating character information. Suppose, forexample, we have an string NAME containing the a person's surname and initials, e.g.Mozart,W.AThe name can be reformatted to put the initials before the surname and omit the comma likethis: CHARACTER NAME*25, PERSON*25*... KCOMMA = INDEX(NAME, ',')KSPACE = INDEX(NAME, ' ')PERSON = NAME(KCOMMA+1:KSPACE-1) // NAME(1:KCOMMA-1)Then PERSON will contain the string 'W.A.Mozart' (with blanks appended to the length of25). Note that a separate variable, PERSON, was necessary because of the rule about overlappingstrings in assignments.LENThe LEN function takes a character argument and returns its length as an integer. The argumentmay be a local character variable or array element but this will just return a constant. LEN ismore useful in procedures where character dummy arguments (and character function names)may have their length passed over from the calling unit, so that the length may be di�erent oneach procedure call. The length returned by LEN is that declared for the item. Sometimes it ismore useful to �nd the length excluding trailing blanks. The next function does just that, usingLEN in the process.INTEGER FUNCTION LENGTH(STRING)*Returns length of string ignoring trailing blanksCHARACTER*(*) STRING

7 CHARACTER HANDLING AND LOGIC 56DO 15, I = LEN(STRING), 1, -1IF(STRING(I:I) .NE. ' ') GO TO 2015 CONTINUE20 LENGTH = IEND7.6 Relational ExpressionsA relational expression compares the values of two arithmetic expressions or two characterexpressions: the result is a logical value, either true or false. Relational expressions are commonlyused in IF statements, as in this example:IF(SENSOR .GT. UPPER) THENCALL COOLELSE IF(SENSOR .LT. LOWER) THENCALL HEATEND IFThe relational operators have forms such as .GT. and .LT. because the Fortran characterset does not include the usual characters . and <. Relational expressions are most commonlyused in IF statements, but any logical variable or array element may be used to store a logicalvalue for use later on.CHARACTER*10 OPTIONLOGICAL EXITEXIT = OPTION .EQ. 'FINISH'*... IF(EXIT) STOP 'Finish requested'Logical expressions are covered in more detail in the next section.General Forms of Relational Expressionarithmetic-exprn rel-op arithmetic-exprnor character-exprn rel-op character-exprnIn either case the resulting expression has the logical type. The relational operator rel-op canbe any of the following: .EQ. equal to.GE. greater than or equal to.GT. greater than.LE. less than or equal to.LT. less than.NE. not equal toNote that these operators need a decimal point at either end to distinguish them from sym-bolic names.

7 CHARACTER HANDLING AND LOGIC 57Arithmetic ComparisonsWhen the two arithmetic values of di�ering data type are compared, a conversion is automati-cally applied to one of them (as in arithmetic expressions) to bring it to the type of the other.The direction of conversion is always:integer =) real =) complex or double precision.When comparing integer expressions, there is a considerable di�erence between the .LE. and.LT. operators, and similarly between .GE. and .GT., so that you should consider carefullywhat action is required in the limiting case before selecting the appropriate operator.In comparisons involving the other arithmetic types you should remember that the value ofa number may not be stored exactly. This means that it is unwise to rely on tests involving the.EQ. and .NE. operators except in special cases, for example if one of the values has previouslybeen set to zero or some other small integer.There are two restrictions on complex values: �rstly they cannot be compared at all to onesof double precision type. Secondly they cannot use relational operators other than .EQ. and.NE. because there is no simple linear ordering of complex numbers.Character comparisonsA character value can only be compared to another character value; if they do not have thesame length then the shorter one is padded out with blanks to the length of the other before thecomparison takes place. Tests for equality (or inequality) do not depend on the character code,the two strings are just compared character by character until a di�erence is found. Comparisonsusing the other operators (.GE., .GT., .LE., and .LT.) do, however, depend on the localcharacter code. The two expressions are compared one character position at a time until adi�erence is found: the result then depends on the relative positions of the two characters inthe local collating sequence, i.e. the order in which the characters appear in the character codetable.The Fortran Standard speci�es that the collating sequence used by all systems must have thefollowing basic properties:� all the upper-case letters are in order, A < B < C etc.� all digits are in order, 0 < 1 < 2 etc.� all digits precede all letters or vice-versa,� the blank (space) character precedes letters and digits.It does not, however, specify whether letters precede digits or follow them. As a result, ifstrings of mixed text are sorted using relational operators the results may be machine dependent.For example, the expression'APPLE' .LT. 'APRICOT'is always true because at the two strings �rst di�er at the third character position, and the letter'P' precedes 'R' in all Fortran collating sequences. However:'A1' .GT. 'AONE'will have a value true if your system uses EBCDIC but false if it uses ASCII, because the digitsfollow letters in the former and precede them in the latter.

7 CHARACTER HANDLING AND LOGIC 58In order to allow character comparisons to be made in a truly portable way, Fortran hasprovided four additional intrinsic functions. These perform character comparisons using theASCII collating sequence no matter what the native character code of the machine. Thesefunctions are: LGE(S1, S2) greater than or equal toLGT(S1, S2) greater thanLLE(S1, S2) less than or equal toLLT(S1, S2) less than.They take two character arguments (of any length) and return a logical value. Thus theexpression:LGT('A1', 'AONE')will always have the value false.Character comparisons are case-sensitive on machines which have lower-case letters in theircharacter set. It is advisable to convert both arguments to the same case beforehand.GuidelinesSystems which supports both upper and lower-case characters are usually case-sensitive: beforetesting for the presence of particular keywords or commands it is usually best to convert thean input string to a standard case, usually upper-case. Unfortunately there are no standardintrinsic functions to do this, though many systems provide them as an extension.In character sorting operations where the strings contain mixtures of letters, digits, or othersymbols, you should use the intrinsic functions to make the program portable. In other charactercomparisons, however, the relational operator notation is probably preferable because it has amore familiar form and may be slightly more e�cient.7.7 Logical ExpressionsLogical expressions can be used in logical assignment statements, but are most commonly en-countered in IF statements where there is a compound condition, for example:IF(AGE .GE. 60 .OR. (STATUS .EQ. 'WIDOW' .AND.$ NCHILD .GT. 0) THENThis combines the values of three relational expressions, two of them comparing arithmeticvalues, the other character values. The logical operators such as .AND. and .OR. also needdecimal points at either end to distinguish them from symbolic names. The .OR. operatorperforms an inclusive or, the exclusive or operator is called .NEQV..RulesA logical expression can have any of the following forms:� logical-term� .NOT. logical-term

7 CHARACTER HANDLING AND LOGIC 59� logical-expression logical-operator logical-termWhere: logical-term can be any of the following:� logical constant (literal or named),� logical variable,� logical array element,� logical function reference,� logical expression enclosed in parentheses,� relational expression.and the logical operator can be any of the following:.AND. logical and.OR. logical inclusive or.EQV. logical equivalence.NEQV. logical non-equivalence (i.e. exclusive or).Note that the rules of logical expressions only allow two successive operators to occur ifthe second of them is the unary operator .NOT. which negates the value of its operand. Thee�ects of the four binary logical operators are shown in the table below for the four possiblecombinations of operands, x and y.x y x .AND. y x .OR. y x .EQV. y x .NEQV. yfalse false false false true falsetrue false false true false truefalse true false true false truetrue true true true true falseNote that a logical expression can have operands which are complete relational expressions,and these can in turn contain arithmetic expressions. The complete order of precedence of theoperators in a general expression is as follows:1. arithmetical operators (in the order de�ned in section 6.1 above).2. relational operators3. .NOT.4. .AND.5. .OR.6. .EQV. and .NEQV.

8 CONTROL STATEMENTS 60If the operators .EQV. and .NEQV. are used at the same level in an expression they areevaluated from left to right.These rules reduce the need for parentheses in logical expressions, thus:(X .GT. A) .OR. (Y .GT. B)would have exactly the same meaning if all the parentheses had been omitted.A Fortran system is not required to evaluate every term in a logical expression completely ifits value can be determined more simply. In the above example, if X had been greater than Athen it would not be necessary to compare Y and B for the expression would have been true ineither case. This improves e�ciency but means that functions with side-e�ects should not beused.GuidelinesComplicated logical and relational expressions can be hard to read especially if they extend onto several successive lines. It helps to line up similar conditions on successive lines, and to useparentheses.7.8 Logical Assignment StatementsA logical assignment statement has the form:logical-var = logical-expressionWhere the logical-var can be a logical variable or array element. Logical variables and arrayelements are mainly used to store the values of relational expressions until some later pointwhere they are used in IF statements.8 Control StatementsExecutable statements are normally executed in sequence except as speci�ed by control state-ments. The END= and ERR= keywords of input/output statements can also a�ect the executionsequence.8.1 Control StructuresBranchesThe best way to select alternative paths through a program is to use the block-IF structure:this may comprise a single block to be executed when a speci�ed condition is true or severalblocks to cover several eventualities. Where the IF-block would only contain one statement itis possible to use an abbreviated form called (for historical reasons) the logical-IF statement.There is also a computed GO TO statement which can produce a multi-way branch similar tothe \case" statements of other languages.LoopsAnother fundamental requirement is that of repetition. If the number of cycles is known inadvance then the DO statement should be used. This also controls a block of statements knownas the DO-loop. A CONTINUE statement usually marks the end of a DO-loop.

8 CONTROL STATEMENTS 61Fortran has no direct equivalent of the \do while" and \repeat until" forms available in someprogram languages for loops of an inde�nite number of iterations, but they can be constructedusing simple GO TO and IF statements.Other Control StatementsThe STOP statement can be used to terminate execution. Other statements which a�ect executionsequence are described in other sections: the END statement was covered in section 4.7; procedurecalls including the CALL and RETURN statements are described in section 9.8.2 IF-BlocksThe simplest form of IF-block looks like this:IF(N .NE. 0) THENAVERAG = SUM / NAVGSQ = SUMSQ / NEND IFThe statements in the block are only executed if the condition is true. In this example thestatements in the block are not executed if N is zero in order to avoid division by zero.The IF-block can also contain an ELSE statement to handle the alternative:IF(B**2 .GE. 4.0 * A * C) THENWRITE(UNIT=*,FMT=*)'Real roots'ELSEWRITE(UNIT=*,FMT=*)'No real roots'END IFSince the IF statement contains a logical expression its value can only be true or false, thusone or other of these blocks will always be executed.If there are several alternative conditions to be tested, they can be speci�ed with ELSE IFstatements:IF(OPTION .EQ. 'PRINT') THENCALL OUTPUT(ARRAY)ELSE IF(OPTION .EQ. 'READ') THENCALL INPUT(ARRAY)ELSE IF(OPTION .EQ. 'QUIT') THENCLOSE(UNIT=OUT)STOP 'end of program'ELSE WRITE(UNIT=*,FMT=*)'Incorrect reply, try again...'END IFThere can be any number of ELSE IF blocks but in each case one, and only one, will beexecuted each time. Without an ELSE block on the end an nothing would have happened whenan invalid option was selected.

8 CONTROL STATEMENTS 62Block-IF General RulesThe general form of the block-if structure is as follows:IF(logical-expression) THENa block of statementsELSE IF(logical-expression) THENanother block of statementsELSE a final block of statementsEND IFThe IF THEN, ELSE IF, and ELSE statements each govern one block of statements. There canbe any number of ELSE IF statements. The ELSE statement (together with its block) is alsooptional, and there can be at most one of these.The �rst block of statements is executed only if the �rst expression is true. Each block afteran ELSE IF is executed only if none of the preceding blocks have been executed and the attachedELSE IF expression is true. If there is an ELSE block it is executed only if none of the precedingblocks has been executed.After a block has been executed control is transferred to the statement following the END IFstatement at the end of the structure (unless the block ends with some statement which transferscontrol elsewhere).Any block can contain a complete block-IF structure properly nested within it, or a completeDO-loop, or any other executable statements (except END).It is illegal to transfer control into any block from outside it, but there is no restriction ontransferring control out of a block.The rules for logical expressions are covered in section 7.7.GuidelinesThe indentation scheme shown in the examples above is not mandatory but the practice ofindenting each block by a few characters relative to the rest of the program is strongly recom-mended. It makes the structure of the block immediately apparent and reduces the risk of failingto match each IF with an END IF. An indenting scheme is especially useful when IF-blocks arenested within others. For example:IF(POWER .GT. LIMIT) THENIF(.NOT. WARNED) THENCALL SET('WARNING')WARNED = .TRUE.ELSECALL SET('ALARM')END IFEND IFThe limited width of the statement �eld can be a problem when IF-blocks are nested to a verygreat depth: but this tends to mean that the program unit is getting too complicated and thatit will usually be bene�cial to divide it into subroutines. If you accidentally omit an END IF

8 CONTROL STATEMENTS 63statement the compiler will ag the error but will not know where you forgot to put it. In suchcases the compiler may get confused and generate a large number of other error messages.When an IF-block which is executed frequently contains a large number of ELSE IF state-ments it will be slightly more e�cient to put the most-likely conditions near the top of the listas when they occur the tests lower down in the list will not need to be executed.8.3 DO-LoopsThe DO statement controls a block of statements which are executed repeatedly, once for eachvalue of a variable called the loop-control variable. The number of iterations depends on theparameters of the DO statement at the heads of the loop. The �rst item after the keyword \DO"is the label which is attached to the last statement of the loop. For example:*Sum the squares of the first N elements of the array XSUM = 0.0DO 15, I = 1,NSUM = SUM + X(I)**215 CONTINUEIf we had wanted only to sum alternate elements of the array we could have used a statementlike: DO 15,I = 1,N,2and then the value of I in successive loops would have been 1, 3, 5, etc. The �nal value would beN if N were odd, or only to N-1 if N were even. If the third parameter is omitted the step-sizeis one; if it is negative then the steps go downwards. For exampleDO 100,I = 5,1,-1WRITE(UNIT=*,FMT=*) I**2100 CONTINUEwill produce 5 records containing the values 25, 16, 9, 4, and 1 respectively.Loops can be nested to any reasonable depth. Thus the following statements will set the twodimensional array FIELD to zero.REAL FIELD(NX, NY)DO 50, IY = 1,NYDO 40, IX = 1.NXFIELD(IX,IY) = 0.040 CONTINUE50 CONTINUEGeneral Form of DO StatementThe DO statement has two forms:DO label , variable = start , limit, stepDO label , variable = start , limitIn the second form the step size is implicitly one.The label marks the �nal statement of the loop. It must be attached to an executablestatement further on in the program unit. The rules permit this statement to be any executable

8 CONTROL STATEMENTS 64statement except another control statement, but it strongly recommended that you use theCONTINUE statement here. CONTINUE has no other function except to act as a dummy place-marker.The comma after the label is optional but, as noted in section 1.4, is a useful precaution.The variable which follows is known as the loop control variable or loop index; it must be avariable (not an array element) but may have integer, real, or double precision type.The start, limit, and step values may be expressions of any form of integer, real, or doubleprecision type. If the step value is present it must not be zero, of omitted it is taken as one.The number of iterations is computed before the start of the �rst one, using the formula:iterations = MAX(INT(0, (limit - start + step) / step))Note that if the limit value is less than start the iteration count is zero unless step is negative.A zero iteration count is permitted but means that the contents of the loop will not be executedat all and control is transferred to the �rst statement after the end of the loop. The loop controlvariable does not necessarily reach the limiting value, especially if the step-size is larger thanone.Statements within the loop are permitted to alter the value of the expressions used for start,limit, or step but this has no e�ect on the iteration count which is �xed before the �rst iterationstarts.The loop control variable may be used in expressions but a new value must not be assignedto it within the loop.DO-loops may contain other DO-loops completely nested within them provided that a di�erentloop control variable is used in each one. Although it is permissible for two di�erent loops toterminate on the same statement, this can be very confusing. It is much better to use a separateCONTINUE statement at the end of each loop. Similarly complete IF-blocks may be nested withinDO-loops, and vice-versa.Other control statements may be used to transfer control out of the range of a DO-loop butit is illegal to try to jump into a loop from outside it. If you exit from a loop prematurely inthis way the loop control variable keeps its current value and may be used outside to determinehow many loops were actually executed.After the normal termination of a DO-loop the loop control variable has the value it had onthe last iteration plus one extra increment of the step value. Thus with:DO 1000, NUMBER = 1,100,31000 CONTINUEOn the last iteration NUMBER would be 99, and on exit from the loop NUMBER would be102. This provision can be useful in the event of exit from a loop because of some error:PARAMETER (MAXVAL = 100)REAL X(MAXVAL)DO 15, I = 1,MAXVALREAD(UNIT=*, FMT=*, END=90) X(I)15 CONTINUE90 NVALS = I - 1The action of the statement labelled 90 is to set NVALS to the number of values actually readfrom the �le whether there was a premature exit because the end-of-�le was detected or itreached the end of the array space at MAXVAL.

8 CONTROL STATEMENTS 65GuidelinesIf you a loop-control variable of any type other than integer there is a risk that rounding errorswill accumulate as it is incremented repeatedly. In addition, if the expressions for the start,limit, and step values are not of integer type the number of iterations may not be what youexpect because the formula uses the INT function (not NINT). None of these problems canoccur if integer quantities are used throughout the DO statement.8.4 Logical-IF StatementThe logical-IF statement is best regarded as a special case of the IF-block when it only containsone statement. Thus:IF(E .NE. 0.0) THENRECIPE = 1.0 / EEND IFcan be replaced by a single logical-IF statement:IF(E .NE. 0.0) RECIPE = 1.0 / EThe general form of the logical-IF statement is:IF(logical-expression) statementThe statement is executed only if the logical expression has a true value. Any executablestatement can follow except DO, IF, ELSE IF, ELSE, END IF, or END.8.5 Unconditional GO TO StatementThe unconditional GO TO statement simply produces a transfer of control to a labelled executablestatement elsewhere in the program unit. Its general form is:GO TO labelNote that control must not be transferred into an IF-block or a DO-loop from outside it.GuidelinesThe unconditional GO TO statement makes it possible to construct programs with a very undisci-plined structure; such programs are usually hard to understand and to maintain. Good program-mers use GO TO statements and labels very sparingly. Unfortunately it is not always possible toavoid them entirely in Fortran because of a lack of alternative control structures.The next example �nds the highest common factor of two integers M and N using a Euclid'salgorithm. It can be expressed roughly: while (M N) subtract the smaller of M and N from theother repeat until they are equal.PROGRAM EUCLIDWRITE(UNIT=*, FMT=*) 'Enter two integers'READ(UNIT=*, FMT=*) M, N10 IF(M .NE. N) THENIF(M .GT. N) THENM = M - N

8 CONTROL STATEMENTS 66ELSEN = N - MEND IFGO TO 10END IFWRITE(UNIT=*, FMT=*)'Highest common factor = ', MEND8.6 Computed GO TO StatementThe computed GO TO statement is an alternative to the block-IF when a large number of optionsare required and they can be selected by the value of an integer expression. The general formof the statement is:GO TO(label1, label2, ... labelN), integer-expressionThe comma after the right parenthesis is optional.The expression is evaluated; if its value is one then control is transferred to the statementattached to the �rst label in the list; if it is two control goes to the second label, and so on. Ifthe value of the expression is less than one or higher than N (where there are N labels in the list)then the statement has no e�ect and execution continues with the next statement in sequence.The same label may be present more than once in the list.The computed GO TO su�ers from many of the same drawbacks as the unconditional GO TO,since if its branches are used without restraint they can become impenetrable thickets. The bestway is to follow the computed GO TO statement with the sections of code in order, all exceptthe last terminated with its own unconditional GO TO to transfer control to the end of the wholestructure.Any computed GO TO structure could be replaced by an IF-block with a suitable numberof ELSE IF clauses. If there are a very large number of cases then this would be a little lesse�cient; this has to be balanced against the increased clarity of the IF structure compared tothe label-ridden GO TO.An example of the use of the computed GO TO is given here in a subroutine which computesthe number of days in a month, given the month number MONTH between 1 and 12, and thefour-digit year number in YEAR. Note that each section of code except the last is terminatedwith a GO TO statement to escape from the structure.SUBROUTINE CALEND(YEAR, MONTH, DAYS)INTEGER YEAR, MONTH, DAYSGO TO(310,280,310,300,310,300,310,310,300,310,300,310)MONTH* Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov DecSTOP 'Impossible month number'*February: has 29 days in leap year, 28 otherwise.280 IF(MOD(YEAR,400) .EQ. 0 .OR. (MOD(YEAR,100) .NE. 0$.AND. MOD(YEAR,4) .EQ. 0)) THENDAYS = 29ELSEDAYS = 28END IFGO TO 1000

9 PROCEDURES 67* Short months300 DAYS = 30GO TO 1000* Long months310 DAYS = 31* return the value of DAYS1000 END8.7 STOP StatementThe STOP statement simply terminates the execution of the program and returns control to theoperating system. Its general form is:STOP ' character constant 'The character constant (which must be a literal and not named constant) is optional: if presentits value is \made available" to the user; usually it the message appears on your terminal. Forcompatibility with Fortran66 it is possible to use a string of one to �ve decimal digits insteadof the character constant.Ideally a program should only return control to the operating system from one point, theend of the main program, where the END statement does all that is necessary. In practice, evenin the best-planned programs, situations can arise which make it pointless to continue. If theseare detected in the main program there is always the option of jumping to the END statement,but within procedures there may be no choice but to use a STOP statement.9 ProceduresAny set of computations can be encapsulated in a procedure. The main purpose of a procedureis to allow the same set of operations to be invoked at di�erent points in a program. Proceduresalso make it possible to use the same code in several di�erent programs. It is good practice tosplit a large program into sections whenever it becomes too large to be handled conveniently inone piece. The optimum size of a program unit is quite small, probably no more than 100 lines.Four di�erent forms of procedure can be used in Fortran programs:-� Intrinsic functions� Statement functions� External functions (also known as function subprograms)� Subroutines.Intrinsic functions are provided automatically by the Fortran system, whereas the other threeforms of procedure are user-written. Statement functions, which are de�ned with the statementfunction statement, can be only be used in the program unit in which they were de�ned andare subject to other special restrictions. External functions and subroutines are two alternativeforms of external procedure: each is speci�ed as a separate program unit and can be used (withonly a few restrictions) anywhere else in the program.

