THERMODYNAMICS PRACTICE PROBLEMS

1. A Carnot refrigerator has a coefficient of performance of 10 . If the refrigerator's interior is to be kept at $-45^{\circ} \mathrm{C}$, the temperature of the refrigerator's high temperature reservoir is most nearly
(A) 250 K
(B) 270 K
(C) 300 K
(D) 350 K

Solution

For a refrigerator,

$$
\mathrm{COP}=\frac{T_{\text {low }}}{T_{\text {high }}-T_{\text {low }}}
$$

Solve for the hot side temperature.

$$
\begin{aligned}
T_{\text {high }} & =\frac{T_{\text {low }}}{\mathrm{COP}}+T_{\text {low }}=\frac{-45^{\circ} \mathrm{C}+273}{10}+\left(-45^{\circ} \mathrm{C}+273\right) \\
& =250.8 \mathrm{~K}
\end{aligned}
$$

Answer is (A).
2. Helium is compressed isentropically from 1 atmosphere and $5^{\circ} \mathrm{C}$ to a pressure of 8 atmospheres. The ratio of specific heats for helium is $5 / 3$. What is the final temperature of the helium?
(A) $290^{\circ} \mathrm{C}$
(B) $340^{\circ} \mathrm{C}$
(C) $370^{\circ} \mathrm{C}$
(D) $650^{\circ} \mathrm{C}$

Solution

$$
\frac{T_{2}}{T_{1}}=\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1-k}{k}}
$$

$$
\begin{aligned}
\frac{1-k}{k} & =\frac{1-\frac{5}{3}}{\frac{5}{3}}=\frac{3-5}{5}=-0.4 \\
T_{2} & =T_{1}\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1-k}{k}}=\left(5^{\circ} \mathrm{C}+273\right)\left(\frac{1 \mathrm{~atm}}{8 \mathrm{~atm}}\right)^{-0.4} \\
& =638.7 \mathrm{~K} \quad\left(366^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Answer is (C).
3. The thermal efficiency of a Carnot cycle operating between $170^{\circ} \mathrm{C}$ and $620^{\circ} \mathrm{C}$ is closest to
(A) 44%
(B) 50%
(C) 63%
(D) 73%

Solution

$$
\begin{aligned}
& T_{\text {high }}=620^{\circ} \mathrm{C}+273=893 \mathrm{~K} \\
& T_{\text {low }}=170^{\circ} \mathrm{C}+273=443 \mathrm{~K} \\
& \eta_{\text {Carnot }}=\frac{T_{\text {high }}-T_{\text {low }}}{T_{\text {high }}}=\frac{893 \mathrm{~K}-443 \mathrm{~K}}{893 \mathrm{~K}}=0.504 \quad(50.4 \%)
\end{aligned}
$$

Answer is (B).
4. Superheated steam at 4.0 MPa and $275^{\circ} \mathrm{C}$ expands isentropically to 1.4 MPa . What is the quality factor of the resulting vapor? The data for the steam are as follows.

For $4.0 \mathrm{MPa}, 275^{\circ} \mathrm{C}: \quad h=2886.2 \mathrm{~kJ} / \mathrm{kg} ; s=6.2285 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
For 1.4 MPa , dry saturated vapor: $\quad h_{g}=2790.0 \mathrm{~kJ} / \mathrm{kg} ; s_{g}=6.4693 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
For 1.4 MPa, saturated liquid: $\quad h_{f}=830.3 \mathrm{~kJ} / \mathrm{kg} ; s_{f}=2.2842 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
(A) 91%
(B) 92%
(C) 93%
(D) 94%

Solution

The entropy is unchanged in an isentropic process.

$$
\begin{aligned}
& s=x s_{g}+(1-x) s_{f} \\
& 6.2285 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}=x\left(6.4693 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)+(1-x)\left(2.2842 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right) \\
& 4.1851 x=3.9443 \\
& x=0.9425
\end{aligned}
$$

