Thermodynamics I Semester Project for Spring 2015

Due: Beginning of class on Thursday (3/26)

Groups: Four students per group
Assignment: Create functions in Excel that allow the user to determine ideal gas properties of three different assigned gases (including O_{2}) without the use of tables. The properties must account for variable specific heats as is done in the tables. To demonstrate that your functions are correct you must use the functions to populate all the cells on the given spreadsheet template. The template has the function for Cp already completed and the Cp values calculated on the spreadsheet determined with a call to the function igas $\{$ i.e., formula $=$ igas(Gas, Desired Property, Given Temperature) \}.

Instructions: Download and open the project template (Project Template.xlsm) and select the "View" tab at the top of the spreadsheet (see step 1 below). Select view macros (see step 2 below) and edit Module 1 according to the instructions there highlighted in green. The appropriate expressions for each calculated property are given below. Return to the spreadsheet and make appropriate calls to the function (see step 4 below) in each cell to complete the spreadsheet.

$\mathbf{C} \mathbf{p}=R\left(\alpha+\beta T+\gamma T^{2}+\delta T^{3}+\varepsilon T^{4}+\phi T^{5}\right)$
$C p=\frac{d h}{d T} \rightarrow \Delta h=\int C p d T$
$h-h_{\text {ref }}=R \int\left(\alpha+\beta T+\gamma T^{2}+\delta T^{3}+\varepsilon T^{4}+\phi T^{5}\right) d t$
$\mathbf{h}=R^{*}\left(\alpha T+\frac{\beta}{2} T^{2}+\frac{\gamma}{3} T^{3}+\frac{\delta}{4} T^{4}+\frac{\varepsilon}{5} T^{5}+\frac{\phi}{6} T^{6}\right)+\kappa$
$\mathbf{u}=h-R T$
$\mathbf{s}^{\mathbf{0}}=\int \frac{C p}{T} d T=R *\left(\alpha \ln (T)+\beta T+\frac{\gamma}{2} T^{2}+\frac{\delta}{3} T^{3}+\frac{\varepsilon}{4} T^{4}+\frac{\phi}{5} T^{5}\right)+\kappa_{2}$
$\mathbf{P}_{\mathbf{r}}=\frac{\exp \left[s^{o} / R\right]}{\kappa_{3}} \quad, \quad \mathbf{V}_{\mathbf{r}}=\frac{R T}{P_{r}} \kappa_{4}$

Excel Program - Macro (Written by Dr. Crown and modified by you)

Dim R, MW, iga, igb, igc, igd, ige, igf, kh, kso, kpr, kvr As Double
Sub Macro1()
' Modify the program below to include different gases and properties other than Cp
End Sub
Public Function IGas(Gas, Gp, Optional T)
$\mathrm{Gp}=$ LCase (Gp)
If ($\mathrm{Gp}=$ = "so") Then $\mathrm{Gp}=$ = " sO "
If ($G p=$ "r") Then $G p=$ "R"
'I already entered the correct constants for the first gas (Oxygen)
If Gas = "O2" Then
MW = 32
iga $=3.626$
igb $=-0.001878$
igc $=0.000007055$
igd $=-0.000000006764$
ige $=0.000000000002156$
igf $=0$
$k h=-0.8776$
kso = -3
$\mathrm{kpr}=2000$
kvr = 1
End If
'Change the gas below and enter the appropriate constants
If Gas = "X2" Then
MW = 1
iga $=0$
igb $=0$
igc $=0$
igd $=0$
ige $=0$
igf $=0$
kh $=0$
$k s o=0$
$\mathrm{kpr}=1$
kvr = 1
End If
'Change the gas below and enter the appropriate constants
If Gas = "XY2" Then
MW = 1
iga $=0$
igb $=0$
igc $=0$
igd $=0$
ige $=0$
igf $=0$
kh $=0$
kso $=0$
$\mathrm{kpr}=1$
$k v r=1$
End If
'Do not change anything here
$\mathrm{R}=8.314 / \mathrm{MW}$
If $\mathrm{Gp}=$ " cp " Then $\mathrm{IGas}=\mathrm{Cp}(\mathrm{T})$
If $\mathrm{Gp}=$ " h " Then IGas $=\mathrm{h}(\mathrm{T})$

```
    If Gp = "u" Then IGas = u(T)
    If Gp = "sO" Then IGas = so(T)
    If Gp = "pr" Then IGas = Pr(T)
    If Gp = "vr" Then IGas = Vr(T)
    If Gp = "R" Then IGas = R
End Function
Public Function Cp(T)
    'This function for Cp is correct and does not need to be modified.
    Cp = R * (iga + igb * T + igc * T^ 2 + igd * T^ 3 + ige * T^ 4 + igf * T^ 5)
End Function
Public Function h(T)
    'Enter the correct expression for specific enthalpy on the line below.
    h = 1
End Function
Public Function u(T)
    'Enter the correct expression for specific internal energy on the line below.
    u=1
End Function
Public Function so(T)
    'Enter the correct expression for the temperature part of specific entropy (So)on the line below.
    so = 1
End Function
Public Function Pr(T)
    'Enter the correct expression for relative pressure on the line below.
    Pr = 1
End Function
Public Function Vr(T)
    'Enter the correct expression for relative specific volume on the line below.
    Vr=1
End Function
Public Function InvGas(Gas, Gp, Gv)
'This function does not need to me modified. This function finds the Temperature given any another property and
the value for that property.
    GX = 300
    SX = 100
    CY = IGas(Gas, Gp, GX)
    ErrMax = (Gv / 100000#)
    STEP = SX
    KK = 0
    Kmax = 500
    Do
        While ((CY - Gv) > ErrMax)
        GX = GX - STEP
        CY = IGas(Gas, Gp,GX)
        If ((CY - Gv) < O#) Then STEP = STEP / 2
        If (KK > Kmax) Then Exit Do Else KK = KK + 1
        Wend
        While ((CY - Gv) < (-ErrMax))
            GX = GX + STEP
        CY = IGas(Gas, Gp, GX)
        If ((-Gv) > 0#) Then STEP = STEP / 2
        If (KK > Kmax) Then Exit Do Else KK = KK + 1
        Wend
    Loop While (Abs(CY - Gv) > ErrMax)
    InvGas = GX
End Function
```