9 PROCEDURES 689.1 Intrinsic FunctionsIntrinsic functions have a number of unique properties. The data type of each intrinsic functionis known to the Fortran system and is not subject to the normal rules. IMPLICIT and typestatements alone have no e�ect on them. Some intrinsic functions have generic names: whenthese are used the compiler selects the appropriate speci�c function according to the data typeof the arguments.A few intrinsic functions such as MAX, MIN, and CMPLX, are allowed to have a variablenumber of arguments, but all of the arguments must have the same data type. User-writtenprocedures cannot have optional arguments or generic type.Although intrinsic functions can be used in any program unit, their names are not global,nor are they reserved words. It is, however, best to avoid choosing a name for a variable orarray which is identical to that of an intrinsic function. It may cause confusion and in the longrun it may make it more di�cult to enhance the program. A name clash is more serious if itinvolves an external function or subroutine, for in this case the external procedure name mustbe speci�ed in an EXTERNAL statement to resolve the ambiguity. By this means it is possible tosubstitute an external function of your own for one of the intrinsic functions.The Fortran Standard speci�es a fairly extensive set of intrinsic functions which must alwaysbe available but it does not prevent the provision of additional ones. Many systems provideadditional intrinsic functions which, for example, obtain the current date and time, generatepseudo-random numbers, or evaluate Gaussian probability. The main drawback in using non-standard functions is that you may have to �nd a substitute if your program is moved to anothersystem which does not have the smae extensions.The standard intrinsic functions for the arithmetic types are described in detail in section6.2; those used with character-strings are covered in section 7.5. A complete alphabetical list isprovided in the appendix.9.2 Statement FunctionsStatement functions can be de�ned within any executable program unit by means of statementfunction statements. They can only be used, however, within the same program unit. Althoughstatement functions have limited uses, they are unjustly neglected by many programmers.The statement function statement resembles an ordinary assignment statement. For example:FAHR(CELS) = 32.0 + 1.8 * CELSThe function FAHR converts a temperature in degrees Celsius to its equivalent in Fahrenheit.Thus FAHR(20.0) would return a value 68.0 approximately.A statement function can have any number of dummy arguments (such as CELS above) allof which must appear in the expression on the right-hand side; this expression may also includeconstants, variables, or array elements used elsewhere in the program. When the function iscalled the current values of these items will be used. For example:REAL M1, M2, G, RNEWTON(M1, M2, R) = G * M1 * M2 / R**2A reference to the function in an assignment statement such as:FORCE = NEWTON(X, Y, DIST)will return a value depending on the values of the actual arguments X, Y, and DIST, and thatof the variable G at the time the function is referenced.

9 PROCEDURES 69De�nitions of statement functions can also include references to intrinsic functions, externalfunctions, or previously de�ned statement functions:PARAMETER (PI = 3.14159265, DTOR = PI/180.0)SIND(THETA) = SIN(THETA * DTOR)COSD(THETA) = COS(THETA * DTOR)TAND(THETA) = SIND(THETA) / COSD(THETA)These de�nitions allow trigonometry on angles speci�ed in degrees rather than radians.The scope of each dummy argument name (such as THETA above) is that of the statementalone; these names can be used elsewhere in the program unit as variables of the same data typewith no e�ect whatever on the evaluation of the function.Statement functions can have any data type; the name and arguments follow the normal typerules. They can be useful in character handling, for example:LOGICAL MATH, DIGIT, DORMCHARACTER C*1DIGIT(C) = LGE(C, '0') .AND. LLE(C, '9')MATH(C) = INDEX('+-*/', C) .NE. 0DORM(C) = DIGIT(C) .OR. MATH(C)These three functions each return a logical value when presented with a single character argu-ment: DIGIT tests to see whether the character is a digit, MATH whether it is an operator symbol,and DORM will test for either condition. Note the use of the lexical comparison functions LGEand LLE in the de�nition of DIGIT which make it completely independent of the local charactercode.Statement Function RulesStatement function statements must appear after any the speci�cation statements but beforeall executable statements in the program unit. They may be intermixed with DATA and FORMATstatements. The general form is:function (dummy1, dummy2, ... dummyN) = expressionThe function may have any data type; the expression will normally have the same data typebut if both have an arithmetic type then the normal conversion rules for arithmetic assignmentstatements apply.The name of the function must be distinct from all other symbolic names in the programunit. It may appear in type statements but not in other speci�cation statements. (There is oneexception: a common block is permitted to have the same name as a statement function butsince common block names always appear between slashes there is little risk of confusion). Ifthe function has character type its length must be an integer constant expression.The dummy arguments are simply symbolic names. A name may not appear more than oncein the same list. These names may be used elsewhere in the program unit as variables of thesame data type.The expression must contain the dummy arguments as operands. The operands may alsoinclude:� literal constants, named constants, variables, and array elements; these will have theirvalues at the time the function is executed and must then be de�ned.

9 PROCEDURES 70� references to intrinsic and external functions,� references to statement functions de�ned earlier in the same program unit,� complete expressions enclosed in parentheses.Note that character substrings are not permitted. The variables and array elements used inthe expression must be de�ned at the time that the function reference is executed.GuidelinesAlthough statement functions have a limited role to play in programs because they can only bede�ned in a single statement, references to statement functions they may be executed more e�-ciently than references to external functions; many modern compilers expand statement functionreferences to in-line code when it is advantageous to do so.If the same statement function is needed in more than one program unit it would is possibleto use an INCLUDE facility to provide the same de�nition each time, but it will usually be betterto use an external function instead.9.3 External ProceduresThere are two forms of external procedure, both of which take the form of a complete programunit.� External functions, which are speci�ed by a program unit starting with a FUNCTION state-ment. They are executed whenever the corresponding function is used as an operand inan expression.� Subroutines, which are speci�ed by a program unit starting with a SUBROUTINE statement.They are executed in response to a CALL statement.In either form the last statement of the program unit must be an END statement. Any otherstatements (except PROGRAM or BLOCK DATA statements) may be used within the program unit.There are two statements provided especially for use in external procedures. The SAVEstatement ensures that the values of local variables and arrays are preserved after the procedurereturns control to the calling unit: these values will then be available if the procedure is executedsubsequently. The RETURN statement may be used to terminate the execution of the procedureand cause an immediate return to the control of the calling unit. Execution of the END statementat the end of the procedure has exactly the same e�ect. Both of these are described in full laterin the section.Most Fortran systems also allow external procedures to be speci�ed in languages other thanFortran: they can be called in the same way as Fortran procedures but their internal operationsare, of course, beyond the scope of this book.It is best to think of the subroutine as the more general form of procedure; the externalfunction should be regarded as a special case for use when you only need to return a single valueto the calling unit.Here is a simple example of a procedure which converts a time of day in hours, minutes, andseconds into a count of seconds since midnight. Since only one value needs to be returned, the

9 PROCEDURES 71procedure can have the form of an external function. (In fact this is such a simple example thatit would have been possible to de�ne it as a statement function.)*TSECS converts hours, minutes, seconds to total seconds.REAL FUNCTION TSECS(NHOURS, MINS, SECS)INTEGER NHOURS, MINSREAL SECSTIME = ((NHOURS * 60) + MINS) * 60 + SECSENDThus if we use a function reference like TSECS(12,30,0.0) in an expression elsewhere in theprogram it will convert the time to seconds since midnight (about 45000.0 seconds in this case).The items in parentheses after the function name :(12,30,0.0)are known as the actual arguments of the function; these values are transferred to the corre-sponding dummy arguments(NHOURS, MINS, SECS)of the procedure before it is executed. In this example the argument list is used only to transferinformation into the function from outside, the function name itself returns the required valueto the calling program. In subroutines, however, there is no function name to return informationbut the arguments can be used for transfers in either direction, or both. The rules permit themto be used in this more general way in functions, but it is a practice best avoided.The next example performs the inverse conversion to the TSECS function. Since it has toreturn three values to the calling program unit the functional form is no longer appropriate, anda subroutine will be used instead.*Subroutine HMS converts TIME in seconds into hours, mins,secs.SUBROUTINE HMS(TIME, NHOURS, MINS, SECS)REAL TIME, SECSINTEGER NHOURS, MINSNHOURS = INT(TIME / 3600.0)SECS = TIME - 3600.0 * NHOURSMINS = INT(SECS / 60.0)SECS = TIME - 60.0 * MINSENDIn this case the subroutine could be executed by using a statement such as:CALL HMS(45000.0, NHRS, MINS, SECS)WRITE(UNIT=*, FMT=*) NHRS, MINS, SECSHere the �rst argument transfers information into the subroutine, the other three are used toreturn the values which it calculates. You do not have to specify whether a particular argumentis to transfer information in or out (or in both directions), but there are rules about the formof actual argument that you can use in each case. These are explained in full below.Procedure IndependenceEach program unit has its own independent set of symbolic names and labels. Type statementsand IMPLICIT statements may be used to specify their data types.

9 PROCEDURES 72External procedures can themselves call any other procedures and these may call othersin turn, but procedure are not allowed to call themselves either directly or indirectly; that isrecursive calling is not permitted in Fortran.Information TransferInformation can be transferred to and from an external procedure by any of three methods.� An argument list: as shown in the two examples above. This is the preferred method ofinterfacing as it is the most exible and modular. It is described in detail in the remainderof this section.� Common blocks: these are lists of variables or arrays which are stored in areas of areasof memory shared between two or more program units. They are useful in special cir-cumstances when procedures have to be coupled closely together, but are otherwise lesssatisfactory. Common blocks are covered in detail in section 12.� External �les: interfacing via external �les is neither convenient nor e�cient but it ismentioned here to point out that external �les are global. Once a �le has been opened inany program unit it can be accessed anywhere in the program provided that the appropriateI/O unit number is available. A unit number can be passed into a procedure as an integerargument.Procedure ExecutionIt is not necessary to know how the Fortran system actually transfers information from oneprocedure to another to make use of the system, but the rules governing the process are somewhatcomplicated and it may be easier to understand them if you appreciate the basis on which theyhave been formulated. The rules in the Fortran Standard are based on the assumption thatthe address of an actual argument is transferred in each case: this may or may not be true inpractice but the properties will be the same as if it is.This means that when you reference a dummy variable or assign a new value to one you arelikely to be using the memory location occupied by the actual argument. By this means evenlarge arrays can be transferred e�ciently to procedures. A slight modi�cation of this system isneeded for items of character type so that the length of the item can be transferred as well asits address.When a function reference or CALL statement is executed any expressions in the argumentlist are evaluated; the addresses of the arguments are then passed to the procedure. When itreturns control this automatically makes updated values available to the corresponding items inthe actual argument list.Functions with Side-e�ectsThe rules of Fortran allow functions to have side-e�ects, that is to alter their actual argumentsor to change other variables within common blocks. Functions with side-e�ects cannot be usedin expressions where any of the other operands of the expression would be a�ected, nor canthey be used in subscript or substring references when any other expression used in the samereferences would be a�ected. This rule ensures that the value of an expression cannot dependarbitrarily on the way in which the computer chooses to evaluate it.

9 PROCEDURES 73There are also restrictions on functions which make use of input/output statements even oninternal �les: these cannot be used in expressions in other I/O statements. This is to avoid theI/O system being used recursively.By far the best course is to use the subroutine form for any procedure with side-e�ects.9.4 Arguments of External ProceduresArguments can pass information into a procedure or out from it, or in both directions. Thisjust depends on the way that the dummy argument is used within the procedure. Although anyargument order is permitted, it is common practice to put input arguments �rst, then thosethat pass information both ways, and then arguments which just return information from theprocedure.The rules for argument association are the same for both forms of external procedure. The listof dummy arguments (sometimes called formal arguments) of an external procedure is speci�edin its FUNCTION or SUBROUTINE statement. There can be any number of arguments, includingnone at all. If there are no arguments then the parentheses can be omitted in the CALL andSUBROUTINE statement but not in a FUNCTION statement or function reference.The dummy argument list is simply a list of symbolic names which can represent any mixtureof � variables� arrays� procedures.A name cannot, of course, appear twice in the same dummy argument list.Dummy variables, arrays, and procedures are distinguished only by the way that they areused within the procedure. The dimension bounds of a dummy arrays must be speci�ed in asubsequent type or DIMENSION statement; dummy procedures must appear in a CALL or EXTERNALstatement or be used in a function reference; anything else is, by elimination, a dummy argumentvariable.Dummy argument variables and arrays can be used in executable statements in just thesame way as local items of the same form, but they cannot appear in SAVE, COMMON, DATA, orEQUIVALENCE statements.Argument AssociationThe actual arguments of the function reference or CALL statement become associated with thecorresponding dummy arguments of the FUNCTION or SUBROUTINE statement. The main rulesare as follows:� There must be the same number of actual and dummy arguments; they are associated solelyby their position in the two lists. Optional arguments are not permitted in Fortran77.� If the dummy argument is a variable, array, or procedure used as a function then thecorresponding actual argument must have the same data type.

9 PROCEDURES 74� If the dummy argument is an array then its array bounds must not be larger than thoseof the corresponding actual argument. Alternatively the dimension bounds of a dummyarray can be passed in by means of other procedure arguments to form an adjustable. Thisoption and the assumed-size array are both described in section 9.6.� If the dummy argument is a character item then its length must not be greater than thatof the corresponding actual argument. Alternatively there is a passed-length option forcharacter arguments: see section 9.5.Because program units are compiled independently, it is di�cult for the compiler to check formismatches in actual and dummy argument lists. Although mismatches could, in principle, bedetected by the linker, this rarely seems to happen in practice. Errors, particularly mismatchesof data type or array bounds, are especially easy to make but hard to detect. Sometimes theonly indication is that the program produces the wrong answer. This shows how important itis to check procedure interfaces.Duplicate ArgumentsThe same actual argument cannot be used more than once in a procedure call if the correspondingdummy arguments are assigned new values. For example, with:SUBROUTINE FUNNY(X, Y)X = 2.0Y = 3.0ENDA call such as:CALL FUNNY(A, A)would be illegal because the system would try to assign both 2.0 and 3.0 to the variable A.A similar restriction applies to variables which are returned via a common block and alsothrough the procedure argument list.9.5 Variables as Dummy ArgumentsIf the dummy argument of a procedure is a variable and it has a value assigned to it within theprocedure, then the corresponding actual argument can be:� a variable,� an array element, or� a character substring.If, however, the dummy variable preserves its initial value throughout the execution then theactual argument can be any of these three forms above or alternatively:� an expression of any form (including a constant).The reason for this restrictions is easy to see by considering the ways of calling the subroutineSILLY in the next example:

9 PROCEDURES 75SUBROUTINE SILLY(N, M)N = N + MENDIf it is called with a statement such as:NUMBER = 10CALL SILLY(NUMBER, 5)then the value of NUMBER will be updated to 15 as a result of the call. But it is illegal to callthe function with a constant as the �rst argument, thus:CALL SILLY(10, 7)because on exit the subroutine will attempt to return the value of 17 to the actual argumentwhich was speci�ed as the constant ten. The e�ects of committing such an error are system-dependent. Some systems detect the attempt to over-write a constant and issue an error message;others ignore the attempt and allow the program to continue; but some systems will actuallygo ahead and over-write the constant with a new value, so that if you use the constant 10 insome subsequent statement in the program you may get a value of 17. Since this can have verypuzzling e�ects and be hard to diagnose, it is important to avoid doing this inadvertently.If you make use of procedures written by other people you may be worried about unintentionale�ects of this sort. In principle it should be possible to prevent a procedure altering a constantargument by turning each one into an expression, for example like this:CALL SILLY(+10, +5)or CALL SILLY((10), (5))Although either of these forms should protect the constants, it is still against the rules of Fortranfor the procedure to attempt to alter the values of the corresponding dummy arguments. Youwill have to judge whether it is better to break the rules of the language than to risk corruptinga constant.Expressions, Subscripts, and SubstringsIf the actual argument contains expressions then these are evaluated before the procedure startsto execute; even if the procedure later modi�es operands of the expression this has no e�ecton the value passed to the dummy argument. The same rule applies to array subscript andcharacter substring expressions. For example, if the procedure call consists of:CALL SUB(ARRAY(N), N, SIN(4.0*N), TEXT(1:N))and the procedure assigns a new value to the second argument, N, during its execution, it hasno e�ect on the other arguments which all use the original value of N. The updated value of Nwill, of course, be passed back to the calling unit.Passed-length Character ArgumentsA character dummy argument will have its length set automatically to that of the correspondingactual argument if the special length speci�cation of *(*) is used.To illustrate this, here is a procedure to count the number of vowels in a character string. Ituses the intrinsic function LEN to determine the length of its dummy argument, and the INDEXfunction to see whether each character in turn is in the set "AEIOU" or not.