Answer is (D).
5. A compressor takes atmospheric air (molecular weight of $29 \mathrm{~kg} / \mathrm{kmol}$) at 103.4 kPa and $20^{\circ} \mathrm{C}$ and delivers it at 1.034 MPa and $175^{\circ} \mathrm{C}$. The compression process is polytropic. The work required to compress one unit mass of air is most nearly
(A) $50 \mathrm{~kJ} / \mathrm{kg}$
(B) $100 \mathrm{~kJ} / \mathrm{kg}$
(C) $150 \mathrm{~kJ} / \mathrm{kg}$
(D) $200 \mathrm{~kJ} / \mathrm{kg}$

Solution

For a process with polytropic exponent n,

$$
\begin{aligned}
& \frac{T_{1}}{T_{2}}=\left(\frac{P_{1}}{P_{2}}\right)^{\frac{n-1}{n}} \\
& \frac{20^{\circ} \mathrm{C}+273}{175^{\circ} \mathrm{C}+273}=\left(\frac{103.4 \mathrm{kPa}}{1034 \mathrm{kPa}}\right)^{\frac{n-1}{n}} \\
& 0.6540=(0.10)^{\frac{n-1}{n}}
\end{aligned}
$$

Take the base-10 logarithm of both sides.

$$
\begin{aligned}
& \log (0.6540)=\left(\frac{n-1}{n}\right) \log (0.10) \\
& \frac{n-1}{n}=0.1844
\end{aligned}
$$

$$
n=1.23
$$

If air's specific gas constant is not known, it can be calculated.

$$
\begin{aligned}
R & =\frac{\bar{R}}{\text { molecular weight }}=\frac{8.314 \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{~K}}}{29 \frac{\mathrm{~kg}}{\mathrm{kmol}}}=0.2867 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
w & =\frac{P_{2} v_{2}-P_{1} v_{1}}{1-n}=\frac{R\left(T_{2}-T_{1}\right)}{1-n} \\
& =\frac{\left(0.2867 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)\left(175^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)}{1-1.23}=-193.2 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Answer is (D).
6. When 1.5 kg of an ideal gas (specific heat at constant volume $=0.8216 \mathrm{~kJ} / \mathrm{kg} \times \mathrm{K}$) is heated at constant volume to a final temperature of $425^{\circ} \mathrm{C}$, the total entropy increase is $0.4386 \mathrm{~kJ} / \mathrm{K}$. The initial temperature of the gas is most nearly
(A) $200^{\circ} \mathrm{C}$
(B) $210^{\circ} \mathrm{C}$
(C) $220^{\circ} \mathrm{C}$
(D) $240^{\circ} \mathrm{C}$

Solution

The total entropy increase for an ideal gas is

$$
\begin{aligned}
& \Delta S=m\left(c_{v} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{v_{2}}{v_{1}}\right)\right) \\
& v_{2}=v_{1} \\
& 0.4386 \frac{\mathrm{~kJ}}{\mathrm{~K}}=(1.5 \mathrm{~kg})\left(\left(0.8216 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right) \ln \left(\frac{425^{\circ} \mathrm{C}+273}{T_{1}}\right)\right) \\
& \ln \left(\frac{698 \mathrm{~K}}{T_{1}}\right)=0.3559
\end{aligned}
$$

Take the antilogarithm of both sides and solve for T_{1}.

$$
T_{1}=489 \mathrm{~K} \quad\left(489 \mathrm{~K}-273=216^{\circ} \mathrm{C}\right)
$$

Answer is (C).
7. Steam enters a turbine with a velocity of $40 \mathrm{~m} / \mathrm{s}$ and an enthalpy of $3433.8 \mathrm{~kJ} / \mathrm{kg}$. At the outlet, 2 meters lower than the inlet, the velocity is $162 \mathrm{~m} / \mathrm{s}$, and the enthalpy is $2675.5 \mathrm{~kJ} / \mathrm{kg}$. A heat loss of $1 \mathrm{~kJ} / \mathrm{kg}$ is experienced from the turbine casing. The work output per unit mass is closest to
(A) $650 \mathrm{~kJ} / \mathrm{kg}$
(B) $700 \mathrm{~kJ} / \mathrm{kg}$
(C) $720 \mathrm{~kJ} / \mathrm{kg}$
(D) $750 \mathrm{~kJ} / \mathrm{kg}$