9 PROCEDURES 76INTEGER FUNCTION VOWELS(STRING)CHARACTER*(*) STRINGVOWELS = 0DO 25, K = 1,LEN(STRING)IF(INDEX('AEIOU', STRING(K:K)) .NE. 0) THENVOWELS = VOWELS + 1END IF25 CONTINUEENDNote that the function has a data type which is not the default for its initial letter so that itwill usually be necessary to specify its name in a INTEGER statement in each program unit whichreferences the function.This passed-length mechanism is recommended not only for general-purpose software wherethe actual argument lengths are unknown, but in all cases unless there is a good reason to specifya dummy argument of �xed length.There is one restriction on dummy arguments with passed length: they cannot be operandsof the concatenation operator (//) except in assignment statements. Note that the same formof length speci�cation *(*)" can be used for named character constants but with a completelydi�erent meaning: named constants are not subject to this restriction.9.6 Arrays as ArgumentsIf the dummy argument of a procedure is an array then the actual argument can be either:� an array name (without subscripts)� an array element.The �rst form transfers the entire array; the second form, which just transfers a sectionstarting at the speci�ed element, is described in more detail further on.The simplest, and most common, requirement is to make the entire contents of an arrayavailable in a procedure. If the actual argument arrays are always going to be the same sizethen the dummy arrays in the procedure can use �xed bounds. For example:SUBROUTINE DOT(X, Y, Z)*Computes the dot product of arrays X and Y of 100 elements* producing array Z of the same size.REAL X(100), Y(100), Z(100)DO 15, I = 1,100Z(I) = X(I) * Y(I)15 CONTINUEENDThis procedure could be used within a program unit like this:PROGRAM PRODREAL A(100), B(100), C(100)READ(UNIT=*,FMT=*)A,B

9 PROCEDURES 77CALL DOT(A, B, C)WRITE(UNIT=*,FMT=*)CENDThis is perfectly legitimate, if inexible, since it will not work on arrays of any other size.Adjustable ArraysA more satisfactory solution is to generalise the procedure so that it can be used on arraysof any size. This is done by using an adjustable arrays declaration. Here the operands ineach dimension bound expression may include integer variables which are also arguments of theprocedure (or members of a common block). The following example shows how this may bedone: SUBROUTINE DOTPRO(NPTS, X, Y, Z)REAL X(NPTS), Y(NPTS), Z(NPTS)DO 15, I = 1,NPTS* etc.In this case the calling sequence would be something like:CALL DOTPRO(100, A, B, C)An adjustable array declaration is permitted only for arrays which are dummy arguments, sincethe actual array space has in this case already been allocated in the calling unit or at somehigher level. The method can be extended in the obvious way to cover multi-dimensional arraysand those with upper and lower bounds, for example:SUBROUTINE MULTI(MAP, K1, L1, K2, L2, TRACE)DOUBLE PRECISION MAP(K1:L1, K2:L2)REAL TRACE(L1-K1+1)The adjustable arraymechanism can, of course, be used for arrays of any data type; an adjustablearray can also be passed as an actual argument of a procedure with, if necessary, the array boundspassed on in parallel.Each array bound of a dummy argument array may be an integer expression involving notonly constants but also integer variables passed in to the procedure either as arguments or bymeans of a common block. The extent of each dimension of the array must not be less than oneand must not be greater than the extent of the corresponding dimension of the actual argumentarray.If any integer variable (or named constant) used in an array-bound expression has a namewhich does not imply integer type then the INTEGER statement which speci�es its type mustprecede its use in a dimension-bound expression.Assumed-size ArraysThere may be circumstances in which it is impracticable to use either �xed or adjustable arraydeclarations in a procedure because the actual size of the array is unknown when the procedurestarts executing. In this case an assumed-size array is a viable alternative. These are also onlypermitted for dummy argument arrays of procedures, but here the array is, e�ectively, declaredto be of unknown or inde�nite size. For example:

9 PROCEDURES 78REAL FUNCTION ADDTWO(TABLE, ANGLE)REAL TABLE(*)N = MAX(1, NINT(SIN(ANGLE) * 500.0))ADDTWO = TABLE(N) + TABLE(N+1)ENDHere the procedure only knows that array TABLE is one-dimensional with a lower-bound ofone: that is all it needs to know to access the appropriate elements N and N+1. In executingthe procedure it is our responsibility to ensure that the value of ANGLE will never result inan array subscript which is out of range. This is always a danger with assumed-size arrays.Because the compiler does not have any information about the upper-bound of an assumed-sizearray it cannot use any array-bound checking code even if it is normally able to do this. Anassumed-size array can only have the upper-bound of its last dimension speci�ed by an asterisk,all the other bounds (if any) must conform to the normal rules (or be adjustable using integerarguments).An assumed size dummy argument array is speci�ed with an asterisk as the upper bound ofits last (or only) dimension. All the other dimension bounds, if any, must conform to normalrules for local arrays or adjustable arrays.There is one important restriction on assumed size arrays: they cannot be used withoutsubscripts in I/O statements, for example in the input list of a READ statement or the outputlist of a WRITE statement. This is because the compiler has no information about the total sizeof the array when compiling the procedure.Array SectionsThe rules of Fortran require that the extent of an array (in each dimension if it is multi-dimensional) must be at least as large in the actual argument as in the dummy argument, butthey do not require actual agreement of both lower and upper bounds. For example:PROGRAM CONFUSREAL X(-1:50), Y(10:1000)READ(UNIT=*,FMT=*) X, YCALL OUTPUT(X)CALL OUTPUT(Y)ENDSUBROUTINE OUTPUT(ARRAY)REAL ARRAY(50)WRITE(UNIT=*,FMT=*) ARRAYENDThe e�ect of this program will be to output the elements X(-1) to X(48) since X(48) correspondsto ARRAY(50), and then output Y(10) to Y(59) also. The subroutine will work similarly on aslice through a two-dimensional array:PROGRAM TWODIMREAL D(100,20)* ...

9 PROCEDURES 79NSLICE = 15CALL OUTPUT(D(1,NSLICE))In this example the slice of the array from elements D(1,15) to D(50,15) will be written to theoutput �le. In order to work out what is going to happen you need to know that Fortran arraysare stored with the �rst subscript most rapidly varying, and that the argument associationoperates as if the address of the speci�ed element were transferred to the base address of thedummy argument array.The use of an array element as an actual argument when the dummy argument is a completearray is a very misleading notation and the transfer of array sections should be avoided if at allpossible.Character ArraysWhen a dummy argument is a character array the passed-length mechanism can be used in thesame way as for a character variable. Every element of the dummy array has the length thatwas passed in from the actual argument.For example, a subroutine designed to sort an array of character strings into ascending ordermight start with speci�cation statements like these:SUBROUTINE SORT(NELS, NAMES)INTEGER NELSCHARACTER NAMES(NELS)*(*)Alternatively the actual argument can be a character variable or substring. In such cases itusually makes more sense not to use the passed-length mechanism. For example an actualargument declared:CHARACTER*80 LINEcould be passed to a subroutine which declared it as an array of four 20-character elements:SUBROUTINE SPLIT(LINE)CHARACTER LINE(4)*20Although this is valid Fortran, it is not a very satisfactory programming technique to use aprocedure call to alter the shape of an item so radically.9.7 Procedures as ArgumentsFortran allows one procedure to be used as the actual argument of another procedure. Thisprovides a powerful facility, though one that most programmers use only rarely. Procedures arenormally used to carry out a given set of operations on di�erent sets of data; but sometimes youwant to carry out the same set of operations on di�erent functional forms. Examples include:�nding the gradient of a function, integrating the area under a curve, or simply plotting a graph.If the curve is speci�ed as a set of data points then you can simply pass over an array, but if itis speci�ed by means of some algorithm then the procedure which evaluates it can itself be anactual argument.In the next example, the subroutine GRAPH plots a graph of a function MYFUNC betweenspeci�ed limits, with its argument range divided somewhat arbitrarily into 101 points. For

9 PROCEDURES 80simplicity it assumes the existence of a subroutine PLOT which moves the pen to position(X,Y). Some other subroutines would, in practice, almost certainly be required.SUBROUTINE GRAPH(MYFUNC, XMIN, XMAX)*Plots functional form of MYFUNC(X) with X in range XMIN:XMAX.REAL MYFUNC, XMIN, XMAXXDELTA = (XMAX - XMIN) / 100.0DO 25, I = 0,100X = XMIN + I * XDELTAY = MYFUNC(X)CALL PLOT(X, Y)25 CONTINUEENDThe procedure GRAPH can then be used to plot a function simply by providing its name them asthe �rst argument of the call. The only other requirement is that the name of each function usedas an actual argument in this way must be speci�ed in an INTRINSIC or EXTERNAL statement,as appropriate. Thus:PROGRAM CURVESINTRINSIC SIN, TANEXTERNAL MESSYCALL GRAPH(SIN, 0.0, 3.14159)CALL GRAPH(TAN, 0.0, 0.5)CALL GRAPH(MESSY, 0.1, 0.9)ENDREAL FUNCTION MESSY(X)MESSY = COS(0.1*X) + 0.02 * SIN(SQRT(X))ENDThis will �rst plot a graph of the sine function, then of the tangent function with a di�erentrange, and �nally produce another plot of the external function called MESSY. These functionsmust, of course, have the same procedure interface themselves and must be called correctly inthe GRAPH procedure.It is possible to pass either a function or a subroutine as an actual argument in this way: theonly di�erence is that a CALL statement is used instead of a function reference to execute thedummy procedure. It is possible to pass a procedure through more than one level of procedurecall in the same way. Continuing the last example, another level could be introduced like this:PROGRAM CURVE2EXTERNAL MESSYINTRINSIC SIN, TANCALL GRAPH2(PRETTY)CALL GRAPH2(TAN)ENDSUBROUTINE GRAPH2(PROC)EXTERNAL PROC

9 PROCEDURES 81CALL GRAPH(PROC, 0.1, 0.7)ENDThus the procedure GRAPH2 sets limits to each plot and passes the procedure name on to GRAPH.The symbolic name PROCmust be declared in an EXTERNAL statement as it is a dummy procedure:an EXTERNAL statement is required whether the actual procedure at the top level is intrinsic orexternal. The syntax of the INTRINSIC and EXTERNAL statements is given in section 9.12 below.The name of an intrinsic function used as an actual argument must be a speci�c name andnot a generic one. This is the only circumstance in which you still have to use speci�c names forintrinsic functions. A full list of speci�c names is given in the appendix. A few of the most basicintrinsic functions which are often expanded to in-line code (those for type conversion, lexicalcomparison, as well as MIN and MAX) cannot be passed as actual arguments.9.8 Subroutine and Call StatementsIt is convenient to describe these two statements together as they have to be closely matched inuse. The general form of the SUBROUTINE statement is:SUBROUTINE name (dummy1, dummy2, ... dummyN)or SUBROUTINE nameThe second form just indicates that if there are no arguments then the parentheses are optional.The symbolic name of the subroutine becomes a global name; it must not be used at all withinthe program unit and must not be used for any other global item within the entire executableprogram.The dummy arguments are also simply symbolic names. The way in which these are inter-preted is covered in the next section.The CALL statement has similar general forms:CALL name (arg1, arg2, ... argN)or CALL nameAgain, if there are no arguments the parentheses are optional.The name must be that of a subroutine (or dummy subroutine). Each arg is an actualargument which can be a variable, array, substring, array element or any form of expression.The permitted forms, which depend on the form of the corresponding dummy argument andhow it is used within the subroutine, are fully described in the preceding sections.9.9 RETURN StatementThe RETURN statement just consists of the keywordRETURNIts e�ect is to stop the procedure executing and to return control, and where appropriateargument and function values, to the calling program unit. The execution of the END statementat the end of the program unit has the exactly the same e�ect, so that RETURN is superuousin procedures which have only one entry and one exit point (as all well-designed proceduresshould). It is, however, sometimes convenient to use RETURN for an emergency exit. Here is asomewhat simple-minded example just to illustrate the point:

9 PROCEDURES 82REAL FUNCTION HYPOT(X, Y)*Computes the hypotenuse of a right-angled triangle.REAL X, YIF(X .LE. 0.0 .OR. Y .LE. 0.0) THENWRITE(UNIT=*,FMT=*)'Warning: impossible values'HYPOT = 0.0RETURNEND IFHYPOT = SQRT(X**2 + Y**2)ENDThis function could be used in another program unit like this:X = HYPOT(12.0, 5.0)Y = HYPOT(0.0, 5.0)which would assign to X the value of 13.0000 approximately, while the second function call wouldcause a warning message to be issued and would return a value of zero to Y.In the external function shown above it would have been perfectly possible to avoid havingtwo exits points by an alternative ending to the procedure, such as:IF(X .LE. 0.0 .OR. Y .LE. 0.0) THENWRITE(UNIT=*,FMT=*)'Warning: impossible values'HYPOT = 0.0ELSEHYPOT = SQRT(X**2 + Y**2)END IFENDIn more realistic cases, however, the main part of the calculation would be much longer thanjust one statement and it might then be easier to understand the working if a RETURN statementwere to be used than with almost all of the procedure contained within an ELSE-block. A thirdpossibility for emergency exits is to use an unconditional GO TO statement to jump to a labelplaced on the END statement.9.10 FUNCTION StatementThe FUNCTION statement must be the �rst statement of every external function. Its general formis: type FUNCTION(dummy1, dummy2, ... dummyN)The type speci�cation is optional: if it is omitted then the type of the result is determined bythe usual rules. The function name may have its type speci�ed by a type or IMPLICIT statementwhich appears later in the program unit. If the function is of type character then the lengthmay be speci�ed by a literal constant (but not a named constant) or may be given in the formCHARACTER*(*) in which case the length will be passed in as the length declared for the functionname in the calling program unit.There may be any number of dummy arguments including none, but the parentheses muststill be present. Dummy arguments may, as described in section 9.4, be variables, arrays, orprocedures.

9 PROCEDURES 83The function name may be used as a variable within the function subprogram unit; a valuemust be assigned to this variable before the procedure returns control to the calling unit. If thefunction name used the passed-length option then the corresponding variable cannot be used asan operand of the concatenation operator except in an assignment statement. The passed-lengthoption is less useful for character functions than for arguments because the length is inevitablythe same for all references from the same program unit. For example:PROGRAM FLEXCHARACTER CODE*8, CLASS*6, TITLE*16CLASS = CODE('SECRET')TITLE = CODE('ORDER OF BATTLE')ENDCHARACTER*(*) FUNCTION CODE(WORD)CHARACTER WORD*(*), BUFFER*80DO 15, K = 1,LEN(WORD)BUFFER(K:K) = CHAR(ICHAR(WORD(K:K) + 1)15 CONTINUECODE = BUFFERENDUnfortunately, although this function can take in an argument of any length up to 80 characterslong and encode it, it can only return a result of exactly 8 characters long when called from theprogram FLEX, so that it will not produce the desired result when provided with the longercharacter string. This limitation could be overcome with the use of a subroutine with a secondpassed-length argument to handle the returned value.Functions without arguments do not have a wide range of uses but applications for them dooccur up from time to time, for example when generating random numbers or reading valuesfrom an input �le. For example:PROGRAM COPYREAL NEXTDO 10,I = 1,100WRITE(UNIT=*,FMT=*) NEXT()10 CONTINUEENDREAL FUNCTION NEXT()READ(UNIT=*,FMT=*) NEXTENDThe parentheses are needed on the function call to distinguish it from a variable. The functionstatement itself also has to have the empty pair of parentheses, presumably to match the call.9.11 SAVE StatementSAVE is a speci�cation statement which can be used to ensure that variables and arrays usedwithin a procedure preserve their values between successive calls to the procedure. Under normalcircumstances local items will become \unde�ned" as soon as the procedure returns control to

9 PROCEDURES 84the calling unit. It is often useful to store the values of certain items used on one call to avoiddoing extra work on the next. For example:SUBROUTINE EXTRA(MILES)INTEGER MILES, LASTSAVE LASTDATA LAST /0/WRITE(UNIT=*, FMT=*) MILES - LAST, ' more miles.'LAST = MILESENDThis subroutine simply saves the value of the argument MILES each time and subtracts it fromthe next one, so that it can print out the incremental value. The value of LAST had to be givenan initial value using a DATA statement in order to prevent its use with an unde�ned value onthe initial call.Local variables and arrays and complete named common blocks can be saved using SAVEstatements, but not variables and arrays which are dummy arguments or which appear withincommon blocks.Items which are initially de�ned with a DATA statement but which are never updated with anew value do not need to be saved.The SAVE statement has two alternative forms:SAVE item, item, ... itemSAVEWhere each item can be a local variable or (unsubscripted) array, or the name of a commonblock enclosed in slashes. The second form, with no list of items, saves all the allowable itemsin the program unit. This form should not be used in any program unit which uses a commonblock unless all common blocks used in that program unit are also used in the main program orsaved in every program unit in which it appears. The SAVE statement can be used in the mainprogram unit (so that it could be packaged with other speci�cations in an INCLUDE �le) but hasno e�ect.Many current Fortran systems have a simple static storage allocation scheme in which allvariables are saved whether SAVE is used or not. But on small computers which make use of discoverlays, or large ones with virtual memory systems, this may not be so. You should alwaystake care to use the SAVE statement anywhere that its use is indicated to make your programssafe and portable. Even where it is at present strictly redundant it still indicates to the readerthat the procedure works by retaining information from one call to the next, and this is valuablein itself.9.12 EXTERNAL and INTRINSIC StatementsThe EXTERNAL statement is used to name external procedures which are required in order torun a given program unit. It may specify the name of any external function or subroutine. It isrequired in three rather di�erent circumstances:� whenever an external procedure or dummy procedure is used as the actual argument ofanother procedure call;� to call any procedure which has a name duplicating an intrinsic function;

10 INPUT/OUTPUT FACILITIES 85� to ensure that a named block data subprogram is linked into the complete executableprogram. This specialised use is covered further in section 12.4.The INTRINSIC statement is used to declare a name to be that of an intrinsic function. Itis normally necessary only when that function is to be used as the actual argument of anotherprocedure call, but may also be advisable when calling a non-standard intrinsic function toremove any ambiguity which might arise if an external function of the same name also existed.The general form of the two statements is the same:EXTERNAL ename, ename, ... enameINTRINSIC iname, iname, ... inameWhere ename can be the name of an external function or subroutine or a dummy procedure;iname must be speci�c name of an intrinsic function. For example, to use the real and doubleprecision versions of the trigonometric functions as actual arguments we need:INTRINSIC SIN, COS, TAN, DCOS, DSIN, DTANWhen the function name SIN is used as an actual argument it refers to the speci�c real sinefunction; in other contexts it still has its usual generic property. The use of procedures as actualarguments is covered in detail in section 9.7; a list of speci�c names of intrinsic functions is givenin the appendix.10 Input/Output FacilitiesThe I/O system of Fortran is relatively powerful, exible, and well-de�ned. Programs can beportable and device-independent even if they make extensive use of input/output facilities: thisis di�cult if not impossible in many other high-level languages. The e�ects of the hardware andoperating system cannot, of course, be ignored entirely but they usually only a�ect fairly minormatters such as the forms of �le-name and the maximum record length that can be used.The READ and WRITE statements are most common and generally look like this:READ(UNIT=*, FMT=*) NUMBERWRITE(UNIT=13, ERR=999) NUMBER, ARRAY(1), ARRAY(N)The pair of parentheses after the word READ or WRITE encloses the control-list: a list of itemswhich speci�es where and how the data transfer takes place. The items in this list are usuallyspeci�ed with keywords. The list of data items to be read or written follow the control-list.Other input/output statements have a similar form except that they only have a control-list.There are the �le-handling statements OPEN, CLOSE, and INQUIRE, as well as the REWIND andBACKSPACE statements which alter the currently active position within a �le.Before covering the these statements in detail, it is necessary to explain some of the conceptsand terminology involved.10.1 Files, I/O Units, and RecordsIn Fortran the term �le is used for anything that can be handled with a READ or WRITE statement:the term covers not just data �les stored on disc or tape and also peripheral devices such asprinters or terminals. Strictly these should all be called external �les, to distinguish them frominternal �les.

10 INPUT/OUTPUT FACILITIES 86An internal �le is nothing more than a character variable or array which is used as a temporary�le while the program is running. Internal �les can be used with READ and WRITE statements inorder to process character information under the control of a format speci�cation. They cannotbe used by other I/O statements.Before an external �le can be used it must be connected to an I/O unit. I/O units areintegers which may be chosen freely from zero up to a system-dependent limit (usually at least99). Except in OPEN and INQUIRE statements, �les can only be referred to via their unit numbers.The OPEN statement connects a named �le to a numbered unit. It usually speci�es whetherthe �le already exists or whether a new one is to be created, for example:OPEN(UNIT=1, FILE='B:INPUT.DAT', STATUS='OLD')OPEN(UNIT=9, FILE='PRINTOUT', STATUS='NEW')For simplicity most of the examples in this section show an actual integer as the unit identi�er,but it helps to make software more modular and adaptable if a named constant or a variable isused instead.I/O units are a global resource. A �le can be opened in any program unit; once it is openI/O operations can be performed on it in any program unit provided that the same unit numberis used. The unit number can be held in an integer variable and passed to the procedure as anargument.The connection between a �le and a unit, once established, persists until:� the program terminates normally (at a STOP statement or the END of the main program);� another OPEN statement connects a di�erent �le to the same unit;� or a CLOSE statement is executed on that unit.Although all �les are closed when the program exits, it is good practice to close them explicitlyas soon as I/O operations on them are completed. If the program terminates abnormally, forexample because an error occurs or it is aborted by the user, any �les which are open, especiallyoutput �les, may be left with incomplete or corrupted records.The INQUIRE statement can be used to obtain information about the current properties ofexternal �les and I/O units. INQUIRE is particularly useful when writing library procedureswhich may have to run in a variety of di�erent program environments. You can �nd out, forexample, which unit numbers are free for use or whether a particular �le exists and if so whatits characteristics are.RecordsA �le consists of a sequence of records. In a text �le a record corresponds to a line of text; inother cases a record has no physical basis, it is just a convenient collection of values chosen tosuit the application. There is no need for a record to correspond to a disc sector or a tape block.READ and WRITE statements always start work at the beginning of a record and always transfera whole number of records.The rules of Fortran set no upper limit to the length of a record but, in practice, eachoperating system may do so. This may be di�erent for di�erent forms of record.

10 INPUT/OUTPUT FACILITIES 87Formatted and Unformatted RecordsExternal �les come in two varieties according to whether their records are formatted or unfor-matted. Formatted records store data in character-coded form, i.e. as lines of text. This makesthem suitable for a wide range of applications since, depending on their contents, they may belegible to humans as well as computers. The main complication for the programmer is thateach WRITE or READ statement must specify how each value is to be converted from internal toexternal form or vice-versa. This is usually done with a format speci�cation.Unformatted records store data in the internal code of the computer so that no formatconversions are involved. This has a several advantages for �les of numbers, especially oating-point numbers. Unformatted data transfers are simpler to program, faster in execution, andfree from rounding errors. Furthermore the resulting data �les, sometimes called binary �les,are usually much smaller. A real number would, for example, have to be turned into a string of10 or even 15 characters to preserve its precision on a formatted record, but on an unformattedrecord a real number typically occupies only 4 bytes i.e. the same as 4 characters. The drawbackis that unformatted �les are highly system-speci�c. They are usually illegible to humans and toother brands of computer and sometimes incompatible with �les produced by other programminglanguages on the same machine. Unformatted �les should only be used for information to bewritten and read by Fortran programs running on the same type of computer.Sequential and Direct AccessAll peripheral devices allow �les to be processed sequentially: you start at the beginning of the�le and work through each record in turn. One important advantage of sequential �les is thatdi�erent records can have di�erent lengths; the minimum record length is zero but the maximumis system-dependent.Sequential �les behave as if there were a pointer attached to the �le which always indicatesthe next record to be transferred. On devices such as terminals and printers you can only reador write in strict sequential order, but when a �le is stored on disc or tape it is possible to usethe REWIND statement to reset this pointer to the start of the �le, allowing it to be read in againor re-written. On suitable �les the BACKSPACE statement can be used to move the pointer backby one record so that the last record can be read again or over-written.One unfortunate omission from the Fortran Standard is that the position of the record pointeris not de�ned when an existing sequential �le is opened. Most Fortran systems behave sensiblyand make sure that they start at the beginning of the �le, but there are a few rogue systemsaround which make it advisable, in portable software, to use REWIND after the OPEN statement.Another problem is how append new records to an existing sequential �le. Some systems provide(as an extension) an \append" option in the OPEN statement, but the best method using StandardFortran is to open the �le and read records one at a time until the end-of-�le condition isencountered; then use BACKSPACE to move the pointer back and clear the end-of-�le condition.New records can then be added in the usual way.The alternative access method is direct-access which allows records to be read and writtenin any order. Most systems only permit this for �les stored on random-access devices such asdiscs; it is sometimes also permitted on tapes. All records in a direct-access �le must be thesame length so that the system can compute the location of a record from its record number.The record length has to be chosen when the �le is created and (on most systems) is then �xedfor the life of the �le. In Fortran, direct-access records are numbered from one upwards; each

10 INPUT/OUTPUT FACILITIES 88READ or WRITE statement speci�es the record number at which the transfer starts.Records may be written to a direct-access �le in any order. Any record can be read providedthat it exists, i.e. it has been written at some time since the �le was created. Once a record hasbeen written there is no way of deleting it, but its contents can be updated, i.e. replaced, at anytime.A few primitive operating systems require the maximum length of a direct-access �le to bespeci�ed when the �le is created; this is not necessary in systems which comply fully with theFortran Standard.10.2 External FilesFormatted and unformatted records cannot be mixed on the same �le and on most systems �lesdesigned for sequential-access are quite distinct from those created for direct-access: thus thereare four di�erent types of external �le. There is no special support in Standard Fortran for anyother types of �le such as indexed-sequential �les or name-list �les.Formatted Sequential FilesThese are often just called text �les. Terminals and printers should always be treated as for-matted sequential �les. Data �les of this type can be created in a variety of ways, for exampleby direct entry from the keyboard, or by using a text editor. Some Fortran systems do not allowrecords to be longer than a normal line of text, for example 132 characters. Unless a text �le ispre-connected it must be opened with an OPEN statement, but the FORM= and ACCESS= keywordsare not needed as the default values are suitable:OPEN(UNIT=4, FILE='REPORT', STATUS='NEW')All data transfers must be carried out under format control. There are two options with �les ofthis type: you can either provide your own format speci�cation or use list-directed formatting.The attraction of list-directed I/O is that the Fortran system does the work, providing simpledata transfers with little programming e�ort. They are speci�ed by having an asterisk as theformat identi�er:WRITE(UNIT=*, FMT=*)'Enter velocity: 'READ(UNIT=*, FMT=*, END=999) SPEEDList-directed input is quite convenient when reading numbers from a terminal since it allowsvirtually \free-format" data entry. It may also be useful when reading data �les where thelayout is not regular enough to be handled by a format speci�cation. List-directed outputis satisfactory when used just to output a character string (as in the example above), but itproduces less pleasing results when used to output numerical values since you have no control overthe positioning of items on the line, the �eld-width, or the number of decimal digits displayed.Thus: WRITE(UNIT=LP, FMT=*)' Box of',N,' costs ',PRICEwill produce a record something like this:Box of 12 costs 9.5000000List-directed output is best avoided except to write simple messages and for diagnostic outputduring program development. The rules for list-directed formatting are covered in detail insection 10.10.

10 INPUT/OUTPUT FACILITIES 89The alternative is to provide a format speci�cation: this provides complete control over thedata transfer. The previous example can be modi�ed to use a format speci�cation like this:WRITE(UNIT=LP, FMT=55)'Box of',N,' costs ',PRICE55 FORMAT(1X, A, I3, A, F6.2)and will produce a record like this:Box of 12 costs 9.50The format speci�cation is provided in this case by a FORMAT statement: its label is the formatidenti�er in the WRITE statement. Other ways of providing format speci�cations are describedin section 10.6.One unusual feature of input under control of a format speci�cation is that each line of textwill appear to be padded out on the right with an inde�nite number of blanks irrespective ofthe actual length of the data record. This means that, among other things, it is not possible todistinguish between an empty record and one �lled with blanks. If numbers are read from anempty record they will simply be zero.Unformatted Sequential FilesUnformatted sequential �les are often used as to transfer data from one program to another.They are also suitable for scratch �les, i.e. those used temporarily during program execution.The only limit on the length of unformatted records is that set by the operating system; mostsystems allow records to contain a few thousand data items at least. The OPEN statement mustspecify the �le format, but the default access method is \sequential". Each READ or WRITEstatement transfers one unformatted record.For example, these statements open an existing unformatted �le and read two records fromit: OPEN(UNIT=15, FILE='BIN', STATUS='OLD', FORM='UNFORMATTED')READ(15) HEIGHT, LENGTH, WIDTHREAD(15) ARRAYP, ARRAYQBACKSPACE and REWIND statements may generally be used on all unformatted sequential �les.Unformatted Direct-access FilesSince direct-access �les are readable only by machine, it seems sensible to use unformattedrecords to maximise e�ciency. The OPEN statement must specify ACCESS='DIRECT' and alsospecify the record length. Unfortunately the units used to measure the length of a record arenot standardised: some systems measure them in bytes, others in numerical storage units, i.e.the number of real or integer variables a record can hold (see section 5.1). This is a minorobstacle to portability and means that you may need to know how many bytes your machineuses for each numerical storage unit, although this is just about the only place in Fortran wherethis is necessary. Most systems will allow you to open an existing �le only if the record lengthis the same as that used when the �le was created.Each READ and WRITE statement transfers exactly one record and must specify the numberof that record: an integer value from one upwards. The record length must not be greater thanthat declared in the OPEN statement; if an output record is not completely �lled the remainderis unde�ned.

10 INPUT/OUTPUT FACILITIES 90To illustrate how direct-access �les can be used, here is a complete program which allows avery simple data-base, such as a set of stock records, to be examined. Assuming that the recordlength is measured in numerical storage units of 4 bytes, the required record length in this casecan be computed as follows:NAME 1 CHARACTER*10 variable 10 chars = 10 bytes.STOCK 1 INTEGER variable 1 unit = 4 bytesPRICE 1 REAL variable 1 unit = 4 bytesThe total record length is 18 bytes or 5 numerical storage units (rounding up to the nextinteger).PROGRAM DBASE1INTEGER STOCK, NERRREAL PRICECHARACTER NAME*10*Assume record length in storage units holding 4 chars each.OPEN(UNIT=1, FILE='STOCKS', STATUS='OLD',$ ACCESS='DIRECT', RECL=5)100 CONTINUE*Ask user for part number which will be used as record number.WRITE(UNIT=*,FMT=*)'Enter part number (or zero to quit):'READ(UNIT=*,FMT=*) NPARTIF(NPART .LE. 0) STOPREAD(UNIT=1, REC=NPART, IOSTAT=NERR) NAME, STOCK, PRICEIF(NERR .NE. 0) THENWRITE(UNIT=*,FMT=*)'Unknown part number, re-enter'GO TO 100END IFWRITE(*,115)STOCK, NAME, PRICE115 FORMAT(1X,'Stock is',I4, 1X, A,' at ', F8.2, ' each')GO TO 100ENDThe typical output record of the program will be of the form:Stock is 123 widgets at 556.89 eachThis program could be extended fairly easily to allow the contents of the record to be updatedas the stock changes.Formatted Direct-access FilesFormatted direct-access �les are slightly more portable than the unformatted form because theirrecord length is always measured in characters. Otherwise there is little to be said for them. TheOPEN statement must specify both ACCESS='DIRECT' and FORM='FORMATTED' and each READ andWRITE statement must contain both format and record-number identi�ers. List-directed transfersare not permitted. If the format speci�cation requires more than one record to be used, theseadditional records follow on sequentially from that speci�ed by REC=. It is an error to tryto read beyond the end of a record, but an incompletely �lled record will be padded out withblanks.

10 INPUT/OUTPUT FACILITIES 9110.3 Internal FilesAn internal �le is an area of central memory which can be used as if it were a formatted sequential�le. It exists, of course, only while the program is executing. Internal �les are used for a varietyof purposes, particularly to carry out data conversions to and from character data type. Someearlier versions of Fortran included ENCODE and DECODE statements: the internal �le READ (whichreplaces DECODE) and internal �le WRITE (which replaces ENCODE) are simpler, more exible, andentirely portable.An internal �le can only be used with READ and WRITE statements and an explicit formatspeci�cation is required: list-directed transfers are not permitted. The unit must have characterdata type but it can be a variable, array element, substring, or a complete array. If it is acomplete array then each array element constitutes a record; in all other cases the �le onlyconsists of one record. Data transfers always start at the beginning of the internal �le, that isan implicit rewind is performed each time. The record length is the length of the character item.It is illegal to try to transfer more characters than the internal �le contains, but if a record of toofew characters is written it will be padded out with blanks. The END= and IOSTAT= mechanismscan be used to detect the end-of-�le.An internal �le WRITE is typically used to convert a numerical value to a character string byusing a suitable format speci�cation, for example:CHARACTER*8 CVALRVALUE = 98.6WRITE(CVAL, '(SP, F7.2)') RVALUEThe WRITE statement will �ll the character variable CVAL with the characters ' +98.60 ' (notethat there is one blank at each end of the number, the �rst because the number is right-justi�edin the �eld of 7 characters, the second because the record is padded out to the declared lengthof 8 characters).Once a number has been turned into a character-string it can be processed further in thevarious ways described in section 7. This makes it possible, for example, to write numbers left-justi�ed in a �eld, or mark negative numbers with with \DR" (as in bank statements) in or evenuse a pair of parentheses (as in balance-sheets). With suitable arithmetic you can even outputvalues in other number-bases such as octal or hexadecimal. Even more elaborate conversionsmay be achieved by �rst writing a suitable format speci�cation into a character string and thenusing that format to carry out the desired conversion.Internal �le READ statements can be used to decode a character string containing a numericalvalue. One obvious application is to handle the user input to a command-driven program.Suppose the command line consists of a word followed, optionally, by a number (in integer orreal format), with at least one blank separating the two. Thus the input commands might besomething like:UP 4RIGHT 123.45A simple way to deal with this is to read the whole line into a character variable and then usethe INDEX function to locate the �rst blank. The preceding characters constitute the commandword, those following can be converted to a real number using an internal �le READ. For example:CHARACTER CLINE*80

10 INPUT/OUTPUT FACILITIES 92* . . .100 WRITE(UNIT=*,FMT=*)'Enter command: 'READ(*, '(A)', IOSTAT=KODE) CLINEIF(KODE .NE. 0) STOPK = INDEX(CLINE, ' ')*The command word is now in CLINE(1:K-1); Assume the* number is in the next 20 characters: read it into RVALUEREAD(CLINE(K+1:), '(BN,F20.0)', IOSTAT=KODE)RVALUEIF(KODE .NE. 0) THENWRITE(UNIT=*,FMT=*)'Error in number: try again'GO TO 100END IFNote that the edit descriptor BN is needed to ensure that any trailing blanks will be ignored; theF20.0 will then handle any real or integer constant anywhere in the next 20 characters. A �eldof blanks will be converted into zero.10.4 Pre-Connected FilesTerminal Input/OutputMany programs are interactive and need to access the user's terminal. Although the terminal isa �le which can be connected with an OPEN statement, its name is system-dependent. Fortransolves the problem by providing two special �les usually called the standard input �le andthe standard output �le. These �les are pre-connected, i.e. no OPEN statement is needed (orpermitted). They are both formatted sequential �les and, on interactive systems, handle inputand output to the terminal. You can READ and WRITE from these �les simply by having anasterisk *" as the unit identi�er. These �les make terminal I/O simple and portable; examplesof their use can be found throughout this book.When a program is run in batch mode most systems arrange for standard output to bediverted to a log �le or to the system printer. There may be some similar arrangement for thestandard input �le.The asterisk notation has one slight drawback: the unit numbers is often speci�ed by aninteger variable so that the source of input or destination of output can be switched from one�le to another merely be altering the value of this integer. This cannot be done with the standardinput or output �les.Other Pre-connected FilesIn order to retain compatibility with Fortran66, many systems provide other pre-connected �les.It used to be customary to have unit 5 connected to the card-reader, and unit 6 to the lineprinter. Other units were usually connected to disc �les with appropriate names: thus unit39 might be connected to a �le called FTN039.DAT or even TAPE39. These pre-connections arecompletely obsolete and should be ignored: an OPEN statement can supersede a pre-connectionon any numbered unit. Unfortunately these obsolete pre-connections can have unexpected sidee�ects. If you forget to open an output �le you may �nd that your program will run withouterror but that the results will be hidden on a �le with one of these special names.

10 INPUT/OUTPUT FACILITIES 9310.5 Error and End-Of-File ConditionsErrors in most executable statements can be prevented by taking su�cient care in writingthe program, but in I/O statements errors can be caused by events beyond the control of theprogrammer: for example through trying to open a �le which no longer exists, writing to adisc which is full, or reading a data �le which has been created with the wrong format. SinceI/O statements are so vulnerable, Fortran provides an error-handling mechanism for them.There are actually two di�erent ways of handling errors which may be used independently or incombination.Firstly, you can include in the I/O control list an item of the form:IOSTAT=integer-variableWhen the statement has executed the integer variable (or array element) will be assigned avalue representing the I/O status. If the statement has completed successfully this variable isset to zero, otherwise it is set to some other value, a positive number if an error has occurred,or a negative value if the end of an input �le was detected. Since the value of this status codeis system-dependent, in portable software the most you can do is to compare it to zero and,possibly, report the actual error code to the user. Thus:100 WRITE(UNIT=*, FMT=*)'Enter name of input file: 'READ(UNIT=*, FMT=*) FNAMEOPEN(UNIT=INPUT, FILE=FNAME, STATUS='OLD', IOSTAT=KODE)IF(KODE .NE. 0) THENWRITE(UNIT=*,FMT=*)FNAME, ' cannot be opened'GO TO 100END IFThis simple error-handling scheme makes the program just a little more user-friendly: if the �lecannot be opened, perhaps because it does not exist, the program asks for another �le-name.The second method is to include an item of the formERR=labelwhich causes control to be transferred to the statement attached to that label in the event ofan error. This must, of course, be an executable statement and in the same program unit. Forexample:READ(UNIT=IN, FMT=*, ERR=999) VOLTS, AMPSWATTS = VOLTS * AMPS* rest of program in here and finallySTOP999 WRITE(UNIT=*,FMT=*)'Error reading VOLTS or AMPS'ENDThis method has its uses but is open to the same objections as the GO TO statement: it oftenleads to badly-structured programs with lots of arbitrary jumps.By using both IOSTAT= and ERR= in the same statement it is possible to �nd out the actualerror number and jump to the error-handling code. The presence of either keyword in an I/Ostatement will allow the program to continue after an I/O error; on most systems it also preventsan error message being issued.The ERR= and IOSTAT= items can be used in all I/O statements. Professional programmers

10 INPUT/OUTPUT FACILITIES 94should make extensive use of these error-handling mechanisms to enhance the robustness anduser-friendliness of their software.There is one fairly common mistake which does not count as an errors for this purpose: ifyou write a number to a formatted record using a �eld width too narrow to contain it, the �eldwill simply be �lled with asterisks.If an error occurs in a data transfer statement then the position of the �le becomes inde-terminate. It may be quite di�cult to locate the o�ending record if an error is detected whentransferring a large array or using a large number of records.End-of-�le DetectionA READ statement which tries to read a record beyond the end of a sequential or internal �le willtrigger the end-of-�le condition. If an item of the form: IOSTAT=integer-variable is includedin its control-list then the status value will be returned as some negative number. If it includesan item of the form: END=label then control is transferred to the labelled statement when theend-of-�le condition is detected.The END= keyword may only be used in READ statements, but it is can be used in the presenceof both ERR= and IOSTAT= keywords. End-of-�le detection is very useful when reading a �le ofunknown length, but some caution is necessary. If you read several records at a time from aformatted �le there is no easy way of knowing exactly where the end-of-�le condition occurred.The data list items beyond that point will have their values unaltered. Note also that there isno concept of end-of-�le on direct-access �les: it is simply an error to read a record which doesnot exist, whether it is beyond the \end" of the �le or not.Most systems provide some method for signalling end-of-�le on terminal input: those basedon the ASCII code often use the character ETX which is usually produced by pressing control/Zon the keyboard (or EOT which is control/D). After an end-of-�le condition has been raised inthis way it may persist, preventing further terminal input to that program.Formally, the Fortran Standard only requires Fortran systems to detect the end-of-�le condi-tion on external �les if there is a special \end-�le" record on the end. The END FILE statementis provided speci�cally to write such a record. In practice, however, virtually all Fortran systemsrespond perfectly well when you try to read the �rst non-existent record, so that the END FILEstatement is e�ectively obsolete and is not recommended for general use.10.6 Format Speci�cationsEvery READ or WRITE statement which uses a formatted external �le or an internal �le mustinclude a format identi�er. This may have any of the following forms:FMT=* This speci�es a list-directed transfer (and is only permitted for external sequential �les).Detailed rules are given in section 10.10 below.FMT=label The label must be attached to a FORMAT statement in the same program unit whichprovides the format speci�cation.FMT=char-exp The value of the character expression is a complete format speci�cation.FMT=char-array The elements of the character array contain the format speci�cation, which mayoccupy as many elements of the array as are necessary.