Solution

The steady flow energy equation is

$$
\begin{aligned}
\dot{W}_{\text {out }} & =\dot{m}\left[\left(h_{\text {in }}+\frac{V_{\text {in }}^{2}}{2}+Z_{\text {in }} g\right)-\left(h_{\text {exit }}+\frac{V_{\text {exit }}^{2}}{2}+Z_{\text {exit }} g\right)\right]+\dot{Q}_{\text {in }} \\
\frac{\dot{W}_{\text {out }}}{\dot{m}} & =\left(3433.8 \frac{\mathrm{~kJ}}{\mathrm{~kg}}+\frac{\left(40 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{(2)\left(1000 \frac{\mathrm{~J}}{\mathrm{~kJ}}\right)}+\frac{(2 \mathrm{~m})\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}{\left.1000 \frac{\mathrm{~J}}{\mathrm{~kJ}}\right)}\right. \\
& -\left(2675.5 \frac{\mathrm{~kJ}}{\mathrm{~kg}}+\frac{\left(162 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{(2)\left(1000 \frac{\mathrm{~J}}{\mathrm{~kJ}}\right)^{2}}+0\right)-1 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& =744.9 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Answer is (D).
8. Compressed carbon dioxide (molecular weight $=44$) is kept in a full $0.5 \mathrm{~m}^{3}$ tank at $100^{\circ} \mathrm{C}$ and 500 kPa . The mass of the carbon dioxide in the tank is most nearly
(A) 3.0 kg
(B) 3.3 kg
(C) 3.5 kg
(D) 4.1 kg

Solution

The specific gas constant is

$$
R=\frac{\bar{R}}{\text { molecular weight }}=\frac{8.314 \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{~K}}}{44 \frac{\mathrm{~kg}}{\mathrm{kmol}}}=0.1890 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

Use the ideal gas law.

$$
\begin{aligned}
& P V=m R T \\
& m=\frac{p V}{R T}=\frac{(500 \mathrm{kPa})\left(0.5 \mathrm{~m}^{3}\right)}{\left(0.1890 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)\left(100^{\circ} \mathrm{C}+273\right)}
\end{aligned}
$$

Answer is (C).
9. A Carnot refrigeration cycle is used to keep a freezer at $-5^{\circ} \mathrm{C}$. Heat is rejected at $20^{\circ} \mathrm{C}$. If the heat removal rate is 30 kW , the COP of the refrigeration cycle is most nearly
(A) 9
(B) 10
(C) 11
(D) 12

Solution

$$
\begin{aligned}
& T_{\text {high }}=20^{\circ} \mathrm{C}+273=293 \mathrm{~K} \\
& T_{\text {low }}=-5^{\circ} \mathrm{C}+273=268 \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{COP}=\frac{T_{\text {low }}}{T_{\text {high }}-T_{\text {low }}}=\frac{268 \mathrm{~K}}{293 \mathrm{~K}-268 \mathrm{~K}}=10.7
$$

Answer is (C).
10. 0.2 kg of air is heated in a constant volume process from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. The specific heat at constant volume is $0.7186 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$. The change in entropy for the heating process is most nearly
(A) $0.028 \mathrm{~kJ} / \mathrm{K}$
(B) $0.033 \mathrm{~kJ} / \mathrm{K}$
(C) $0.035 \mathrm{~kJ} / \mathrm{K}$
(D) $0.039 \mathrm{~kJ} / \mathrm{K}$

Solution

$$
\begin{aligned}
\Delta S & =m\left(c_{v} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{v_{2}}{v_{1}}\right)\right) \\
v_{2} & =v_{1} \\
\Delta S & =0.2 \mathrm{~kg}\left(0.7186 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right) \ln \left(\frac{100^{\circ} \mathrm{C}+273}{20^{\circ} \mathrm{C}+273}\right) \\
& =0.0347
\end{aligned}
$$

Answer is (C).