10 INPUT/OUTPUT FACILITIES 95Note that the characters FMT= may be omitted if it is the second item in the I/O control listand if the unit identi�er with UNIT= omitted comes �rst.A format speci�cation consists a pair of parentheses enclosing a list of items called editdescriptors. Any blanks before the left parenthesis will be ignored and (except in a FORMATstatement) all characters after the matching right parenthesis are ignored.In most cases the format can be chosen when the program is written and the simplest optionis to use a character constant:WRITE(UNIT=LP, FMT='(1X,A,F10.5)') 'Frequency =', HERTZAlternatively you can use a FORMAT statement:WRITE(UNIT=LP, FMT=915) 'Frequency =', HERTZ915 FORMAT(1X, A, F10.5)This allows the same format to be used by more than one data-transfer statement. The FORMATstatement may also be the neater form if the speci�cation is long and complicated, or if character-constant descriptors are involved, since the enclosing apostrophes have to be doubled up if thewhole format is part of another character constant.It is also possible to compute a format speci�cation at run-time by using a suitable characterexpression. By this means you could, for example, arrange to read the format speci�cation ofa data �le from the �rst record of the �le. The program fragment below shows how to outputa real number in �xed-point format (F10.2) when it is small, changing to exponential format(E18.6) when it is larger. A threshold of a million has been chosen here.CHARACTER F1*(*), F2*12, F3*(*)*Items F1, F2, F3 hold the three parts of a format specification.*F1 and F3 are constants, F2 is a variable.PARAMETER (F1 = '(1X,''Peak size ='',')PARAMETER (F3 = ')')*... calculation of PEAK assumed to be in hereIF(PEAK .LT. 1.0E6) THENF2 = 'F10.2'ELSEF2 = 'E18.6'END IFWRITE(UNIT=*, FMT=F1//F2//F3) PEAKNote that the apostrophes surrounding the character constant 'Peak size =' have been dou-bled in the PARAMETER statement because they are inside another character constant. Here aretwo examples of output records, with blanks shown explicitly:Peak size = 12345.67Peak size = 0.987654E+08FORMAT statementThe FORMAT statement is classed as non-executable and can, in principle, go almost anywherein the program unit. A FORMAT statement can, of course, be continued so its maximum lengthis 20 lines. The same FORMAT statement can be used by more than one data transfer statement

10 INPUT/OUTPUT FACILITIES 96and, unless it contains character constant descriptors, used for both input and output. Sinceit is very easy to make a mistake in matching the items in a data transfer list with the editdescriptors in the format speci�cation, it makes sense to put the FORMAT statement as close aspossible to the READ and WRITE statements which use it.10.7 Format Edit DescriptorsThere are two types of edit descriptor: data descriptors and control descriptors.A data descriptor must be provided for each data item transferred by a READ or WRITEstatement; the descriptors permitted depend on the data type of the item. The data descriptorsall start with a letter indicating the data type followed by an unsigned integer denoting the �eldwidth, for example: I5 denotes an integer �eld 5 characters wide, F9.2 denotes a oating-point�eld 9 character wide with 2 digits after the decimal point. Full details of all the data descriptorsare given in the next section.The control descriptors are used for a variety of purposes, such as tabbing to speci�c columns,producing or skipping records, and controlling the transfer of subsequent numerical data. Theyare described fully in section 10.9.Note that only literal constants are permitted within format speci�cations, not named con-stants or variables.10.8 Format Data Descriptors A, E, F, G, I, LA data descriptor must be provided for each data item present (or implied) in a data transferlist. Real, double precision, and complex items may use any of the E, F, or G descriptors butin all other cases the data type must match. Two oating-point descriptors are needed for eachcomplex value.Data type Data descriptorsInteger Iw, Iw.mReal, Double Precision, or Complex Ew.d, Ew.dEe, Fw.d, Gw.d, Gw.dEeLogical LwCharacter A, AwThe letters w, m, d, and e used with these data descriptors represent unsigned integer con-stants; w and e must be greater than zero.w is the total �eld width.m is the minimum number of digits produced on output.d is the number of digits after the decimal point.e is the number of digits used for the exponent.Any data descriptor can be preceded by a repeat-count (also an unsigned integer), thus:3F6.0 is equivalent to F6.0,F6.0,F6.0This facility is particularly useful when handling arrays.

10 INPUT/OUTPUT FACILITIES 97General Rules for Numeric Input/OutputNumbers are always converted using the decimal number base: there is no provision in StandardFortran for transfers in other number bases such as octal or hexadecimal. More complicatedconversions such as these can be performed with the aid of internal �les.On output number are generally right-justi�ed in the speci�ed �eld; leading blanks are sup-plied where necessary. Negative values are always preceded by a minus sign (for which spacemust be allowed in the �eld); zero is always unsigned; the SP and SS descriptors control whetherpositive numbers are to be preceded by a plus sign or not. A number which is too large to �tinto its �eld will appear instead as a set of w asterisks.On input numbers should be right-justi�ed in each �eld. All forms of constant permitted ina Fortran program can safely be used in an input �eld of the corresponding type, as long thereare no embedded or trailing blanks. Leading blanks are always ignored; a �eld which is entirelyblank will be read as zero. The treatment of embedded and trailing blanks can be controlledwith the BN and BZ descriptors. The rules here are another relic of very early Fortran systems.When reading a �le which has been connected by means of an OPEN statement (providedit does not contain BLANK='ZERO') all embedded and trailing blanks in numeric input �eldsare treated as nulls, i.e. they are ignored. In all other cases, such as input from the standardpre-connected �le or from an internal �le, embedded and trailing blanks are treated as zeros.These defaults can be altered with the BN and BZ control descriptors. It is hard to imagine anycircumstances in which it is desirable to interpret embedded blanks as zeros; the default settingsare particularly ill-chosen since numbers entered by a user at a terminal are often left-justi�edand may appear to be padded out with zeros. Errors from this source can be avoided by usingBN at the beginning of all input format speci�cations.Integer Data (Iw, Iw.m)An integer value written with Iw appears right-justi�ed in a �eld of w characters with leadingblanks. Iw.m is similar but ensures that at least m digits will appear even if leading zeros arenecessary. This is useful, for instance, to output the times in hours and minutes:NHOURS = 8MINUTE = 6WRITE(UNIT=*, FMT='(I4.2, I2.2)') NHOURS, MINUTEThe output record (with blanks shown explicitly) is:0806On input Iw and Iw.m are identical. Note that an integer �eld must not contain a decimal point,exponent, or any punctuation characters such as commas.Floating Point Data (Ew.d, Ew.dEe, Fw.d, Gw.d, Gw.dEe)Data of any of the oating-point types (Real, Double Precision, and Complex) may be transferredusing any of the descriptors E, F, or G. For each complex number two descriptors must beprovided, one for each component; these components may be separated, if required, by control

10 INPUT/OUTPUT FACILITIES 98descriptors. On output numbers are rounded to the speci�ed number of digits. All oating-point data transfers are a�ected by the setting of the scale-factor; this is initially zero but canbe altered by the P control descriptor, as explained in the section 10.9.Output using Fw.d produces a �xed-point value in a �eld of w characters with exactly ddigits after the decimal point. The decimal point is present even if w is zero, so that if a signis produced there is only space for, at most, w-2 digits before the decimal point. If it is reallyimportant to suppress the decimal point in numbers with no fractional part one way is to use aformat speci�cation of the form (F15.0,TL1)... so that the next �eld starts one place to the leftand over-writes the decimal point. Another way is to copy the number to an integer variable andwrite it with an I descriptor, but note the limited range of integers on most systems. F formatis especially convenient in tabular layouts since the decimal points will line up in successiverecords, but it is not suitable for very large or small numbers.Output with Ew.d produces a number in exponential or \scienti�c" notation. The mantissawill be between 0.1 and 1 (if the scale-factor is zero). The form Ew.dEe speci�es that there shouldbe exactly e digits in the exponent. This form must be used if the exponent will have morethan three digits (although this problem does not arise on machines on which the number rangeis too small). E format can be used to handle numbers of any magnitude. The disadvantage isthat exceptionally large or small values do not stand out very well in the resulting columns of�gures.Gw.d is the general-purpose descriptor: if the value is greater than 0.1 but not too large to �tit the �eld it will be written using a �xed-point format with d digits in total and with 4 blanksat the end of the �eld; otherwise it is equivalent to Ew.d format. The form Gw.dEe allows youto specify the length of the exponent; if a �xed-point format is chosen there are e+2 blanks atthe end.The next example shows the di�erent properties of these three formats on output:X = 123.456789Y = 0.09876543WRITE(UNIT=*, FMT='(E12.5, F12.5, G12.5)') X,X,X, Y,Y,Yproduces two records (with t representing the blank):0.12346E+03 123.45679 123.460.98766E-01 0.09877 0.98766E-01On input all the E, F, and G descriptors have identical e�ects: if the input �eld contains anexplicit decimal point it always takes precedence, otherwise the last d digits are taken as thedecimal fraction. If an exponent is used it may be preceded by E or D (but the exponent letteris optional if the exponent is signed). If the input �eld provides more digits than the internalstorage can utilise, the extra precision is ignored. It is usually best to use (Fw.0) which willcope with all common oating-point or even integer forms.Logical Data (Lw)When a logical value is written with Lw the �eld will contain the letter T or F preceded by(w-1) blanks. On input the �eld must contain the letter T or F; the letter may be preceded bya decimal point and any number of blanks. Characters after the T or F are ignored. Thus theforms .TRUE. and .FALSE. are acceptable.

10 INPUT/OUTPUT FACILITIES 99Character Data (A and Aw)If the A descriptor is used without an explicit �eld-width then the length of the character item inthe data-transfer list determines it. This is generally what is required but note that the positionof the remaining items in the record will change if the length of the character item is altered.If is important to use �xed column layouts the form Awmay be preferred: it always uses a �eldw characters wide. On output if the actual length len is less than w the value is right-justi�edin the �eld and preceded by (w-len) blanks; otherwise only the �rst w characters are output,the rest are ignored. On input if the length len is less than w then the right-most len charactersare used, otherwise w characters will be read into the character variable with (len-w) blanksappended.10.9 Format Control DescriptorsControl descriptors do not correspond to any item in the data-transfer list: they are obeyedwhen the format scan reaches that point in the list. A format speci�cation consisting of nothingbut control descriptors is valid only if the READ or WRITE statement has an empty data-transferlist. Control Function Control DescriptorSkip to next record /Move to speci�ed column position Tn, TLn, TRn, nXOutput a character constant 'any char string'Stop format scan if data list empty :Control + before positive numbers SP, SS, STreat blanks as nulls/zeros BN, BZSet scale factor for numeric transfers kPHere n and k are integer constants, k may have a sign but n must be non-zero and unsigned.The control descriptors such as SP, BN, kP a�ect all numbers transferred subsequently. Thesettings are una�ected by forced reversion but the system defaults are restored at the start ofthe next READ or WRITE operation.Any list of edit descriptors may be enclosed in parentheses and preceded by an integer constantas a repetition count, e.g.2(I2.2, '-'),I2.2is equivalent toI2.2, '-', I2.2, '-', I2.2These sub-lists can be nested to any reasonable depth, but the presence of internal pairs ofparentheses can have special e�ects when forced reversion takes place, as explained later.Commas may be omitted between items in the following special cases: either side of a slash(/) or colon (:) descriptor, and after a scale-factor (kP) if it immediately precedes a D, E, F,or G descriptor.Record Control (/)The slash descriptor (/) starts a new record on output or skips to a new record on input, ignoringanything left on the current record. On a text �le a record normally corresponds to a line oftext. Note that a formatted transfer always process at least one record: if the format contains

10 INPUT/OUTPUT FACILITIES 100N slashes then a total of (N+1) records are processed. With N consecutive slashes in an outputformat there will be (N-1) blank lines; on input then (N-1) lines will be ignored. Note that ifa formatted sequential �le is sent to a printer the �rst character of every record may be usedfor carriage-control (see section 10.11). It is good practice to put 1X at the beginning of everyformat speci�cation and after every slash to ensure single line spacing. Here, for example, thereis a blank line after the column headings.WRITE(UNIT=LP, FMT=95) (NYEAR(I), POP(I), I=1,NYEARS)95 FORMAT(1X,'Year Population', //, 100(1X, I4, F12.0, /))Column Position Control (Tn, TLn, TRn, nX)These descriptors cause subsequent values to be transferred starting at a di�erent column posi-tion in the record. They can, for instance, be used to set up a table with headings positionedover each column. In all these descriptors the value of n must be 1 or more. Columns arenumbered from 1 on the left (but remember that column 1 may be used for carriage-control ifthe output is sent to a printer).Tn causes subsequent output to start at column n.TRn causes a shift to the right by n columns.TLn causes a shift to the left by n columns (but it will not move the position tothe left of column 1).nX is exactly equivalent to TRn.On input TLn can be used to re-read the same �eld again, possibly using a di�erent datadescriptor. On output these descriptors do not necessarily have any direct e�ect on the record:they do not cause any existing characters to be replaced by blanks, but when the record iscomplete any column positions embedded in the record which are still unset will be replaced byblanks. Thus:WRITE(UNIT=LP, FMT=9000)9000 FORMAT('A', TR1000, TL950, 'Z')will cause a record of 52 characters to be output, middle 50 of them blanks.Character Constant Output ('string')The character constant descriptor can only be used with WRITE statements: the character stringis simply copied to the output record. As in all character constants an apostrophe can berepresented in the string by two successive apostrophes, and blanks are signi�cant.Sign Control (SP, SS, S)After SP has been used, positive numbers will be written with a leading + sign; after SS hasbeen used the + sign is suppressed. The S descriptor restores the initial default which is system-dependent. These descriptors have no e�ect on numerical input. The initial default is restoredat the start of every new formatted transfer.

10 INPUT/OUTPUT FACILITIES 101Blank Control (BN, BZ)After BN is used all embedded and trailing blanks in numerical input �elds are treated as nulls,i.e. ignored. After BZ they are treated as zeros. These descriptors have no e�ect on numericaloutput. The initial default, which depends on the BLANK= item in the OPEN statement, is restoredat the start of every new formatted transfer.Scale Factor Control (kP)The scale factor can be used to introduce a scaling by any power of 10 between internal andexternal values when E, F, or G descriptors are used. In principle this could be useful whendealing with data which are too large, or too small, for the exponent range of the oating-pointdata types of the machine, but in other di�culties usually make this impracticable. The scalefactor can result in particularly insidious errors when used with F descriptors and should beavoided by all sensible programmers. The rules are as follows.The initial scale factor in each formatted transfer is zero. It the descriptor kP is used, wherek is a small (optionally signed) integer, then it is set to k. It a�ects all subsequent oating pointvalues transferred by the statement. On input there is no e�ect if the input �eld contains anexplicit exponent, otherwise internal-value = external-value / 10kOn output the e�ect depends on the descriptor used. With E descriptors the decimal point ismoved k places to the right and the exponent reduced by k so the e�ective value is unaltered.With F descriptors there is always a scaling:external-value = em internal-value * 10kWith G descriptors the scale-factor is ignored if the value is in the range for F-type output,otherwise it has the same e�ects as with E descriptors.Scan Control (:) and Forced ReversionThe list of edit descriptors is scanned from left to right (apart from the e�ect of parentheses)starting at the beginning of the list whenever a new data transfer statement is executed. Theaction of the I/O system depends jointly on the next edit descriptor and the next item in data-transfer list. If a data descriptor comes next then the next data item is transferred if one exists,otherwise the format scan comes to an end. If a colon descriptor (:) comes next and the data-transfer list is empty the format scan ends, otherwise the descriptor has no e�ect. If any othercontrol descriptor comes next then it is obeyed whether or not the data-transfer list is empty.If the format list is exhausted when there are still more items in the data-transfer list thenforced reversion occurs: the �le is positioned at the beginning of the next record and the for-mat list is scanned again, starting at the left-parenthesis matching the last preceding right-parenthesis. If this is preceded by a repeat-count then this count is re-used. If there is nopreceding right-parenthesis then the whole format is re-used. Forced reversion has no e�ectupon the settings for scale-factor, sign, or blank control. Forced reversion can be useful whenreading or writing an array contained on a sequence of records since it is not necessary to knowhow many records there are in total, but when producing printed output it is easy to forget thata carriage-control character is required for each record, even those produced by forced reversion.

10 INPUT/OUTPUT FACILITIES 10210.10 List-Directed FormattingList-directed output uses a format chosen by the system according to the data type of the item.The exact layout is system-dependent, but the general rules are as follows.List-directed OutputEach WRITE statement starts a new record; additional records are produced when necessary.Each record starts with a single blank to provide carriage-control on printing. Arithmetic datatypes are converted to decimal values with the number of digits appropriate for the internalprecision; integer values will not have a decimal point, the system may choose �xed-point orexponential (scienti�c) form for oating-point values depending on their magnitude. Complexvalues are enclosed in parentheses with a comma separating the two parts.Logical values are output as a single letter, either T or F. Character values are output withoutenclosing apostrophes; if a character string is too long for one record it may be continued on thenext. Except for character values, each item is followed by at least one blank or a comma (orboth) to separate it from the next value.List-directed InputThe rules for List-directed input e�ectively allow free-format entry for numerical data. EachREAD statement starts with a new record and reads as many records as are necessary to satisfy itsdata-transfer list. The input records must contain a suitable sequence of values and separators.The values may be given in any form which would be acceptable in a Fortran programfor a constant of the corresponding type, except that embedded blanks are only permitted incharacter values. When reading a real or double-precision value an integer constant will beaccepted; when reading a logical value only the letter T or F is required (a preceding dot andany following characters will be ignored). Note that a character constant must be enclosed inapostrophes and a complex constant must be enclosed in parentheses with a comma betweenthe two components. If a character constant is too long to �t on one record it may be continuedon to the next; the two parts of a complex constant may also be given on two records.The separator between successive values must be one or more blanks, or a comma, or both.A new record may start at any point at which a blank would be permitted.If several successive items are to have the same value a repetition factor can be used: thishas the form n*constant where n is an unsigned integer. Blanks are not allowed either side ofthe asterisk.Two successive commas represent a null value: the corresponding variable in the READ state-ment has its value unchanged. It is also possible to use the form n* to represent a set of n nullvalues.A slash (/) may be used instead of an item separator; it has the e�ect of completing thecurrent READ without further input; all remaining items in its data transfer list are unchangedin value.List-directed output �les are generally compatible with list-directed input, unless they containcharacter items, which will not have the enclosing apostrophes which are required on input.

10 INPUT/OUTPUT FACILITIES 10310.11 Carriage-Control and PrintingAlthough a format speci�cation allows complete control over the layout of each line of text, itdoes not include any way of controlling pagination. The only way to do this is by using a uniqueand extraordinary mechanism dating back to the earliest days of Fortran. Even if you are notconcerned with pagination you still need to know about the carriage-control convention since itis liable to a�ect every text �le you produce.Whenever formatted output is sent to a \printer", the �rst character of every record isremoved and used to control the vertical spacing. This carriage-control character must be oneof the four listed in the the table below.Character Vertical spacing before printingblank Advance to next line0 Advance two lines1 Advance to top of next page+ No advance, i.e. print on same lineAn empty record is treated as if it started with a single blank. For example, these statementsstart a new page with a page number at the top and a title on the third line:WRITE(LP, 55) NUMBER, 'Report and Accounts'55 FORMAT('1PAGE', I4, /, '0', A)This carriage-control convention is an absurd relic which causes a multitude of problems inpractice. Firstly, systems di�er on what they call a \printer": it may or may not apply to visualdisplay terminals or to text initially saved on a disc �le and later printed out. Some operatingsystems have a special �le type for Fortran formatted output which is treated di�erently byprinters (and terminals). Others have been known to chop o� the �rst character of all �les sentto the system printer so that special utilities are needed to print ordinary text.To be on the safe side you should always provide an explicit carriage-control character at thestart of each format speci�cation and after each slash. Special care is needed in formats whichuse forced reversion. Normal single spacing is obtained with a blank, conveniently produced bythe 1X edit descriptor. If you forget and accidentally print a number at the start of each recordwith a leading digit 1 then each record will start a new page.The e�ect of + as a carriage-control character would be more useful if its e�ects were morepredictable. Some devices over-print the previous record (allowing the formation of compositecharacters like), others append to it, and some (including many visual display terminals) erasewhat was there before. In portable software there is no alternative but to ignore the + casealtogether.Standard Fortran can only use the four carriage-control characters listed in the table butmany systems use other symbols for special formatting purposes, such as setting vertical spacing,changing fonts, and so on. One extension which is widely available is the use of the currencysymbol $ to suppress carriage-return at the end of the line. This can be useful when producingterminal prompts as it allows the reply to be entered on the same line. There is, unfortunately,no way of doing this in Standard Fortran.The rules for list-directed output ensure that the lines are single-spaced by requiring at leastone blank at the start of every record.

10 INPUT/OUTPUT FACILITIES 10410.12 Input/Output Statements and KeywordsThe I/O statements fall into three groups:� The data transfer statements READ and WRITE.� The �le connection statements OPEN, CLOSE, and INQUIRE.� The �le positioning statements REWIND and BACKSPACE.All these statements have a similar general form (except that only the READ and WRITEstatements can have a data-transfer list):READ(control-list) input-listWRITE(control-list) output-listThe items in each list are separated by commas. Those in the control list are usually speci�edby keywords, in which case the order does not matter, although it is conventional to have theunit identi�er �rst. For compatibility with Fortran66, if the unit identi�er does come �rst thenthe keyword UNIT= may be omitted. Furthermore, when this keyword is omitted in READ andWRITE statements and the format identi�er is second its keyword may also be omitted. Thusthese two statements are exactly equivalent:READ(UNIT=1, FMT=*, ERR=999) AMPS, VOLTS, HERTZREAD(1, *, ERR=999) AMPS, VOLTS, HERTZUse of this abbreviated form is a matter of taste: for the sake of clarity the keywords will all beshown in other examples.Many of the keywords in the control-list can take a character expression as an argument: insuch cases any trailing blanks in the value will be ignored. This makes it easy to use charactervariables to specify �le names and characteristics.There is one general restriction on expressions used in all I/O statements: they must not callexternal functions which themselves execute further I/O statements. This restriction avoids thepossibility of recursive calls to the I/O system.10.13 OPEN StatementThe OPEN statement is used to connect a �le to an I/O unit and describe its characteristics. Itcan open an existing �le or create a new one. If the unit is already connected to another �lethen this is closed before the new connection is made, so that it is impossible to connect two�les simultaneously to the same unit. It is an error to try to connect more than one unit simul-taneously to the same �le. In the special case in which the unit and �le are already connected toeach other, the OPEN statement may be used to alter the properties of the connection, althoughin practice only the BLANK= (and sometimes RECL=) values can be changed in this way.The Fortran Standard does not specify the �le position when an existing sequential �leis opened. Although most operating systems behave sensibly, in portable software a REWINDstatement should be used to ensure that the �le is rewound before you read it.The general form of the OPEN statement is just:OPEN(control-list)The control-list can contain any of the following items in any order:

10 INPUT/OUTPUT FACILITIES 105UNIT=integer-expression species the I/O unit number which must be zero or above; the upperlimit is system-dependent, typically 99 or 255. The unit identi�er must always be given,there is no default value.STATUS=character-expression describes or speci�es the �le status. The value must be one of:'OLD' The �le must exist.'NEW' The �le must not already exist, a new �le is created.'SCRATCH' An unnamed temporary �le is created; it is deleted automaticallywhen the program exits.'UNKNOWN' The e�ect is system-dependent, but usually means that an old �lewill be used if one exists, otherwise a new �le will be created.The default value is 'UNKNOWN', but it is unwise to omit the STATUS keyword because thee�ect of 'UNKNOWN' is so ill-de�ned.FILE=character-expression speci�es the �le-name (but any trailing blanks will be ignored). Theforms of �le-name acceptable are system-dependent: a complete �le-speci�cation on someoperating systems may include the device, user-name, directory path, �le-type, versionnumber etc. and may require various punctuation marks to separate these. In portablesoftware, where the name has to be acceptable to a variety of operating systems, shortand simple names should be used. Alternatively the FILE= identi�er may be a charactervariable (or array element) so that the user can choose a �le-name at run-time. There is nodefault for the �le-name so one should be speci�ed in all cases unless STATUS='SCRATCH'in which case the �le must not be named.ACCESS=character-expression speci�es the �le access method. The value may be either:'SEQUENTIAL' a sequential �le: this is the default.'DIRECT' a direct-access �le: in this case the RECL= keyword is also needed.FORM=character-expression speci�es the record format. The value may be either:'FORMATTED' the default for a sequential �le.'UNFORMATTED' the default for a direct-access �le.RECL=integer-expression speci�es the record length. This must be given for a direct-access �lebut not otherwise. The record-length is measured in characters for a formatted �le, but isin system-dependent units (often numeric storage units) for an unformatted �le.BLANK=character-expression speci�es how embedded and trailing blanks in numerical input�elds of formatted �les are to be treated (in the absence of explicit format descriptors BNor BZ). The value may be either:'NULL' blanks treated as nulls, i.e. ignored: the default.'ZERO' blanks treated as zeros.The default value is likely to be the sensible choice in all cases.IOSTAT=integer-variable (or array element) returns the I/O status code after execution of theOPEN statement. This will be zero if no error has occurred, otherwise it will return asystem-dependent positive value.ERR=label transfers control to the labelled executable statement in the same program unit inthe event of an error.

10 INPUT/OUTPUT FACILITIES 10610.14 CLOSE StatementThe CLOSE statement is used to close a �le and break its connection to a unit. The unit and the�le (if it still exists) are then free for re-use in any way. If the speci�ed unit is not connected toa �le the statement has no e�ect. The general form of the statement is:CLOSE(control-list)where the control-list may contain the following items:UNIT=integer-expression speci�es the unit number to close (the same as in the OPEN statement).STATUS=character-expression speci�es the status of the �le after closure. The expression musthave a value of either: 'KEEP' for the �le to be preserved, or 'DELETE' for the �leto be deleted after closure. The default is STATUS='KEEP' except for �les opened withSTATUS='SCRATCH': such �les are always deleted after closure and STATUS='KEEP' is notpermitted.IOSTAT=integer-variable and ERR=label are both permitted, as in the OPEN statement (but notmuch can go wrong with a CLOSE statement).10.15 INQUIRE StatementThe INQUIRE statement can be used in two slightly di�erent forms:INQUIRE(UNIT= integer-expression, inquire-list)INQUIRE(FILE= em character-expression, inquire-list)The �rst form, an inquire by unit, returns information about the unit and, if it is connected toa �le, about the �le as well. If it is not connected to a �le then most of the arguments will beunde�ned or return a value of 'UNKNOWN' as appropriate.The second form, inquire by �le, can always be used to �nd out whether a named �le exists,i.e. can be opened by a Fortran program. Any trailing blanks in the character expression areignored, and the forms of �le-name acceptable are, as in the OPEN statement, system-dependent.If the �le exists and is connected to a unit then much more information can be obtained.The inquire-list may contain any of the items below. Note that all of them (except forERR=label) return information by assigning a value to a named variable (or array element).The normal rules of assignment statements apply, so that so that character items may have anyreasonable length will return a value which is padded out with blanks to its declared length ifnecessary.IOSTAT=integer-variable and ERR=label can both be used in the same way as in OPEN or CLOSE;note that they detect errors during the execution of the INQUIRE statement itself, and donot reect the state of the �le or unit which is the subject of the inquiry.EXIST=logical-variable sets the variable (or array-element) to .TRUE. if the speci�ed unit or �leexists, or .FALSE. if it does not. A unit exists if it has a number in the permitted range.A �le exists if it can be used in an OPEN statement. A �le may appear not to exist merelybecause the operating system prevents its use, for example because a password is neededor because some other user has already opened it.OPENED=logical-variable sets the variable to .TRUE. if the speci�ed unit (or �le) is currentlyconnected to a �le (or unit) in the program.

10 INPUT/OUTPUT FACILITIES 107NUMBER=integer-variable returns the unit number of a �le which is connected to the variable;otherwise it becomes unde�ned.NAME=character-variable returns the �le-name to the variable if the �le has a name; if not itbecomes unde�ned. In the case of an inquire by �le the name may not be the same as thatspeci�ed using FILE= (because a device-name or directory path may have been added) butthe name returned will always be suitable for use in an OPEN statement.ACCESS=character-variable returns the record access-method, either 'SEQUENTIAL' or 'DIRECT'if the �le is connected; if it is not connected the variable becomes unde�ned.SEQUENTIAL=character-variable returns 'YES' if the �le can be opened for sequential access,'NO' if it cannot, and 'UNKNOWN' otherwise.DIRECT=character-variable returns 'YES' if the �le can be opened for direct access, 'NO' if itcannot, and 'UNKNOWN' otherwise.FORM=character-variable returns 'FORMATTED' if the �le is connected for formatted access,'UNFORMATTED' if it is connected for unformatted access, or becomes unde�ned if there isno connection.FORMATTED=character-variable returns 'YES' if formatted access is permitted, 'NO' if it is not,or 'UNKNOWN' otherwise.UNFORMATTED=character-variable returns 'YES' if unformatted access is permitted, 'NO' if it isnot, or 'UNKNOWN' otherwise.RECL=integer-variable returns the record length if the �le is connected for direct-access butbecomes unde�ned otherwise. Note that the units are characters for formatted �les, butare system-dependent for unformatted �les.NEXTREC=integer-variable returns a number which is one higher than the last record read orwritten if the �le is connected for direct access. If it is connected for direct access butno records have been transferred, the variable returns one. If the �le is not connected fordirect access the variable becomes unde�ned.BLANK=character-variable returns 'NULL' or 'BLANK' if the �le is connected for formatted accessaccording to the way embedded and trailing blanks are to be treated. In other cases itbecomes unde�ned.10.16 READ and WRITE StatementsThe READ statement reads information from one or more records on a �le into a list of variables,array elements, etc. The WRITE statement writes information from a list of items which mayinclude variables, arrays, and expressions and produces one or more records on a �le. Each READor WRITE statement can only transfer one record on an unformatted �le but on formatted �les,including internal �les, more than one record may be transferred, depending on the contents ofthe format speci�cation.The two statements have the same general form:READ(control-list) data-listWRITE(control-list) data-list

10 INPUT/OUTPUT FACILITIES 108The control-list must contain a unit identi�er; the other items may be optional depending onthe type of �le. The data-list is also optional: if it is absent the statement transfers one record(or possibly more under the control of a format speci�cation).Unit Identi�erThis may have any of the following forms:UNIT= integer-expression The value of the expression must be zero or greater and must refer toa valid I/O unit.UNIT=* For the standard pre-connected input or output �le.UNIT=internal-�leThe internal-�le may be a variable, array-element, substring, or array of typecharacter, see section 10.3.Note that the keyword UNIT= is optional if the unit identi�er is the �rst item in the controllist.Format Identi�erA format identi�er must be provided when using a formatted (or internal) �le but not otherwise.It may have any of the following forms:FMT=label The label of a FORMAT statement in the same program unit.FMT=format The format may be a character expression or character array containing a completeformat speci�cation (section 10.6).FMT=* For list-directed formatting (section 10.10).Note that the keyword FMT= is also optional if the format identi�er is the second item in thecontrol list and the �rst item is a unit identi�er speci�ed without its keyword.Record NumberA record number identi�er must be provided for direct-access �les but not otherwise. It has theform:REC=integer-expressionThe record number must be greater than zero; for READ it must refer to a record which exists.Error and End-of-�le Identi�ersThese may be provided in any combination, but END=label is only valid when reading a sequentialor internal �le. See 10.5 for more information.END=labelERR=labelIOSTAT=integer-variable

10 INPUT/OUTPUT FACILITIES 109The data list of a READ statement may contain variables, array-elements, character-substrings,or complete arrays of any data type. An array-name without subscripts represents all theelements of the array; this is not permitted for assumed-size dummy arguments in procedures(because the array size is indeterminate). The list may also contain implied DO-loops (explainedbelow).The data list of a WRITE statement may contain any of the items permitted in a READ statementand in addition expressions of any data type. As in all I/O statements, expressions must notthemselves involve the execution of other I/O statements.Implied DO-loopsThe simplest and most e�cient way to read or write all the elements of an array is to put itsname, unsubscripted, in the data-transfer list. In the case of a multi-dimensional array theelements will be transferred in the normal storage sequence, with the �rst subscript varyingmost rapidly.An implied-DO loop allows the elements to be transferred selectively or in some non-standardorder. The rules for an implied-DO are similar to that of an ordinary DO-loop but the loop formsa single item in the data-transfer list and is enclosed by a pair of parentheses rather than by DOand CONTINUE statements. For example:READ(UNIT=*, FMT=*) (ARRAY(I), I= IMIN, IMAX)WRITE(UNIT=*, FMT=15) (M, X(M), Y(M), M=1,101,5)15 FORMAT(1X, I6, 2F12.3)A multi-dimensional array can be printed out in a transposed form. The next example outputsan array X(100,5) but with 5 elements across and 100 lines vertically:WRITE(UNIT=*, FMT=5) (I,I=1,5),$ ((L,X(L,I),I=1,5),L=1,100)5 FORMAT(1X,'LINE', 5I10, 100(/,1X,I4, 5F10.2))The �rst loop writes headings for the �ve columns, then the double loop writes a line-numberfor each line followed by �ve array elements. Note that the parentheses have to be matched andthat a comma is needed after the inner right-parenthesis since the inner loop is just an item inthe list contained in the outer loop.The implied DO-loop has the general form:(data-list, loop-variable = start, limit, step)where the rules for the start, limit, and step values are exactly as in an ordinary DO statement.The loop-variable (normally an integer) may be used within the data-list and this list may, inturn, include further complete implied-DO lists.If an error or end-of-�le condition occurs in an implied DO-loop then the loop-control variablewill be unde�ned on exit; this means that an explicit DO-loop is required to read an inde�nitelist of data records and exit with knowledge of how many items were actually input.10.17 REWIND and BACKSPACE StatementsThese �le-positioning statements may only be used on external sequential �les; most systemswill restrict them to �les stored on suitable peripheral devices such as discs or tapes.

11 DATA STATEMENT 110REWIND repositions a �le to the beginning of information so that the next READ statement willread the �rst record; if a WRITE statement is used after REWIND all existing records on the �leare destroyed. REWIND has no e�ect if the �le is already rewound. If a REWIND statement is usedon a unit which is connected but does not exist (e.g. a pre-connected output �le) it creates the�le.BACKSPACE moves the �le position back by one record so that the record can be re-read orover-written. There is no e�ect if the �le is already positioned at the beginning of informationbut it is an error to back-space a �le which does not exist. It is also illegal to back-space overrecords written by list-directed formatting (because the number of records produced each timeis system-dependent). A few operating systems �nd it di�cult to implement the BACKSPACEstatement directly and actually manage it only by rewinding the �le and spacing forward to theappropriate record. It is sometimes possible to avoid backspacing a �le by allocating bu�erswithin the program and, for a formatted �le, using an internal �le READ and WRITE statements.These statements have similar general forms:REWIND(control-list)BACKSPACE(control-list)where the control-list may contain:UNIT=integer-expressionIOSTAT=integer-variableERR=labelThe unit identi�er is compulsory, the others optional. If only the unit identi�er is used then (forcompatibility with Fortran66) an abbreviated form of the statement is permitted:REWIND integer-expressionBACKSPACE integer-expressionwhere the integer expression identi�es the unit number.11 DATA StatementThe DATA statement is used to specify initial values for variables and array elements. The DATAstatement is non-executable, but in a main program unit it has the same e�ect as a set ofassignment statements at the very beginning of the program. Thus in a main program a DATAstatement like this:DATA LINES/625/, FREQ/50.0/, NAME/'PAL'/could replace several assignment statements:LINES = 625FREQ = 50.0NAME = 'PAL'This is more convenient, especially when initialising arrays, and e�cient, since the work isdone when the program is loaded.In a procedure, however, these two methods are not equivalent, especially in the case of itemswhich are modi�ed as the procedure executes. A DATA statement only sets the values once at thestart of execution, whereas assignment statements will do so every time the procedure is called.

11 DATA STATEMENT 111It is important to distinguish between the DATA and PARAMETER statements. The DATA state-ment merely speci�es an initial value for a variable (or array) which may be altered during thecourse of execution. The PARAMETER statement speci�es values for constants which cannot bechanged without recompiling the program. If, however, you need an array of constants, for whichthere is no direct support in Fortran, you should use an ordinary array with a DATA statementto initialise its elements (and take care not to corrupt the contents afterwards).11.1 De�ned and Unde�ned ValuesThe value of each variable and array element is unde�ned at the start of execution unless it hasbeen initialised with a DATA statement. An unde�ned value may only be used in executablestatements in ways which cause it to become de�ned. An item can become de�ned by its use inany of the following ways:� on the left-hand side of an assignment statement,� as the control variable of a DO statement,� in the input list of a READ statement,� as the internal �le identi�er of a WRITE statement,� as the I/O status identi�er in an I/O statement,� in an INQUIRE statement except as �le or unit number,� in a procedure call provided that the corresponding dummy argument is de�ned beforethe procedure returns control.An unde�ned variable must not be used in any other way. Errors caused by the inadvertentuse of unde�ned values are easy to make and sometimes have very obscure e�ects. It is important,therefore, to identify every item which needs to be initialised and provide a suitable set of DATAstatements.Modern operating systems often clear the area of memory into which they load a programto prevent unauthorized access to the data used in the preceding job. A few operating systemspreset their memory to a bit-pattern which corresponds to an illegal numerical value: this isa very helpful diagnostic facility since whenever an unde�ned variable is used in an expressionit generates an error at run time. Other systems merely set their memory to zero: this makesit more di�cult to track down the use of inde�ned variables and they may only come to lightwhen a program is transported to another system. To rely on unde�ned variables and arrayshaving an initial value of zero is to leave the program completely at the mercy of changes to theoperating system.11.2 Initialising VariablesThe simplest form of the DATA statement consists of a list of the variable names each followedby a constant enclosed in a pair of slashes:DOUBLE PRECISION EPOCHLOGICAL OPENEDCHARACTER INFILE*20DATA EPOCH/1950.0D0/, OPENED/.TRUE./, INFILE/'B:OBS.DAT'/

11 DATA STATEMENT 112Note that DATA statements must follow all speci�cation statements. An alternative form isto give a complete list of names can be given �rst and followed by a separate list of constants:DATA EPOCH, OPENED, INFILE / 1950.0D0, .TRUE., 'B:OBS.DAT'/When there are many items to be initialised it is a matter of taste whether to use severalDATA statements or to use one with many continuation lines. It is, of course, illegal to have thesame name appearing twice.Character variables can be initialised in sections using the substring notation if this is moreconvenient:\begin{verbatim}CHARACTER*52 LETTERDATA LETTER(1:26)/'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/,$ LETTER(27:) /'abcdefghijklmnopqrstuvwxyz'/If the length of the character constant di�ers from that of the variable then the string istruncated or padded with blanks as in an assignment statement. The type conversion rules ofassignment statements also apply to arithmetic items in DATA statements.11.3 Initialising ArraysThere are several ways of using DATA statements to initialise arrays, all of them simpler andmore e�cient than the equivalent set of DO-loops. Perhaps the most common requirement is toinitialise all the elements of an array: in this case the array name can appear without subscripts.If several of the elements are to have the same initial value a repeat count can be precede anyconstant:REAL FLUX(1000)DATA FLUX / 512*0.0, 488*-1.0 /The total number of constants must equal the number of array elements. The constantscorrespond to the elements in the array in the normal storage sequence, that is with the �rstsubscript varying most rapidly.Named constants are permitted, but not constant expressions. The repeat count may be aliteral or named integer constant. To initialise a multi-dimensional array with parameterisedarray bounds it is necessary to de�ne another integer constant to hold the total number ofelements:PARAMETER (NX = 800, NY = 360, NTOTAL = NX * NY)DOUBLE PRECISION SCREEN(NX,NY), ZEROPARAMETER (ZERO = 0.0D0)DATA SCREEN / NTOTAL * ZERO /If only a few array elements are to be initialised they can be listed individually:REAL SPARSE(50,50)DATA SPARSE(1,1), SPARSE(50,50) / 1.0, 99.99999 /

11 DATA STATEMENT 113The third, and most complicated, option is to use an implied-DO loop. This operates inmuch the same way as an implied-DO in an I/O statement:INTEGER ODD(10)DATA (ODD(I),I=1,10,2)/ 5 * 43/DATA (ODD(I),I=2,10,2)/ 5 * 0 /This example has initialised all the odd numbered elements to one value and all the evennumbered elements to another. Note that the loop control variable (I in this example) hasa scope which does not extend outside the section of the DATA statement in which it is used.Any integer variable may be used as a loop control index in a DATA statement without e�ectselsewhere; the value of I itself is not de�ned by these statements.When initialising part of a multi-dimensional array it may occasionally be useful to nestDO-loops like this:DOUBLE PRECISION FIELD(5,5)DATA ((FIELD(I,J),I=1,J), J=1,5) / 15 * -1.0D0 /This speci�es initial values only for the upper triangle of the square array FIELD.11.4 DATA Statements in ProceduresIn procedures, DATA statements perform a role for which assignment statements are no substitute.It is quite often necessary to arrange for some action to be carried out at the start of the �rst callbut not subsequently, such as opening a �le or initialising a variable or array which accumulatesinformation during subsequent calls.If information is preserved in a local variable or array from one invocation to another a SAVEstatement (described in section 9.11) is also needed. Indeed, in general any object initialised ina DATA statement in a procedure also needs to be named in a SAVE statement unless its value isnever altered.In the next example the procedure opens a data �le on its �rst call, using a logical variableOPENED to remember the state of the �le.SUBROUTINE LOOKUP(INDEX, RECORD)INTEGER INDEXREAL RECORDLOGICAL OPENEDSAVE OPENEDDATA OPENED / .FALSE. /*On first call OPENED is false so open the file.IF(.NOT. OPENED) THENOPEN(UNIT=57, FILE='HIDDEN.DAT', STATUS='OLD',$ ACCESS='DIRECT', RECL=100)OPENED = .TRUE.END IFREAD(UNIT=57, REC=INDEX) RECORDEND

12 COMMON BLOCKS 114Here, for simplicity, the I/O unit number is a literal constant. The procedure would be moremodular if the unit number were also an argument of the procedure or if it contained some code,using the INQUIRE statement, to determine for itself a suitable unused unit number.There is, of course, no corresponding way to determine which is the last call to the procedureso that the �le can be closed, but this is not strictly necessary as the Fortran system closes all�les automatically when the program exits.Note that DATA statements cannot be used to initialise variables or arrays which are dummyarguments of a procedure, nor the variable which has the same name as the function.11.5 General RulesThe general form of the DATA statement is:DATA nlist / clist /, nlist / clist /, ...Where nlist is a list of variable names, array names, substring names, and implied-DO lists, andclist is a list of items which may be literal or named constants or either of these preceded bya repeat-count and an asterisk. The repeat-count can also be an unsigned integer constant ornamed constant.The comma which precedes each list of names except the �rst is optional. An implied-DOlist has the general form:(dlist, intvar = start, limit, step)Where em dlist is a list of implied-DO lists and array elements; intvar is an integer variablecalled the loop-control variable; start, limit, and step are integer expressions in which all theoperands must be integer constants or loop-control variables of outer implied-DO lists.DATA statements cannot be used to initialise items in the blank common block; items in namedcommon blocks can only be initialised within a BLOCK DATA program unit (see section 12.4).The DATA statements in each program unit must follow all speci�cation statements but theycan be interspersed with executable statements and statement function statements. It is, how-ever, best to follow the usual practice of putting all DATA statements before any of the exe-cutable statements.12 Common BlocksA common block is a list of variables and arrays stored in a named area which may be accesseddirectly in more than one program unit. Common blocks are mainly used to transfer informationfrom one program unit to another; they can be used in as an alternative to argument-list transfersor in addition to them.Common blocks are sometimes used to �t large programs into small computers by arrangingfor several program units to share a common pool of memory. This is not a recommendedprogramming practice and is likely to become redundant with the spread of virtual-memoryoperating systems.The name of a common block is an external name which must be di�erent from all otherglobal names, such as those of procedures, in the executable program. The variables and arraysstored with the block cannot be initialised in the normal way, but only in a BLOCK DATA programunit which was invented especially for this purpose.

12 COMMON BLOCKS 11512.1 Using Common BlocksIn most cases the best way to pass information from one program unit to another is to usethe procedure argument list mechanism. This preserves the modularity and independence ofprocedures as much as possible. Argument lists are, however, less satisfactory in a group ofprocedures forming a package which have to share a large amount of information with eachother. Procedure argument lists then tend to be come long, cumbersome, and even ine�cient.If this package of procedures is intended for general use it is quite important to keep the externalinterface as uncomplicated as possible. This can be achieved by using the procedure argumentlists only for import of information from and export to the rest of the program, and handlingthe communications between one procedure in the package and another with common blocks.The user is then free to ignore the internal workings of the package.For example, in a simple package to handle a pen-plotter you may want to provide simpleprocedure calls such as:CALL PLOPEN Initialise the plotting deviceCALL SCALE(F) Set the scaling factor to F.CALL MOVE(X,Y) Move the pen to position (X,Y)CALL DRAW(X,Y) Draw a line from the last pen position to (X,Y).These procedures clearly have to pass information from one to another about the current penposition, scaling factor, etc. A suitable common block de�nition might look like this:COMMON /PLOT/ OPENED, ORIGIN(2), PSCALE, NUMPENLOGICAL OPENEDINTEGER NUMPENREAL PSCALE, ORIGINSAVE /PLOT/These speci�cation statements would be needed in each procedure in the package.Common Block NamesA program unit can access the contents of any common block by quoting its name in a COMMONstatement. Common block names are always enclosed in a pair of slashes and can only be used inCOMMON and SAVE statements. The common block itself has no data type and has a global namewhich must be distinct from the names of all program units. The name should also be distinctfrom all local names in each program units which access the block. Each program unit canmake use of any number of di�erent common blocks. There is also a special blank or un-namedcommon block with unique properties which are covered in section 12.2 below.The variables and arrays within a common block do not have any global status: they areassociated with items in blocks bearing the same name in other program units only by theirposition within the block. Thus, if in one program unit speci�es:COMMON /OBTUSE/ X(3)and in another:COMMON /OBTUSE/ A, B, C

12 COMMON BLOCKS 116then, assuming the data types are the same, X(1) corresponds to A, X(2) to B, and X(3) toC. The COMMON statements here are e�ectively setting up di�erent names or aliases for the sameset of memory locations. The data types do not have to match provided the overall length is thesame, but it is generally only possible to transfer information from one program unit to another ifthe corresponding items have the same data type. If they do not, when one item becomes de�nedall names for the same location which have a di�erent data type become unde�ned. There isone minor exception to this rule: information may be transferred from a complex variable (orarray element) to two variables of type real (or vice-versa) since these are directly associatedwith its real and imaginary parts.Usually it is necessary to arrange for corresponding items to have identical data types; it alsominimises confusion if the same symbolic names are used as well. The simplest way to achievethis is to use an INCLUDE statement, if your system provides one. The include-�le should containnot only the COMMON statement but also all the associated type and SAVE statements which arenecessary. It is, of course, still necessary to recompile every program unit which accesses thecommon block whenever its de�nition is altered signi�cantly.Declaring ArraysThe bounds of an array can be declared in the COMMON statement itself, or in a separate type orDIMENSION statement, but only in one of them. Thus:COMMON /DEMO/ ARRAY(5000)DOUBLE PRECISION ARRAYis exactly equivalent to:COMMON /DEMO/ ARRAYDOUBLE PRECISION ARRAY(5000)or even: COMMON /DEMO/ ARRAYDOUBLE PRECISION ARRAYDIMENSION ARRAY(5000)but the verbosity of the third form has little to recommend it.Data TypesThe normal data type rules apply to variables and arrays in each common block. A typestatement is not required if the initial letter rule would have the required e�ect, but typestatements are advisable, especially if the implied-type rules are anywhere a�ected by IMPLICITstatements. Type statements may precede or follow the COMMON statement. Similarly the lengthsof character items should be speci�ed in a separate type statement: these cannot be speci�edin the COMMON statement.Storage UnitsThe length of each common block is measured in storage units, as described in section 5.1.In summary, integer, real, and logical items occupy one numeric storage unit each; complex

12 COMMON BLOCKS 117and double precision items occupy two each. To maximise portability, character storage unitsare considered incommensurate with numerical storage units. For this reason character andnon-character items cannot be mixed in the same common block.In practice this often means that two common blocks are needed to hold a particular datastructure: one for the character items and one for all the others. If, in the �rst example, ithad been necessary for the plotting package to store a plot title this would have to appear in aseparate common block such as:COMMON /PLOTC/ TITLECHARACTER TITLE*40SAVE /PLOTC/It is good practice to use related names for the blocks to indicate that the character andnon-character items are used in conjunction.The length of a named common block must be the same in each program unit in which itappears. Obviously the easiest way to ensure this is to make the common block contents identicalin each program unit. Note, however, that there is no requirement for data types to match, orfor them to be listed in any particular order, provided the items are not used for informationtransfer, and provided the total length of the block is the same in each case. Thus these commonblocks are both 2000 numerical storage units in length:COMMON /SAME/ G(1000)DOUBLE PRECISION GCOMMON /SAME/ A, B, C, R(1997)REAL A, RLOGICAL BINTEGER CItems in a common block are stored in consecutive memory locations. Unfortunately there afew computer systems which require double precision and complex items to be stored in even-numbered storage locations: these may �nd it hard to cope with blocks which contain a mixtureof data types. Machines with this defect can nearly always be placated by arranging for alldouble precision and complex items to come at the beginning of each block.SAVE Statements and Common BlocksItems in common blocks may become unde�ned when a procedure returns control to the callingunit just like local variables and arrays. This will not, however, occur in the case of the blankcommon block nor in any common block which is also declared in a program unit which is higherup the current chain of procedure calls. Since the main program unit is always at the top of thechain any common block declared in the main program can never become unde�ned in this way.In all other cases it is prudent to use SAVE statements.The individual items in common blocks cannot be speci�ed in a SAVE statement, only thecommon block name itself. Thus:SAVE /SAME/, /DEMO/

12 COMMON BLOCKS 118If a common block is saved in any program unit then it must be saved in all of them. TheSAVE statement ought therefore to be included with the COMMON and associated type statementsif INCLUDE statements are used. If the program is later modi�ed so that the common block isalso declared in the main program this will bring a SAVE statement into the main program unit,but although it then has no e�ect, it does no harm.RestrictionsThe dummy arguments of a procedure cannot be members of a common block nor, in a function,can the variable which has same name as the function. There are also some restrictions on theuse of common block items as actual arguments of procedure calls because of the possibility ofmultiple de�nition. For example, if a procedure is de�ned like this:SUBROUTINE SILLY(ARG)COMMON /BLOCK/ COMAnd the same common block is also used in the calling unit, with a common block item asthe actual argument, such as:PROGRAM DUMMYCOMMON /BLOCK/ VALUE*... CALL SILLY(VALUE)Then both ARG and COM within the subroutine SILLY are associated with the same item,VALUE, and it is therefore illegal to assign a new value to either of them.12.2 Blank Common BlocksCommon blocks are sometimes also used to reduce the total amount of memory used by aprogram by arranging for several program units to share the same set of memory locations.This is a di�cult and risky procedure which should not be attempted unless all else fails.Most Fortran systems operate a storage allocation system which is completely static: eachprogram unit has a separate allocation of memory for its local variables and arrays. If severalprocedures each need to use large arrays internally the total amount of memory occupied bythe program may be rather large. If a set of procedures can be identi�ed which are invokedin sequence, rather than one calling another, it may be feasible to reduce the total memoryallocation by arranging for them to share a storage area. Each will use the same common blockfor their internal array space.Named common blocks are required to have the same length in each program unit: if theyare used it is necessary to work out which one needs the most storage and pad out all the othersto same length. An alternative is to the use the special blank (or un-named) common blockwhich has the useful property that it may have a di�erent length in di�erent program units.In one program unit, for example, you could specify:COMMON // DUMMY(10000)and in another

12 COMMON BLOCKS 119COMPLEX SERIES(512,512), SLICE(512), EXPECT(1024)COMMON // SERIES, SLICE, EXPECTThe blank common block has two other special properties. Firstly it cannot be initialised bya DATA statement even within a BLOCK DATA program unit (but this is not a serious limitationfor a block used just for scratch storage). Secondly items within the blank common block neverbecome unde�ned as a result of a procedure exit. For this reason the blank common blockcannot be speci�ed in a SAVE statement.12.3 COMMON StatementA program unit may contain any number of COMMON statements, each of which can de�ne contentsfor any number of di�erent common blocks. COMMON statements are speci�cation statements andhave a general form:COMMON / name/ list-of-items , / name / list-of-items ...Each name is de�ned as a common block name, which has global scope. The Fortran Standardallows it to use the same name as an intrinsic function, a local variable, or local array but notthat of a named constant or an intrinsic function. Each list of items can contain names ofvariables and arrays. The array name may be followed by a dimension speci�cation providedthat each array is only dimensioned once in each program unit. The comma shown before thesecond and subsequent block-name is optional.The name of the blank common block is normally speci�ed as two consecutive slashes (ignor-ing any intervening blanks) but if it is the �rst block in the statement then the pair of slashesmay be omitted.The contents of a common block are a concatenation of the all the de�nitions for it in theprogram unit. Thus:COMMON /ONE/ A, B, C, /TWO/ ALPHA, BETA, GAMMACOMMON /TWO/ DELTAde�nes two blocks, /ONE/ contains three items while /TWO/ contains four of them.In procedures, variables which are dummy arguments or which are the same as the functionname cannot appear in common blocks.12.4 BLOCK DATA Program UnitsThe block data program unit is a special form of program unit which is required only if itis necessary to specify initial values for variables and arrays in named common blocks. Theprogram unit starts with a BLOCK DATA statement, ends with an END statement, and containsonly speci�cation and DATA statements. Comment lines are also permitted. The block dataprogram unit is not executable and it is not a procedure.The next example initialises the items in the common block for the plotting package used insection 12.1, so that the initial pen position is at the origin, the scaling factor starts at one, andso on. Thus a suitable program unit would be:BLOCK DATA SETPLT*SETPLT initialises the values used in the plotting package.

13 OBSOLETE AND DEPRECATED FEATURES 120COMMON /PLOT/ OPENED, ORIGIN(2), PSCALE, NUMPENLOGICAL OPENEDINTEGER NUMPENREAL PSCALE, ORIGINSAVE /PLOT/DATA OPENED/.FALSE./, ORIGIN/2*0.0/, PSCALE/1.0/DATA NUMPEN/-1/ENDA block data unit can specify initial values for any number of named common blocks (blankcommon cannot be initialised). Each common block must be complete but it is not necessaryto specify initial values for all of the items within it. There can be more than one block dataprogram unit, but a given common block cannot appear in more than one of them.For compatibility with Fortran66 it is also possible to have one un-named block data programunit in a program.Linking Block Data Program UnitsIf, when linking a program, one of the modules containing a procedure is accidentally omittedthe linker is almost certain to produce an error message. But, unless additional precautions aretaken, this will not occur if a block data subprogram unit is omitted. The program may evenappear to work without it, but is likely to produce the wrong answer.There is a simple way to guard against this possibility: the name of the block data unitshould be speci�ed in an EXTERNAL statement in at least some of the program units in which thecommon block is used. There is no harm in declaring it in all of them. This ensures that a link-time reference will be generated if any of these other program units are used. There is a slightsnag to this technique if an INCLUDE statement is used to bring the common block de�nitioninto each program unit including the block data unit. In order to avoid a self-reference, theinclude-�le should not contain the EXTERNAL statement.Despite this slight complication, this is a simple and valuable precaution. It also makes ispossible to hold block data units on object libraries and retrieve them automatically when theyare required, just like all other types of subprogram unit.13 Obsolete and Deprecated FeaturesNone of the features covered here should be used in new software: some of them are completelyobsolete, others have practical defects which make them unsuitable for use in well-structuredsoftware. These brief descriptions are provided only for the bene�t of programmers who haveto understand and update programs designed in earlier years.13.1 Storage of Character Strings in Non-character ItemsBefore the advent of the character data type it was possible to store text in arithmetic variablesand arrays, although only very limited manipulation was possible. The number of characterswhich could be stored in each item was entirely system-dependent. One side-e�ect is that manysystems still allow the A format descriptor to match input/output items of arithmetic types;

13 OBSOLETE AND DEPRECATED FEATURES 121this sometimes allows mismatches between data-transfer lists and format descriptors to passundetected.13.2 Arithmetic IF StatementThis is an executable statement with the form:IF(arithmetic-expression) label1, label2, label3It generally provides a three-way branch (but two of the labels may be identical for a two-waybranch). The expression may be an integer, real, or double-precision value: control is transferredto the statement attached to label1 if its value is negative, label2 if zero, or label3, if positive.13.3 ASSIGN and assigned GO TO StatementsThese two executable statements are normally used together. The ASSIGN statement assigns astatement label value to an integer variable. When this has been done the variable no longer hasan arithmetic value. If the label is attached to an executable statement the variable can only beused in an assigned GO TO statement; if attached to a FORMAT statement the variable can onlybe used in a READ or WRITE statement. The general forms of these statements are:ASSIGN label TO integer-variableGO TO integer-variable ,(label, label, ... label)In the assigned GO TO statement the comma and the entire parenthesised list of labels isoptional.Assigned GO TO can be used to provide a linkage to and from a section of a program unitacting as an internal subroutine, but is not a very convenient or satisfactory way of doing this.13.4 PAUSE StatementPAUSE is an executable statement which halts the program in such a way that execution can beresumed in some way by the user (or on some systems by the computer operator). The generalforms of the statement are identical to those of STOP, for example:PAUSE 'NOW MOUNT THE NEXT TAPE'or PAUSE 54321PAUSE can be replaced by one WRITE and one READ statement: this is more exible and lesssystem-dependent.13.5 Alternate RETURNThe alternate RETURN mechanism can be used in subroutines (but not external functions) toarrange a transfer of control to some labelled statement on completion of a CALL statement. Inorder to use it the arguments of the CALL statement must include a list of labels, each precededby an asterisk. These labels are attached to points in the calling program unit at which executionmay resume after the CALL statement is executed. For example:

13 OBSOLETE AND DEPRECATED FEATURES 122CALL BAD(X, Y, Z, *150, *220, *390)The corresponding subroutine statement will have asterisks as dummy arguments for eachlabel speci�cation:SUBROUTINE BAD(A, B, C, *, *, *)The return point depends on the value of an integer expression given in the RETURN statement.Thus: RETURN 2will cause execution to be resumed at the statement attached to the second label argument,220 in this case. If the value of the integer expression in the RETURN statement is not in therange 1 to n (where there are n label arguments) or a plain RETURN statement is executed, thenexecution resumes at the statement after the CALL in the usual way.The mechanism can be used for error-handling but is not very exible as information cannotbe passed through more than one procedure level. It is better to use an integer argument toreturn a status value and use that with an IF (or even a computed GO TO statement) in thecalling program.13.6 ENTRY StatementENTRY statements can be used to specify additional entry points in external functions and subrou-tines. ENTRY is a non-executable statement which has the same form as a SUBROUTINE statement.An ENTRY statement may be used at any point in a procedure but all speci�cation statements re-lating to its dummy arguments must appear in the appropriate place with the other speci�cationstatements. If the main entry point is a SUBROUTINE statement than all alternative entry pointscan be called in the same way as subroutines; if it is a FUNCTION statement than all alternativeentry point names can be used as functions. If the main entry point is a character functionthen all the alternative entry points must also have that type. Alternative entry points mayhave di�erent lists of dummy arguments; it is up to the user to ensure that all those returninginformation to the calling program are properly de�ned before exit.The rules for the ENTRY statement are necessarily complicated so it is easy to make mistakes.It is generally better, or at least less unsatisfactory, to use a set of separate procedures whichshare information using common blocks.13.7 EQUIVALENCE StatementEQUIVALENCE is a speci�cation statement which causes two or more items (variables or arrays)to be associated with each other, i.e. to correspond to the same area of memory. Character itemscan only be associated with other character items; otherwise the data types do not have to match.As with common blocks, however, transfer of information is only permitted via associated itemsif their data types match. A special exception is made for a complex item which is associatedwith two real ones.EQUIVALENCE statements can be used fairly safely to provide a simple variable name as analias for a particular array element or to associate a character variable with an array of the samelength. For example:

13 OBSOLETE AND DEPRECATED FEATURES 123CHARACTER STRING*80, ARRAY(80)*1EQUIVALENCE (STRING, ARRAY)This slightly simpli�es access to a single character in the string as the form ARRAY(K) canbe used instead of STRING(K:K).The general form of the statement is:EQUIVALENCE (v, v, ... v), (v, v, ... v), ...where each v is a variable, array, array element, or substring. Dummy arguments of proce-dures (and variables which are external function names) cannot appear. An array name withoutsubscripts refers to the �rst element of the array. It is illegal to associate two or more elementsof the same array, directly or indirectly, or do anything which conicts with the storage sequencerules. Variables and arrays in common blocks can appear in EQUIVALENCE statements but thishas the e�ect of bringing all the associated items into the block. They can be used to extend thecontents of the block upwards, subject to the rules for common block length, but not downwards.Although the EQUIVALENCE statement does have a few legitimate uses it is usually encounteredin programs where the rules of Fortran are broken to obtain some special e�ect. Programs whichdo this are rarely portable.13.8 Speci�c Names of Intrinsic FunctionsSpeci�c names should be used instead of the generic name of an intrinsic function only if thename is to be the actual argument of a procedure call; the name then must also be declaredin an INTRINSIC statement. The following intrinsic functions cannot be used in this way, andtheir speci�c names are therefore completely obsolete.Obsolete speci�c name Preferred generic formIFIX, IDINT INTFLOAT, SNGL REALMAX0, AMAX1, DMAX1 MAXAMAX0, MAX1 MAX *MIN0, AMIN1, DMIN1 MINAMIN0, MIN1 MIN ** the functions AMAX0, MAX1, AMIN0, and MIN1 which have a data type di�erent from thatof their arguments can only be replaced by appropriate type conversion functions in addition toMAX or MIN.13.9 PRINT Statement and simpli�ed READThe PRINT statement can produce formatted or list-directed output on the standard pre-connectedoutput �le. Thus these two statements have exactly the same e�ect:PRINT fmt, data-listWRITE(*, fmt) data-listThe PRINT statement is limited in its functionality and misleading, since there is no necessityfor its output to appear in printed form.In a similar way there is a simpli�ed form of READ statement, so these have the same e�ect:

14 COMMON EXTENSIONS TO THE FORTRAN STANDARD 124READ fmt, data-listREAD(*, fmt) data-list13.10 END FILE StatementThe END FILE statement has the same general forms as REWIND and BACKSPACE:END FILE(UNIT=unit, ERR=label, IOSTAT=int-var)END FILE unitIt appends a special \end-�le" record to a sequential �le which is designed to trigger theend-of-�le detection mechanism on subsequent input. No further records can be written to the�le after this end-�le record, i.e. the next operation must be CLOSE, REWIND, or BACKSPACE.The statement seems to be superuous on almost all current systems since they can detectthe end of an input �le without its aid. The Fortran Standard requires that the end-�le record betreated as a physical record, so that after an end-of-�le condition has been detected an explicitBACKSPACE operation is required before any new data records are appended. This notion issomewhat arti�cial and not all systems implement it correctly. This is one of the few caseswhere a deliberate departure from the Fortran Standard can enhance portability.13.11 Obsolete Format DescriptorsThe data descriptor Dw.d is exactly equivalent to Ew.d on input; on output it is similar exceptthat the exponent will use the letter D instead of E. Real and double precision data items canbe read equally well by D, E, F, or G descriptors.The format descriptor nHstring is exactly equivalent to 'string' (where n is an un-signed integer constant giving the length of the string). When used with a formatted WRITEstatement the string is copied to the output record. The nH form does not require apostrophesto be doubled within the string but does require an accurate character count.14 Common Extensions to the Fortran StandardAlmost before the o�cial Standard (ANSI X3.9-1978) for Fortran77 had been de�ned, varioussoftware producers started to add their own favourite features. The US Department of Defenseissued in 1988 a supplement called MIL-STD-1753 setting out a list of extensions that it requiredFortran systems to support if they were to tender for DoD contracts. This requirement laterspread to other areas of Federal Government procurement, so these extensions are now almostuniversally provided and can be used with con�dence without reducing portability.14.1 MIL-STD-1753 ExtensionsIMPLICIT NONE statementThis statement says that there are no default data types in this program unit, so that all nameditems (variables, arrays, constants, and external functions) must have their data type speci�ed inan explicit type statement. It must appear before all these speci�cation statements and cannotbe used together with any other IMPLICIT statement in the same program unit. Although novice

15 APPENDIX A { LIST OF INTRINSIC FUNCTIONS 125programmers �nd it tedious to have to declare each name before using it, but the bene�ts areconsiderable in that mis-spelled names come to light much more easily, and most professionalprogrammers �nd it a worth-while investment.INCLUDE statementThe INCLUDE statement speci�es the name of another �le which contains some source code. Itis most often used to contain a set of speci�cation statements which are common to a numberof di�erent program units, for example COMMON blocks and their associated type statements, ora list of common constants such as �. The form of �le-name is, of course, system dependent. Inportable software it is prudent to choose a simple name which is likely to be acceptable to mostoperating systems. For example:INCLUDE 'trig.inc'\end{verbatime}where the file {\tt trig.inc} (or maybe {\tt TRIG.INC}) contains:\begin{verbatim}REAL PI, TWOPI, RTODPARAMETER (PI = 3.14159265, TWOPI=2.0*PI, RTOD=PI/180.0)If such constants are de�ned only once, it is much easier to ensure that they are correct. Similarlythe de�nition of a COMMON block in only one place ensures that its consistency throughout theprogram.DO-loops with END DOThe Fortran77 Standard seemed de�cient in pairing IF with END IF but not DO with END DO. Thisextension is widely available and helpful in that it avoids the need to use a di�erent statementlabel on each loop. For example:DO J = 1,NPTSSUM = SUM + X(I)SUMSQ = SUMSQ + X(I)**2END DOIt is good practice to indent the lines between the DO and END DO statements to make therepeated section obvious. The appearance of a statement label in such code usually marks thedestination of a GO TO statement, and alerts the programmer to some unusual alteration to thestandard sequence of operations. Where only labelled DO-loops are used, such exceptions areharder to spot.15 Appendix A { List of Intrinsic FunctionsThis table shows the number of arguments for each function and what data types are permitted.The data type codes are: I = Integer, R = Real, D = Double precision, X = Complex, C =Character, L = Logical, * means the result has the same data type as the argument(s). Notethat if there is more than one argument in such cases they must all have the same data type.

15 APPENDIX A { LIST OF INTRINSIC FUNCTIONS 126R = ABS(X) Takes the modulus of a complex number (i.e. the square-rootof the sum of the squares of the two components).* = ACOS(RD) Arc-cosine; the result is in the range 0 to +�R = AIMAG(X) Extracts the imaginary component of a complex number. UseREAL to extract the real component.* = ANINT(RD) Rounds to the nearest whole number.* = ATAN2(RD,RD) Arc-tangent of arg1/arg2 resolved into the correct quadrant,the result is in the range �� to +�. It is an error to haveboth arguments zero.C = CHAR(I) Returns Nth character in local character code table.X =CMPLX(IRDX,IRD) Converts to complex, second arg optional.X = CONJG(X) Computes the complex conjugate of a complex number.* = COS(RDX) Cosine of the angle in radians.D = DBLE(IRDX) Converts to double precision.* = DIM(IRD,IRD) Returns the positive di�erence of arg1 and arg2, i.e. if arg1> arg2 it returns (arg1 - arg2), otherwise zero.D = DPROD(R,R) Computes the double precision product of two real values.* = EXP(RDX) Returns the exponential, i.e. e to the power of the argument.This is the inverse of the natural logarithm.I = ICHAR(C) Returns position of �rst character of the string in the localcharacter code table.I = INDEX(C,C) Searches �rst string and returns position of second stringwithin it, otherwise zero.I = INT(IRDX) Converts to integer by truncation.I = LEN(C) Returns length of the character argument.L = LGE(C,C) Lexical comparison using ASCII character code: returns trueif arg1 >= arg2.L = LGT(C,C) Lexical comparison using ASCII character code: returns trueif arg1 > arg2.L = LLE(C,C) Lexical comparison using ASCII character code: returns trueif arg1 <= arg2.L = LLT(C,C) Lexical comparison using ASCII character code: returns trueif arg1 < arg2.* = LOG(RDX) Logarithm to base e (where e=2.718...).* = LOG10(RD) Logarithm to base 10.* = MAX(IRD,IRD,...) Returns the largest of its arguments.* = MIN(IRD,IRD,...) Returns the smallest of its arguments.* = MOD(IRD,IRD) Returns arg1 modulo arg2, i.e. the remainder after dividingarg1 by arg2.R = REAL(IRDX) Converts to real.* = SIGN(IRD,IRD) Performs sign transfer: if arg2 is negative the result is �arg1,if arg2 is zero or positive the result is arg1.* = SQRT(RDX) Square root.* = TAN(RD) Tangent of the angle in radians.

16 APPENDIX B { SPECIFIC NAMES OF GENERIC FUNCTIONS 12716 Appendix B { Speci�c Names of Generic FunctionsSpeci�c names are still needed when the function name is used as the actual argument of anotherprocedure. The speci�c name must then also be declared in an INTRINSIC statement. This tablelists all the speci�c names which are still useful in Fortran77. The other functions either do nothave generic names or cannot be passed as actual arguments.Generic Speci�c namesName INTEGER REAL DOUBLE PRECISION COMPLEXABS IABS ABS DABS CABSACOS ACOS DACOSAINT AINT DINTANINT ANINT DNINTASIN ASIN DASINATAN ATAN DATANATAN2 ATAN2 DATAN2COS COS DCOS CCOSCOSH COSH DCOSHDIM IDIM DIM DDIMEXP EXP DEXP CEXPLOG ALOG DLOG CLOGLOG10 ALOG10 DLOG10MOD MOD AMOD DMODNINT NINT IDNINTSIGN ISIGN SIGN DSIGNSIN SIN DSIN CSINSINH SINH DSINHSQRT SQRT DSQRT CSQRTTAN TAN DTANTANH TANH DTANH17 GNU Free Documentation LicenceGNU Free Documentation LicenseVersion 1.1, March 2000Copyright (C) 2000 Free Software Foundation, Inc.59 Temple Place, Suite 330, Boston, MA 02111-1307 USAEveryone is permitted to copy and distribute verbatim copiesof this license document, but changing it is not allowed.0. PREAMBLEThe purpose of this License is to make a manual, textbook, or otherwritten document "free" in the sense of freedom: to assure everyonethe effective freedom to copy and redistribute it, with or withoutmodifying it, either commercially or noncommercially. Secondarily,

17 GNU FREE DOCUMENTATION LICENCE 128this License preserves for the author and publisher a way to getcredit for their work, while not being considered responsible formodifications made by others.This License is a kind of "copyleft", which means that derivativeworks of the document must themselves be free in the same sense. Itcomplements the GNU General Public License, which is a copyleftlicense designed for free software.We have designed this License in order to use it for manuals for freesoftware, because free software needs free documentation: a freeprogram should come with manuals providing the same freedoms that thesoftware does. But this License is not limited to software manuals;it can be used for any textual work, regardless of subject matter orwhether it is published as a printed book. We recommend this Licenseprincipally for works whose purpose is instruction or reference.1. APPLICABILITY AND DEFINITIONSThis License applies to any manual or other work that contains anotice placed by the copyright holder saying it can be distributedunder the terms of this License. The "Document", below, refers to anysuch manual or work. Any member of the public is a licensee, and isaddressed as "you".A "Modified Version" of the Document means any work containing theDocument or a portion of it, either copied verbatim, or withmodifications and/or translated into another language.A "Secondary Section" is a named appendix or a front-matter section ofthe Document that deals exclusively with the relationship of thepublishers or authors of the Document to the Document's overall subject(or to related matters) and contains nothing that could fall directlywithin that overall subject. (For example, if the Document is in part atextbook of mathematics, a Secondary Section may not explain anymathematics.) The relationship could be a matter of historicalconnection with the subject or with related matters, or of legal,commercial, philosophical, ethical or political position regardingthem.The "Invariant Sections" are certain Secondary Sections whose titlesare designated, as being those of Invariant Sections, in the noticethat says that the Document is released under this License.The "Cover Texts" are certain short passages of text that are listed,as Front-Cover Texts or Back-Cover Texts, in the notice that says thatthe Document is released under this License.

17 GNU FREE DOCUMENTATION LICENCE 129A "Transparent" copy of the Document means a machine-readable copy,represented in a format whose specification is available to thegeneral public, whose contents can be viewed and edited directly andstraightforwardly with generic text editors or (for images composed ofpixels) generic paint programs or (for drawings) some widely availabledrawing editor, and that is suitable for input to text formatters orfor automatic translation to a variety of formats suitable for inputto text formatters. A copy made in an otherwise Transparent fileformat whose markup has been designed to thwart or discouragesubsequent modification by readers is not Transparent. A copy that isnot "Transparent" is called "Opaque".Examples of suitable formats for Transparent copies include plainASCII without markup, Texinfo input format, LaTeX input format, SGMLor XML using a publicly available DTD, and standard-conforming simpleHTML designed for human modification. Opaque formats includePostScript, PDF, proprietary formats that can be read and edited onlyby proprietary word processors, SGML or XML for which the DTD and/orprocessing tools are not generally available, and themachine-generated HTML produced by some word processors for outputpurposes only.The "Title Page" means, for a printed book, the title page itself,plus such following pages as are needed to hold, legibly, the materialthis License requires to appear in the title page. For works informats which do not have any title page as such, "Title Page" meansthe text near the most prominent appearance of the work's title,preceding the beginning of the body of the text.2. VERBATIM COPYINGYou may copy and distribute the Document in any medium, eithercommercially or noncommercially, provided that this License, thecopyright notices, and the license notice saying this License appliesto the Document are reproduced in all copies, and that you add no otherconditions whatsoever to those of this License. You may not usetechnical measures to obstruct or control the reading or furthercopying of the copies you make or distribute. However, you may acceptcompensation in exchange for copies. If you distribute a large enoughnumber of copies you must also follow the conditions in section 3.You may also lend copies, under the same conditions stated above, andyou may publicly display copies.3. COPYING IN QUANTITY

17 GNU FREE DOCUMENTATION LICENCE 130If you publish printed copies of the Document numbering more than 100,and the Document's license notice requires Cover Texts, you must enclosethe copies in covers that carry, clearly and legibly, all these CoverTexts: Front-Cover Texts on the front cover, and Back-Cover Texts onthe back cover. Both covers must also clearly and legibly identifyyou as the publisher of these copies. The front cover must presentthe full title with all words of the title equally prominent andvisible. You may add other material on the covers in addition.Copying with changes limited to the covers, as long as they preservethe title of the Document and satisfy these conditions, can be treatedas verbatim copying in other respects.If the required texts for either cover are too voluminous to fitlegibly, you should put the first ones listed (as many as fitreasonably) on the actual cover, and continue the rest onto adjacentpages.If you publish or distribute Opaque copies of the Document numberingmore than 100, you must either include a machine-readable Transparentcopy along with each Opaque copy, or state in or with each Opaque copya publicly-accessible computer-network location containing a completeTransparent copy of the Document, free of added material, which thegeneral network-using public has access to download anonymously at nocharge using public-standard network protocols. If you use the latteroption, you must take reasonably prudent steps, when you begindistribution of Opaque copies in quantity, to ensure that thisTransparent copy will remain thus accessible at the stated locationuntil at least one year after the last time you distribute an Opaquecopy (directly or through your agents or retailers) of that edition tothe public.It is requested, but not required, that you contact the authors of theDocument well before redistributing any large number of copies, to givethem a chance to provide you with an updated version of the Document.4. MODIFICATIONSYou may copy and distribute a Modified Version of the Document underthe conditions of sections 2 and 3 above, provided that you releasethe Modified Version under precisely this License, with the ModifiedVersion filling the role of the Document, thus licensing distributionand modification of the Modified Version to whoever possesses a copyof it. In addition, you must do these things in the Modified Version:A. Use in the Title Page (and on the covers, if any) a title distinctfrom that of the Document, and from those of previous versions

17 GNU FREE DOCUMENTATION LICENCE 131(which should, if there were any, be listed in the History sectionof the Document). You may use the same title as a previous versionif the original publisher of that version gives permission.B. List on the Title Page, as authors, one or more persons or entitiesresponsible for authorship of the modifications in the ModifiedVersion, together with at least five of the principal authors of theDocument (all of its principal authors, if it has less than five).C. State on the Title page the name of the publisher of theModified Version, as the publisher.D. Preserve all the copyright notices of the Document.E. Add an appropriate copyright notice for your modificationsadjacent to the other copyright notices.F. Include, immediately after the copyright notices, a license noticegiving the public permission to use the Modified Version under theterms of this License, in the form shown in the Addendum below.G. Preserve in that license notice the full lists of Invariant Sectionsand required Cover Texts given in the Document's license notice.H. Include an unaltered copy of this License.I. Preserve the section entitled "History", and its title, and add toit an item stating at least the title, year, new authors, andpublisher of the Modified Version as given on the Title Page. Ifthere is no section entitled "History" in the Document, create onestating the title, year, authors, and publisher of the Document asgiven on its Title Page, then add an item describing the ModifiedVersion as stated in the previous sentence.J. Preserve the network location, if any, given in the Document forpublic access to a Transparent copy of the Document, and likewisethe network locations given in the Document for previous versionsit was based on. These may be placed in the "History" section.You may omit a network location for a work that was published atleast four years before the Document itself, or if the originalpublisher of the version it refers to gives permission.K. In any section entitled "Acknowledgements" or "Dedications",preserve the section's title, and preserve in the section all thesubstance and tone of each of the contributor acknowledgementsand/or dedications given therein.L. Preserve all the Invariant Sections of the Document,unaltered in their text and in their titles. Section numbersor the equivalent are not considered part of the section titles.M. Delete any section entitled "Endorsements". Such a sectionmay not be included in the Modified Version.N. Do not retitle any existing section as "Endorsements"or to conflict in title with any Invariant Section.If the Modified Version includes new front-matter sections orappendices that qualify as Secondary Sections and contain no materialcopied from the Document, you may at your option designate some or allof these sections as invariant. To do this, add their titles to the

17 GNU FREE DOCUMENTATION LICENCE 132list of Invariant Sections in the Modified Version's license notice.These titles must be distinct from any other section titles.You may add a section entitled "Endorsements", provided it containsnothing but endorsements of your Modified Version by variousparties--for example, statements of peer review or that the text hasbeen approved by an organization as the authoritative definition of astandard.You may add a passage of up to five words as a Front-Cover Text, and apassage of up to 25 words as a Back-Cover Text, to the end of the listof Cover Texts in the Modified Version. Only one passage ofFront-Cover Text and one of Back-Cover Text may be added by (orthrough arrangements made by) any one entity. If the Document alreadyincludes a cover text for the same cover, previously added by you orby arrangement made by the same entity you are acting on behalf of,you may not add another; but you may replace the old one, on explicitpermission from the previous publisher that added the old one.The author(s) and publisher(s) of the Document do not by this Licensegive permission to use their names for publicity for or to assert orimply endorsement of any Modified Version.5. COMBINING DOCUMENTSYou may combine the Document with other documents released under thisLicense, under the terms defined in section 4 above for modifiedversions, provided that you include in the combination all of theInvariant Sections of all of the original documents, unmodified, andlist them all as Invariant Sections of your combined work in itslicense notice.The combined work need only contain one copy of this License, andmultiple identical Invariant Sections may be replaced with a singlecopy. If there are multiple Invariant Sections with the same name butdifferent contents, make the title of each such section unique byadding at the end of it, in parentheses, the name of the originalauthor or publisher of that section if known, or else a unique number.Make the same adjustment to the section titles in the list ofInvariant Sections in the license notice of the combined work.In the combination, you must combine any sections entitled "History"in the various original documents, forming one section entitled"History"; likewise combine any sections entitled "Acknowledgements",and any sections entitled "Dedications". You must delete all sectionsentitled "Endorsements."

17 GNU FREE DOCUMENTATION LICENCE 1336. COLLECTIONS OF DOCUMENTSYou may make a collection consisting of the Document and other documentsreleased under this License, and replace the individual copies of thisLicense in the various documents with a single copy that is included inthe collection, provided that you follow the rules of this License forverbatim copying of each of the documents in all other respects.You may extract a single document from such a collection, and distributeit individually under this License, provided you insert a copy of thisLicense into the extracted document, and follow this License in allother respects regarding verbatim copying of that document.7. AGGREGATION WITH INDEPENDENT WORKSA compilation of the Document or its derivatives with other separateand independent documents or works, in or on a volume of a storage ordistribution medium, does not as a whole count as a Modified Versionof the Document, provided no compilation copyright is claimed for thecompilation. Such a compilation is called an "aggregate", and thisLicense does not apply to the other self-contained works thus compiledwith the Document, on account of their being thus compiled, if theyare not themselves derivative works of the Document.If the Cover Text requirement of section 3 is applicable to thesecopies of the Document, then if the Document is less than one quarterof the entire aggregate, the Document's Cover Texts may be placed oncovers that surround only the Document within the aggregate.Otherwise they must appear on covers around the whole aggregate.8. TRANSLATIONTranslation is considered a kind of modification, so you maydistribute translations of the Document under the terms of section 4.Replacing Invariant Sections with translations requires specialpermission from their copyright holders, but you may includetranslations of some or all Invariant Sections in addition to theoriginal versions of these Invariant Sections. You may include atranslation of this License provided that you also include theoriginal English version of this License. In case of a disagreementbetween the translation and the original English version of thisLicense, the original English version will prevail.9. TERMINATION

17 GNU FREE DOCUMENTATION LICENCE 134You may not copy, modify, sublicense, or distribute the Document exceptas expressly provided for under this License. Any other attempt tocopy, modify, sublicense or distribute the Document is void, and willautomatically terminate your rights under this License. However,parties who have received copies, or rights, from you under thisLicense will not have their licenses terminated so long as suchparties remain in full compliance.10. FUTURE REVISIONS OF THIS LICENSEThe Free Software Foundation may publish new, revised versionsof the GNU Free Documentation License from time to time. Such newversions will be similar in spirit to the present version, but maydiffer in detail to address new problems or concerns. Seehttp://www.gnu.org/copyleft/.Each version of the License is given a distinguishing version number.If the Document specifies that a particular numbered version of thisLicense "or any later version" applies to it, you have the option offollowing the terms and conditions either of that specified version orof any later version that has been published (not as a draft) by theFree Software Foundation. If the Document does not specify a versionnumber of this License, you may choose any version ever published (notas a draft) by the Free Software Foundation.

17 GNU FREE DOCUMENTATION LICENCE 135

LINKER
COMPILER

'& $%Libraries... '& $%Executableprogram
'& $%optionallinker-map

'& $%Object-code '& $%optionalsource-listing
'& $%Source-code
- -

-
??
??

Figure 1: Compiling and Linking

